3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-07 01:54:08 +00:00
z3/src/util/sorting_network.h

931 lines
32 KiB
C++

/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
sorting_network.h
Abstract:
Utility for creating a sorting network.
Author:
Nikolaj Bjorner (nbjorner) 2013-11-07
Notes:
Same routine is used in Formula.
--*/
#include "vector.h"
#ifndef SORTING_NETWORK_H_
#define SORTING_NETWORK_H_
template <typename Ext>
class sorting_network {
typedef typename Ext::vector vect;
Ext& m_ext;
svector<unsigned> m_currentv;
svector<unsigned> m_nextv;
svector<unsigned>* m_current;
svector<unsigned>* m_next;
unsigned& current(unsigned i) { return (*m_current)[i]; }
unsigned& next(unsigned i) { return (*m_next)[i]; }
void exchange(unsigned i, unsigned j, vect& out) {
SASSERT(i <= j);
if (i < j) {
typename Ext::T ei = out.get(i);
typename Ext::T ej = out.get(j);
out.set(i, m_ext.mk_ite(m_ext.mk_le(ei, ej), ei, ej));
out.set(j, m_ext.mk_ite(m_ext.mk_le(ej, ei), ei, ej));
}
}
void sort(unsigned k, vect& out) {
SASSERT(is_power_of2(k) && k > 0);
if (k == 2) {
for (unsigned i = 0; i < out.size()/2; ++i) {
exchange(current(2*i), current(2*i+1), out);
next(2*i) = current(2*i);
next(2*i+1) = current(2*i+1);
}
std::swap(m_current, m_next);
}
else {
for (unsigned i = 0; i < out.size()/k; ++i) {
unsigned ki = k * i;
for (unsigned j = 0; j < k / 2; ++j) {
next(ki + j) = current(ki + (2 * j));
next(ki + (k / 2) + j) = current(ki + (2 * j) + 1);
}
}
std::swap(m_current, m_next);
sort(k / 2, out);
for (unsigned i = 0; i < out.size() / k; ++i) {
unsigned ki = k * i;
for (unsigned j = 0; j < k / 2; ++j) {
next(ki + (2 * j)) = current(ki + j);
next(ki + (2 * j) + 1) = current(ki + (k / 2) + j);
}
for (unsigned j = 0; j < (k / 2) - 1; ++j) {
exchange(next(ki + (2 * j) + 1), next(ki + (2 * (j + 1))), out);
}
}
std::swap(m_current, m_next);
}
}
bool is_power_of2(unsigned n) const {
return n != 0 && ((n-1) & n) == 0;
}
public:
sorting_network(Ext& ext):
m_ext(ext),
m_current(&m_currentv),
m_next(&m_nextv)
{}
void operator()(vect const& in, vect& out) {
out.reset();
out.append(in);
if (in.size() <= 1) {
return;
}
while (!is_power_of2(out.size())) {
out.push_back(m_ext.mk_default());
}
for (unsigned i = 0; i < out.size(); ++i) {
m_currentv.push_back(i);
m_nextv.push_back(i);
}
unsigned k = 2;
while (k <= out.size()) {
sort(k, out);
k *= 2;
}
}
};
// parametric sorting network
// Described in Abio et.al. CP 2013.
