/*++ Copyright (c) 2020 Microsoft Corporation Module Name: polysat_solver.h Abstract: Theory plugin for bit-vectors Author: Nikolaj Bjorner (nbjorner) 2020-08-30 --*/ #pragma once #include "sat/smt/sat_th.h" #include "math/dd/dd_pdd.h" #include "sat/smt/polysat/core.h" #include "sat/smt/intblast_solver.h" #include "ast/euf/euf_bv_plugin.h" namespace euf { class solver; } namespace polysat { class solver : public euf::th_euf_solver, public solver_interface { typedef euf::theory_var theory_var; typedef euf::theory_id theory_id; typedef sat::literal literal; typedef sat::bool_var bool_var; typedef sat::literal_vector literal_vector; using pdd = dd::pdd; struct proof_hint : public euf::th_proof_hint { char const* name; unsigned m_lit_head, m_lit_tail, m_eq_head, m_eq_tail; proof_hint(char const* name, unsigned lh, unsigned lt, unsigned eh, unsigned et) : name(name), m_lit_head(lh), m_lit_tail(lt), m_eq_head(eh), m_eq_tail(et) {} expr* get_hint(euf::solver& s) const override; }; class proof_hint_builder { sat::literal_vector m_literals; euf::enode_pair_vector m_eqs; char const* m_name = nullptr; unsigned m_lit_head = 0, m_lit_tail = 0, m_eq_head = 0, m_eq_tail = 0; void reset() { m_lit_head = m_lit_tail; m_eq_head = m_eq_tail; } void add(euf::enode* a, euf::enode* b) { if (m_eq_tail < m_eqs.size()) m_eqs[m_eq_tail] = { a, b }; else m_eqs.push_back({ a, b }); m_eq_tail++; } public: void init(euf::solver& ctx, char const* name); void add_eq(euf::enode* a, euf::enode* b) { add(a, b); } void add_lit(sat::literal lit) { if (m_lit_tail < m_literals.size()) m_literals[m_lit_tail] = lit; else m_literals.push_back(lit); m_lit_tail++; } sat::literal const& lit(unsigned i) const { return m_literals[i]; } euf::enode_pair const& eq(unsigned i) const { return m_eqs[i]; } proof_hint* mk(euf::solver& s); }; struct stats { void reset() { memset(this, 0, sizeof(stats)); } unsigned m_num_conflicts; unsigned m_num_propagations; unsigned m_num_axioms; stats() { reset(); } }; struct atom { bool_var m_bv; constraint_id m_index; atom(bool_var b, constraint_id index) :m_bv(b), m_index(index) {} ~atom() { } }; proof_hint_builder m_mk_hint; proof_hint* mk_proof_hint(char const* name, sat::literal_vector const& lits, euf::enode_pair_vector const& eqs); bv_util bv; arith_util m_autil; stats m_stats; core m_core; intblast::solver m_intblast; vector m_var2pdd; // theory_var 2 pdd bool_vector m_var2pdd_valid; // valid flag unsigned_vector m_pddvar2var; // pvar -> theory_var ptr_vector m_bool_var2atom; // bool_var -> atom euf::bv_plugin* m_bv_plugin = nullptr; svector> m_var_eqs; unsigned m_var_eqs_head = 0; bool m_has_lemma = false; unsigned m_lemma_level = 0; expr_ref_vector m_lemma; sat::check_result intblast(); void explain_slice(pvar v, pvar w, unsigned offset, std::function& consume); void explain_fixed(pvar v, fixed_slice const& s, std::function& consume_eq); // internalize bool visit(expr* e) override; bool visited(expr* e) override; bool post_visit(expr* e, bool sign, bool root) override; unsigned get_bv_size(euf::enode* n); unsigned get_bv_size(theory_var v); theory_var get_var(euf::enode* n); void fixed_var_eh(theory_var v); bool is_fixed(euf::theory_var v, expr_ref& val, sat::literal_vector& lits) override { return false; } bool is_bv(theory_var v) const { return bv.is_bv(var2expr(v)); } void register_true_false_bit(theory_var v, unsigned i); void add_bit(theory_var v, sat::literal lit); void eq_internalized(sat::bool_var b1, sat::bool_var b2, unsigned idx, theory_var v1, theory_var v2, sat::literal eq, euf::enode* n); void insert_bv2a(bool_var bv, atom* a) { m_bool_var2atom.setx(bv, a, nullptr); } void erase_bv2a(bool_var bv) { m_bool_var2atom[bv] = nullptr; } atom* get_bv2a(bool_var bv) const { return m_bool_var2atom.get(bv, nullptr); } class mk_atom_trail; atom* mk_atom(sat::bool_var