template<class psort_expr>
class psort_nw {
typedef typename psort_expr::literal literal;
typedef typename psort_expr::literal_vector literal_vector;
class vc {
unsigned v; // number of vertices
unsigned c; // number of clauses
static const unsigned lambda = 5;
public:
vc(unsigned v, unsigned c):v(v), c(c) {}
bool operator<(vc const& other) const {
return to_int() < other.to_int();
}
vc operator+(vc const& other) const {
return vc(v + other.v, c + other.c);
}
unsigned to_int() const {
return lambda*v + c;
}
vc operator*(unsigned n) const {
return vc(n*v, n*c);
}
};
static vc mk_min(vc const& v1, vc const& v2) {
return (v1.to_int() < v2.to_int())?v1:v2;
}
enum cmp_t { LE, GE, EQ, GE_FULL, LE_FULL };
psort_expr& ctx;
cmp_t m_t;
// for testing
static const bool m_disable_dcard = false;
static const bool m_disable_dsorting = false;
static const bool m_disable_dsmerge = false;
static const bool m_force_dcard = false;
static const bool m_force_dsorting = false;
static const bool m_force_dsmerge = false;
public:
struct stats {
unsigned m_num_compiled_vars;
unsigned m_num_compiled_clauses;
void reset() { memset(this, 0, sizeof(*this)); }
stats() { reset(); }
};
stats m_stats;
psort_nw(psort_expr& c): ctx(c) {}
literal ge(bool full, unsigned k, unsigned n, literal const* xs) {
if (k > n) {
return ctx.mk_false();
}
if (k == 0) {
return ctx.mk_true();
}
SASSERT(0 < k && k <= n);
literal_vector in, out;
if (dualize(k, n, xs, in)) {
return le(full, k, in.size(), in.c_ptr());
}
else {
SASSERT(2*k <= n);
m_t = full?GE_FULL:GE;
psort_nw<psort_expr>::card(k, n, xs, out);
return out[k-1];
}
}
literal le(bool full, unsigned k, unsigned n, literal const* xs) {
if (k >= n) {
return ctx.mk_true();
}
SASSERT(k < n);
literal_vector in, out;
if (dualize(k, n, xs, in)) {
return ge(full, k, n, in.c_ptr());
}
else if (k == 1) {
literal_vector ors;
return mk_at_most_1(full, n, xs, ors);
}
else {
SASSERT(2*k <= n);
m_t = full?LE_FULL:LE;
card(k + 1, n, xs, out);
return ctx.mk_not(out[k]);
}
}
literal eq(unsigned k, unsigned n, literal const* xs) {
if (k > n) {
return ctx.mk_false();
}
SASSERT(k <= n);
literal_vector in, out;
if (dualize(k, n, xs, in)) {
return eq(k, n, in.c_ptr());
}
else if (k == 1) {
return mk_exactly_1(true, n, xs);
}
else {
SASSERT(2*k <= n);
m_t = EQ;
card(k+1, n, xs, out);
SASSERT(out.size() >= k+1);
if (k == 0) {
return ctx.mk_not(out[k]);
}
else {
return ctx.mk_min(out[k-1], ctx.mk_not(out[k]));
}
}
}
private:
literal mk_and(literal l1, literal l2) {
literal result = fresh();
add_clause(ctx.mk_not(result), l1);
add_clause(ctx.mk_not(result), l2);
add_clause(ctx.mk_not(l1), ctx.mk_not(l2), result);
return result;
}
void mk_implies_or(literal l, unsigned n, literal const* xs) {
literal_vector lits(n, xs);
lits.push_back(ctx.mk_not(l));
add_clause(lits);
}
void mk_or_implies(literal l, unsigned n, literal const* xs) {
for (unsigned j = 0; j < n; ++j) {
add_clause(ctx.mk_not(xs[j]), l);
}
}
literal mk_or(literal_vector const& ors) {
if (ors.size() == 1) {
return ors[0];
}
literal result = fresh();
mk_implies_or(result, ors.size(), ors.c_ptr());
mk_or_implies(result, ors.size(), ors.c_ptr());