bv, signed_constraint& sc); void set_bit_eh(theory_var v, literal l, unsigned idx); void init_bits(expr* e, expr_ref_vector const & bits); void mk_bits(theory_var v); void add_def(sat::literal def, sat::literal l); void internalize_unary(app* e, std::function const& fn); void internalize_binary(app* e, std::function const& fn); void internalize_binary(app* e, std::function const& fn); void internalize_binary_predicate(app* e, std::function const& fn); void internalize_smul_no_ovfl(app* e); void internalize_smul_no_udfl(app* e); void internalize_par_unary(app* e, std::function const& fn); void internalize_novfl(app* n, std::function& fn); void internalize_interp(app* n, std::function& ibin, std::function& un); void internalize_num(app * n); void internalize_mul(app* e); void internalize_concat(app * n); void internalize_bv2int(app* n); void internalize_int2bv(app* n); void internalize_mkbv(app* n); void internalize_xor3(app* n); void internalize_carry(app* n); void internalize_sub(app* n); void internalize_extract(app* n); void internalize_repeat(app* n); void internalize_bit2bool(app* n); void internalize_bor(app* n); void internalize_bxor(app* n); void internalize_bnor(app* n); void internalize_bnand(app* n); void internalize_bxnor(app* n); void internalize_band(app* n); void internalize_lshr(app* n); void internalize_ashr(app* n); void internalize_shl(app* n); template void internalize_le(app* n); void internalize_zero_extend(app* n); void internalize_sign_extend(app* n); void internalize_udiv_i(app* e); void internalize_urem_i(app* e); void internalize_div_rem(app* e, bool is_div); void axiomatize_srem(app* e, expr* x, expr* y); void axiomatize_smod(app* e, expr* x, expr* y); void axiomatize_sdiv(app* e, expr* x, expr* y); void axiomatize_redand(app* e, expr* x); void axiomatize_redor(app* e, expr* x); void axiomatize_comp(app* e, expr* x, expr* y); void axiomatize_rotate_left(app* e, unsigned n, expr* x); void axiomatize_rotate_right(app* e, unsigned n, expr* x); void axiomatize_ext_rotate_left(app* e, expr* x, expr* y); void axiomatize_ext_rotate_right(app* e, expr* x, expr* y); void axiomatize_int2bv(app* e, unsigned sz, expr* x); void axiomatize_bv2int(app* e, expr* x); void axioms_for_extract(app* e); void axioms_for_concat(app* e); expr_ref mk_ite(expr* c, expr* t, expr* e); expr_ref mk_ule(expr* l, expr* r); expr* rotate_left(app* e, unsigned n, expr* x); unsigned m_delayed_axioms_qhead = 0; ptr_vector m_delayed_axioms; bool propagate_delayed_axioms(); void internalize_polysat(app* a); void assert_bv2int_axiom(app * n); void assert_int2bv_axiom(app* n); void ensure_pdd_var(expr* e); pdd expr2pdd(expr* e); pdd var2pdd(euf::theory_var v); void internalize_set(expr* e, pdd const& p); void internalize_set(euf::theory_var v, pdd const& p); void quot_rem(expr* quot, expr* rem, expr* x, expr* y); vector m_eqs; vector>> m_eq2constraint; struct undo_add_eq; constraint_id eq_constraint(pdd p, pdd q, bool sign, dependency d); // callbacks from core lbool add_eq_literal(pvar v, rational const& val, dependency& d) override; void set_conflict(dependency_vector const& core, char const* hint) override; bool add_axiom(char const* name, constraint_or_dependency const* begin, constraint_or_dependency const* end, bool redundant) override; dependency propagate(signed_constraint sc, dependency_vector const& deps, char const* hint) override; void propagate(dependency const& d, bool sign, dependency_vector const& deps, char const* hint) override; void propagate_eq(pvar v, rational const& val, dependency const& d) override; trail_stack& trail() override; bool inconsistent() const override; void get_bitvector_sub_slices(pvar v, offset_slices& out) override; void get_bitvector_super_slices(pvar v, offset_slices& out) override; void get_bitvector_suffixes(pvar v, offset_slices& out) override; void get_fixed_bits(pvar v, fixed_bits_vector& fixed_bits) override; pdd mk_ite(signed_constraint const& sc, pdd const& p, pdd const& q) override; pdd mk_zero_extend(unsigned sz, pdd const& p) override; unsigned level(dependency const& d) override; dependency explain_slice(pvar v, pvar w, unsigned offset); bool add_axiom(char const* name, constraint_or_dependency_list const& clause, bool redundant) { return add_axiom(name, clause.begin(), clause.end(), redundant); } void add_axiom(char const* name, std::initializer_list const& clause); void add_axiom(char const* name, sat::literal_vector const& clause, bool is_redundant); void add_axiom(char const* name, sat::literal const* begin, sat::literal const* end, bool is_redundant); void equiv_axiom(char const* name, sat::literal a, sat::literal b); void validate_propagate(sat::literal lit, sat::literal_vector const& core, euf::enode_pair_vector const& eqs); void validate_conflict(sat::literal_vector const& core, euf::enode_pair_vector const& eqs); void validate_axiom(sat::literal_vector const& clause); std::ostream& display_clause(char const * name, std::ostream& out, sat::literal_vector const& lits) const; void explain_dep(dependency const& d, euf::enode_pair_vector& eqs, sat::literal_vector& lits); std::pair explain_deps(dependency_vector const& deps); expr_ref constraint2expr(signed_constraint const& sc); expr_ref pdd2expr(pdd const& p); struct scoped_eq_justification; public: solver(euf::solver& ctx, theory_id id); ~solver() override {} void set_lookahead(sat::lookahead* s) override { } void init_search() override {} double get_reward(literal l, sat::ext_constraint_idx idx, sat::literal_occs_fun& occs) const override { return 0; } bool is_extended_binary(sat::ext_justification_idx idx, literal_vector& r) override { return false; } bool is_external(bool_var v) override { return false; } void get_antecedents(literal l, sat::ext_justification_idx idx, literal_vector & r, bool probing) override; void asserted(literal l) override; sat::check_result check() override; void simplify() override {} void clauses_modifed() override {} lbool get_phase(bool_var v) override { return l_undef; } std::ostream& display(std::ostream& out) const override; std::ostream& display_justification(std::ostream& out, sat::ext_justification_idx idx) const override; std::ostream& display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const override; void collect_statistics(statistics& st) const override; euf::th_solver* clone(euf::solver& ctx) override { return alloc(solver, ctx, get_id()); } extension* copy(sat::solver* s) override { throw default_exception("polysat copy nyi"); } void find_mutexes(literal_vector& lits, vector & mutexes) override {} void gc() override {} void pop_reinit() override {} bool validate() override { return true; } void init_use_list(sat::ext_use_list& ul) override {} bool is_blocked(literal l, sat::ext_constraint_idx) override { return false; } bool check_model(sat::model const& m) const override; void finalize_model(model& mdl) override; void new_eq_eh(euf::th_eq const& eq) override; void new_diseq_eh(euf::th_eq const& ne) override; bool use_diseqs() const override { return true; } bool unit_propagate() override; void add_value(euf::enode* n, model& mdl, expr_ref_vector& values) override; bool add_dep(euf::enode* n, top_sort& dep) override; bool extract_pb(std::function& card, std::function& pb) override { return false; } bool to_formulas(std::function& l2e, expr_ref_vector& fmls) override { return false; } sat::literal internalize(expr* e, bool sign, bool root) override; void internalize(expr* e) override; void eq_internalized(euf::enode* n) override; euf::theory_var mk_var(euf::enode* n) override; void apply_sort_cnstr(euf::enode * n, sort * s) override; }; }