return result;
}
literal mk_exactly_1(bool full, unsigned n, literal const* xs) {
literal_vector ors;
literal r1 = mk_at_most_1(full, n, xs, ors);
if (full) {
r1 = mk_and(r1, mk_or(ors));
}
else {
mk_implies_or(r1, ors.size(), ors.c_ptr());
}
return r1;
}
literal mk_at_most_1(bool full, unsigned n, literal const* xs, literal_vector& ors) {
TRACE("pb", tout << (full?"full":"partial") << " ";
for (unsigned i = 0; i < n; ++i) tout << xs[i] << " ";
tout << "\n";);
if (false && !full && n >= 4) {
return mk_at_most_1_bimander(n, xs);
}
literal_vector in(n, xs);
literal result = fresh();
unsigned inc_size = 4;
literal_vector ands;
ands.push_back(result);
while (!in.empty()) {
ors.reset();
unsigned i = 0;
unsigned n = in.size();
if (n + 1 == inc_size) ++inc_size;
bool last = n <= inc_size;
for (; i + inc_size < n; i += inc_size) {
mk_at_most_1_small(full, last, inc_size, in.c_ptr() + i, result, ands, ors);
}
if (i < n) {
mk_at_most_1_small(full, last, n - i, in.c_ptr() + i, result, ands, ors);
}
if (last) {
break;
}
in.reset();
in.append(ors);
}
if (full) {
add_clause(ands);
}
return result;
}
void mk_at_most_1_small(bool full, bool last, unsigned n, literal const* xs, literal result, literal_vector& ands, literal_vector& ors) {
SASSERT(n > 0);
if (n == 1) {
ors.push_back(xs[0]);
return;
}
literal ex = fresh();
mk_or_implies(ex, n, xs);
if (full) {
mk_implies_or(ex, n, xs);
}
ors.push_back(ex);
// result => xs[0] + ... + xs[n-1] <= 1
for (unsigned i = 0; i < n; ++i) {
for (unsigned j = i + 1; j < n; ++j) {
add_clause(ctx.mk_not(result), ctx.mk_not(xs[i]), ctx.mk_not(xs[j]));
}
}
// xs[0] + ... + xs[n-1] <= 1 => and_x
if (full) {
literal and_i = fresh();
for (unsigned i = 0; i < n; ++i) {
literal_vector lits;
lits.push_back(and_i);
for (unsigned j = 0; j < n; ++j) {
if (j != i) lits.push_back(xs[j]);
}
add_clause(lits);
}
ands.push_back(ctx.mk_not(and_i));
}
}
literal mk_at_most_1_bimander(unsigned n, literal const* xs) {
literal_vector in(n, xs);
literal result = fresh();
unsigned inc_size = 2;
bool last = false;
bool full = false;
literal_vector ors, ands;
unsigned i = 0;
for (; i + inc_size < n; i += inc_size) {
mk_at_most_1_small(full, last, inc_size, in.c_ptr() + i, result, ands, ors);
}
if (i < n) {
mk_at_most_1_small(full, last, n - i, in.c_ptr() + i, result, ands, ors);
}
unsigned nbits = 0;
while (static_cast<unsigned>(1 << nbits) < ors.size()) {
++nbits;
}
literal_vector bits;
for (unsigned k = 0; k < nbits; ++k) {
bits.push_back(fresh());
}
for (i = 0; i < ors.size(); ++i) {
for (unsigned k = 0; k < nbits; ++k) {
bool bit_set = (i & (static_cast<unsigned>(1 << k))) != 0;
add_clause(ctx.mk_not(result), ctx.mk_not(ors[i]), bit_set ? bits[k] : ctx.mk_not(bits[k]));
}
}
return result;
}
std::ostream& pp(std::ostream& out, unsigned n, literal const* lits) {
for (unsigned i = 0; i < n; ++i) ctx.pp(out, lits[i]) << " ";
return out;
}
std::ostream& pp(std::ostream& out, literal_vector const& lits) {
for (unsigned i = 0; i < lits.size(); ++i) ctx.pp(out, lits[i]) << " ";
return out;
}
// 0 <= k <= N
// SUM x_i >= k
// <=>
// SUM ~x_i <= N - k
// suppose k > N/2, then it is better to solve dual.
bool dualize(unsigned& k, unsigned N, literal const* xs, literal_vector& in) {
SASSERT(0 <= k && k <= N);
if (2*k <= N) {
return false;
}
k = N - k;
for (unsigned i = 0; i < N; ++i) {
in.push_back(ctx.mk_not(xs[i]));
}
TRACE("pb",
pp(tout << N << ": ", in);
tout << " ~ " << k << "\n";);
return true;
}
bool even(unsigned n) const { return (0 == (n & 0x1)); }
bool odd(unsigned n) const { return !even(n); }
unsigned ceil2(unsigned n) const { return n/2 + odd(n); }
unsigned floor2(unsigned n) const { return n/2; }
unsigned power2(unsigned n) const { SASSERT(n < 10); return 1 << n; }
literal mk_max(literal a, literal b) {
if (a == b) return a;
m_stats.m_num_compiled_vars++;
return ctx.mk_max(a, b);
}
literal mk_min(literal a, literal b) {
if (a == b) return a;
m_stats.m_num_compiled_vars++;
return ctx.mk_min(a, b);
}
literal fresh() {
m_stats.m_num_compiled_vars++;
return ctx.fresh();
}
void add_clause(literal l1, literal l2, literal l3) {
literal lits[3] = { l1, l2, l3 };
add_clause(3, lits);
}
void add_clause(literal l1, literal l2) {
literal lits[2] = { l1, l2 };
add_clause(2, lits);
}
void add_clause(literal_vector const& lits) {
add_clause(lits.size(), lits.c_ptr());
}
void add_clause(unsigned n, literal const* ls) {
m_stats.m_num_compiled_clauses++;
literal_vector tmp(n, ls);
TRACE("pb", for (unsigned i = 0; i < n; ++i) tout << ls[i] << " "; tout << "\n";);
ctx.mk_clause(n, tmp.c_ptr());
}
// y1 <= mk_max(x1,x2)
// y2 <= mk_min(x1,x2)
void cmp_ge(literal x1, literal x2, literal y1, literal y2) {
add_clause(ctx.mk_not(y2), x1);
add_clause(ctx.mk_not(y2), x2);
add_clause(ctx.mk_not(y1), x1, x2);
}
// mk_max(x1,x2) <= y1
// mk_min(x1,x2) <= y2
void cmp_le(literal x1, literal x2, literal y1, literal y2) {
add_clause(ctx.mk_not(x1), y1);
add_clause(ctx.mk_not(x2), y1);
add_clause(ctx.mk_not(x1), ctx.mk_not(x2), y2);
}
void cmp_eq(literal x1, literal x2, literal y1, literal y2) {
cmp_ge(x1, x2, y1, y2);
cmp_le(x1, x2, y1, y2);
}
void cmp(literal x1, literal x2, literal y1, literal y2) {
switch(m_t) {
case LE: case LE_FULL: cmp_le(x1, x2, y1, y2); break;
case GE: case GE_FULL: cmp_ge(x1, x2, y1, y2); break;
case EQ: cmp_eq(x1, x2, y1, y2); break;
}
}
vc vc_cmp() {
return vc(2, (m_t==EQ)?6:3);
}
void card(unsigned k, unsigned n, literal const* xs, literal_vector& out) {
TRACE("pb", tout << "card k: " << k << " n: " << n << "\n";);
if (n <= k) {
psort_nw<psort_expr>::sorting(n, xs, out);
}
else if (use_dcard(k, n)) {
dsorting(k, n, xs, out);
}
else {
literal_vector out1, out2;
unsigned l = n/2; // TBD
card(k, l, xs, out1);
card(k, n-l, xs + l, out2);
smerge(k, out1.size(), out1.c_ptr(), out2.size(), out2.c_ptr(), out);
}
TRACE("pb", tout << "card k: " << k << " n: " << n << "\n";
pp(tout << "in:", n, xs) << "\n";
pp(tout << "out:", out) << "\n";);
}
vc vc_card(unsigned k, unsigned n) {
if (n <= k) {
return vc_sorting(n);
}
else if (use_dcard(k, n)) {
return vc_dsorting(k, n);
}
else {
return vc_card_rec(k, n);
}
}
vc vc_card_rec(unsigned k, unsigned n) {
unsigned l = n/2;
return vc_card(k, l) + vc_card(k, n-l) + vc_smerge(k, l, n-l);
}
bool use_dcard(unsigned k, unsigned n) {
return m_force_dcard || (!m_disable_dcard && n < 10 && vc_dsorting(k, n) < vc_card_rec(k, n));
}
void merge(unsigned a, literal const* as,
unsigned b, literal const* bs,
literal_vector& out) {
TRACE("pb", tout << "merge a: " << a << " b: " << b << "\n";);
if (a == 1 && b == 1) {
literal y1 = mk_max(as[0], bs[0]);
literal y2 = mk_min(as[0], bs[0]);
out.push_back(y1);
out.push_back(y2);
psort_nw<psort_expr>::cmp(as[0], bs[0], y1, y2);
}
else if (a == 0) {
out.append(b, bs);
}
else if (b == 0) {
out.append(a, as);
}
else if (use_dsmerge(a, b, a + b)) {
dsmerge(a + b, a, as, b, bs, out);
}
else if (even(a) && odd(b)) {
merge(b, bs, a, as, out);
}
else {
literal_vector even_a, odd_a;
literal_vector even_b, odd_b;
literal_vector out1, out2;
SASSERT(a > 1 || b > 1);
split(a, as, even_a, odd_a);
split(b, bs, even_b, odd_b);
SASSERT(!even_a.empty());
SASSERT(!even_b.empty());
merge(even_a.size(), even_a.c_ptr(),
even_b.size(), even_b.c_ptr(), out1);
merge(odd_a.size(), odd_a.c_ptr(),
odd_b.size(), odd_b.c_ptr(), out2);
interleave(out1, out2, out);
}
TRACE("pb", tout << "merge a: " << a << " b: " << b << "\n";
pp(tout << "a:", a, as) << "\n";
pp(tout << "b:", b, bs) << "\n";
pp(tout << "out:", out) << "\n";);
}
vc vc_merge(unsigned a, unsigned b) {
if (a == 1 && b == 1) {
return vc_cmp();
}
else if (a == 0 || b == 0) {
return vc(0, 0);
}
else if (use_dsmerge(a, b, a + b)) {
return vc_dsmerge(a, b, a + b);
}
else {
return vc_merge_rec(a, b);
}
}
vc vc_merge_rec(unsigned a, unsigned b) {
return
vc_merge(ceil2(a), ceil2(b)) +
vc_merge(floor2(a), floor2(b)) +
vc_interleave(ceil2(a) + ceil2(b), floor2(a) + floor2(b));
}
void split(unsigned n, literal const* ls, literal_vector& even, literal_vector& odd) {
for (unsigned i = 0; i < n; i += 2) {
even.push_back(ls[i]);
}
for (unsigned i = 1; i < n; i += 2) {
odd.push_back(ls[i]);
}
}
void interleave(literal_vector const& as,
literal_vector const& bs,
literal_vector& out) {
TRACE("pb", tout << "interleave: " << as.size() << " " << bs.size() << "\n";);
SASSERT(as.size() >= bs.size());
SASSERT(as.size() <= bs.size() + 2);
SASSERT(!as.empty());
out.push_back(as[0]);
unsigned sz = std::min(as.size()-1, bs.size());
for (unsigned i = 0; i < sz; ++i) {
literal y1 = mk_max(as[i+1],bs[i]);
literal y2 = mk_min(as[i+1],bs[i]);
psort_nw<psort_expr>::cmp(as[i+1], bs[i], y1, y2);
out.push_back(y1);
out.push_back(y2);
}
if (as.size() == bs.size()) {
out.push_back(bs[sz]);
}
else if (as.size() == bs.size() + 2) {
out.push_back(as[sz+1]);
}
SASSERT(out.size() == as.size() + bs.size());
TRACE("pb", tout << "interleave: " << as.size() << " " << bs.size() << "\n";
pp(tout << "a: ", as) << "\n";
pp(tout << "b: ", bs) << "\n";
pp(tout << "out: ", out) << "\n";);
}
vc vc_interleave(unsigned a, unsigned b) {
return vc_cmp()*std::min(a-1,b);
}
void sorting(unsigned n, literal const* xs, literal_vector& out) {
TRACE("pb", tout << "sorting: " << n << "\n";);
switch(n) {
case 0:
break;
case 1:
out.push_back(xs[0]);
break;
case 2:
psort_nw<psort_expr>::merge(1, xs, 1, xs+1, out);
break;
default:
if (use_dsorting(n)) {
dsorting(n, n, xs, out);
}
else {
literal_vector out1, out2;
unsigned l = n/2; // TBD
sorting(l, xs, out1);
sorting(n-l, xs+l, out2);
merge(out1.size(), out1.c_ptr(),
out2.size(), out2.c_ptr(),
out);
}
break;
}
TRACE("pb", tout << "sorting: " << n << "\n";
pp(tout << "in:", n, xs) << "\n";
pp(tout << "out:", out) << "\n";);
}
vc vc_sorting(unsigned n) {
switch(n) {
case 0: return vc(0,0);
case 1: return vc(0,0);
case 2: return vc_merge(1,1);
default:
if (use_dsorting(n)) {
return vc_dsorting(n, n);
}
else {
return vc_sorting_rec(n);
}
}
}
vc vc_sorting_rec(unsigned n) {
SASSERT(n > 2);
unsigned l = n/2;
return vc_sorting(l) + vc_sorting(n-l) + vc_merge(l, n-l);
}
bool use_dsorting(unsigned n) {
SASSERT(n > 2);
return m_force_dsorting ||
(!m_disable_dsorting && n < 10 && vc_dsorting(n, n) < vc_sorting_rec(n));
}
void smerge(unsigned c,
unsigned a, literal const* as,
unsigned b, literal const* bs,
literal_vector& out) {
TRACE("pb", tout << "smerge: c:" << c << " a:" << a << " b:" << b << "\n";);
if (a == 1 && b == 1 && c == 1) {
literal y = mk_max(as[0], bs[0]);
if (m_t != GE) {
// x1 <= mk_max(x1,x2)
// x2 <= mk_max(x1,x2)
add_clause(ctx.mk_not(as[0]), y);
add_clause(ctx.mk_not(bs[0]), y);
}
if (m_t != LE) {
// mk_max(x1,x2) <= x1, x2
add_clause(ctx.mk_not(y), as[0], bs[0]);
}
out.push_back(y);
}
else if (a == 0) {
out.append(std::min(c, b), bs);
}
else if (b == 0) {
out.append(std::min(c, a), as);
}
else if (a > c) {
smerge(c, c, as, b, bs, out);
}
else if (b > c) {
smerge(c, a, as, c, bs, out);
}
else if (a + b <= c) {
merge(a, as, b, bs, out);
}
else if (use_dsmerge(a, b, c)) {
dsmerge(c, a, as, b, bs, out);
}
else {
literal_vector even_a, odd_a;
literal_vector even_b, odd_b;
literal_vector out1, out2;
split(a, as, even_a, odd_a);
split(b, bs, even_b, odd_b);
SASSERT(!even_a.empty());
SASSERT(!even_b.empty());
unsigned c1, c2;
if (even(c)) {
c1 = 1 + c/2; c2 = c/2;
}
else {
c1 = (c + 1)/2; c2 = (c - 1)/2;
}
smerge(c1, even_a.size(), even_a.c_ptr(),
even_b.size(), even_b.c_ptr(), out1);
smerge(c2, odd_a.size(), odd_a.c_ptr(),
odd_b.size(), odd_b.c_ptr(), out2);
SASSERT(out1.size() == std::min(even_a.size()+even_b.size(), c1));
SASSERT(out2.size() == std::min(odd_a.size()+odd_b.size(), c2));
literal y;
if (even(c)) {
literal z1 = out1.back();
literal z2 = out2.back();
out1.pop_back();
out2.pop_back();
y = mk_max(z1, z2);
if (m_t != GE) {
add_clause(ctx.mk_not(z1), y);
add_clause(ctx.mk_not(z2), y);
}
if (m_t != LE) {
add_clause(ctx.mk_not(y), z1, z2);
}
}
interleave(out1, out2, out);
if (even(c)) {
out.push_back(y);
}
}
TRACE("pb", tout << "smerge: c:" << c << " a:" << a << " b:" << b << "\n";
pp(tout << "a:", a, as) << "\n";
pp(tout << "b:", b, bs) << "\n";
pp(tout << "out:", out) << "\n";
);
SASSERT(out.size() == std::min(a + b, c));
}
vc vc_smerge(unsigned a, unsigned b, unsigned c) {
if (a == 1 && b == 1 && c == 1) {
vc v(1,0);
if (m_t != GE) v = v + vc(0, 2);
if (m_t != LE) v = v + vc(0, 1);
return v;
}
if (a == 0 || b == 0) return vc(0, 0);
if (a > c) return vc_smerge(c, b, c);
if (b > c) return vc_smerge(a, c, c);
if (a + b <= c) return vc_merge(a, b);
if (use_dsmerge(a, b, c)) return vc_dsmerge(a, b, c);
return vc_smerge_rec(a, b, c);
}
vc vc_smerge_rec(unsigned a, unsigned b, unsigned c) {
return
vc_smerge(ceil2(a), ceil2(b), even(c)?(1+c/2):((c+1)/2)) +
vc_smerge(floor2(a), floor2(b), even(c)?(c/2):((c-1)/2)) +
vc_interleave(ceil2(a)+ceil2(b),floor2(a)+floor2(b)) +
vc(1, 0) +
((m_t != GE)?vc(0, 2):vc(0, 0)) +
((m_t != LE)?vc(0, 1):vc(0, 0));
}
bool use_dsmerge(unsigned a, unsigned b, unsigned c) {
return
m_force_dsmerge ||
(!m_disable_dsmerge &&
a < (1 << 15) && b < (1 << 15) &&
vc_dsmerge(a, b, a + b) < vc_smerge_rec(a, b, c));
}
void dsmerge(
unsigned c,
unsigned a, literal const* as,
unsigned b, literal const* bs,
literal_vector& out) {
TRACE("pb", tout << "dsmerge: c:" << c << " a:" << a << " b:" << b << "\n";);
SASSERT(a <= c);
SASSERT(b <= c);
SASSERT(a + b >= c);
for (unsigned i = 0; i < c; ++i) {
out.push_back(fresh());
}
if (m_t != GE) {
for (unsigned i = 0; i < a; ++i) {
add_clause(ctx.mk_not(as[i]), out[i]);
}
for (unsigned i = 0; i < b; ++i) {
add_clause(ctx.mk_not(bs[i]), out[i]);
}
for (unsigned i = 1; i <= a; ++i) {
for (unsigned j = 1; j <= b && i + j <= c; ++j) {
add_clause(ctx.mk_not(as[i-1]),ctx.mk_not(bs[j-1]),out[i+j-1]);
}
}
}
if (m_t != LE) {
literal_vector ls;
for (unsigned k = 0; k < c; ++k) {
ls.reset();
ls.push_back(ctx.mk_not(out[k]));
if (a <= k) {
add_clause(ctx.mk_not(out[k]), bs[k-a]);
}
if (b <= k) {
add_clause(ctx.mk_not(out[k]), as[k-b]);
}
for (unsigned i = 0; i < std::min(a,k + 1); ++i) {
unsigned j = k - i;
SASSERT(i + j == k);
if (j < b) {
ls.push_back(as[i]);
ls.push_back(bs[j]);
add_clause(ls);
ls.pop_back();
ls.pop_back();
}
}
}
}
}
vc vc_dsmerge(unsigned a, unsigned b, unsigned c) {
vc v(c, 0);
if (m_t != GE) {
v = v + vc(0, a + b + std::min(a, c)*std::min(b, c)/2);
}
if (m_t != LE) {
v = v + vc(0, std::min(a, c)*std::min(b, c)/2);
}
return v;
}
void dsorting(unsigned m, unsigned n, literal const* xs,
literal_vector& out) {
TRACE("pb", tout << "dsorting m: " << m << " n: " << n << "\n";);
SASSERT(m <= n);
literal_vector lits;
for (unsigned i = 0; i < m; ++i) {
out.push_back(fresh());
}
if (m_t != GE) {
for (unsigned k = 1; k <= m; ++k) {
lits.push_back(out[k-1]);
add_subset(true, k, 0, lits, n, xs);
lits.pop_back();
}
}
if (m_t != LE) {
for (unsigned k = 1; k <= m; ++k) {
lits.push_back(ctx.mk_not(out[k-1]));
add_subset(false, n-k+1, 0, lits, n, xs);
lits.pop_back();
}
}
}
vc vc_dsorting(unsigned m, unsigned n) {
SASSERT(m <= n && n < 10);
vc v(m, 0);
if (m_t != GE) {
v = v + vc(0, power2(n-1));
}
if (m_t != LE) {
v = v + vc(0, power2(n-1));
}
return v;
}
void add_subset(bool polarity, unsigned k, unsigned offset, literal_vector& lits,
unsigned n, literal const* xs) {
TRACE("pb", tout << "k:" << k << " offset: " << offset << " n: " << n << " ";
pp(tout, lits) << "\n";);
SASSERT(k + offset <= n);
if (k == 0) {
add_clause(lits);
return;
}
for (unsigned i = offset; i < n - k + 1; ++i) {
lits.push_back(polarity?ctx.mk_not(xs[i]):xs[i]);
add_subset(polarity, k-1, i+1, lits, n, xs);
lits.pop_back();
}
}
};
#endif