/*++ Copyright (c) 2013 Microsoft Corporation Module Name: sorting_network.h Abstract: Utility for creating a sorting network. Author: Nikolaj Bjorner (nbjorner) 2013-11-07 Notes: Same routine is used in Formula. --*/ #include "vector.h" #ifndef SORTING_NETWORK_H_ #define SORTING_NETWORK_H_ template class sorting_network { typedef typename Ext::vector vect; Ext& m_ext; svector m_currentv; svector m_nextv; svector* m_current; svector* m_next; unsigned& current(unsigned i) { return (*m_current)[i]; } unsigned& next(unsigned i) { return (*m_next)[i]; } void exchange(unsigned i, unsigned j, vect& out) { SASSERT(i <= j); if (i < j) { typename Ext::T ei = out.get(i); typename Ext::T ej = out.get(j); out.set(i, m_ext.mk_ite(m_ext.mk_le(ei, ej), ei, ej)); out.set(j, m_ext.mk_ite(m_ext.mk_le(ej, ei), ei, ej)); } } void sort(unsigned k, vect& out) { SASSERT(is_power_of2(k) && k > 0); if (k == 2) { for (unsigned i = 0; i < out.size()/2; ++i) { exchange(current(2*i), current(2*i+1), out); next(2*i) = current(2*i); next(2*i+1) = current(2*i+1); } std::swap(m_current, m_next); } else { for (unsigned i = 0; i < out.size()/k; ++i) { unsigned ki = k * i; for (unsigned j = 0; j < k / 2; ++j) { next(ki + j) = current(ki + (2 * j)); next(ki + (k / 2) + j) = current(ki + (2 * j) + 1); } } std::swap(m_current, m_next); sort(k / 2, out); for (unsigned i = 0; i < out.size() / k; ++i) { unsigned ki = k * i; for (unsigned j = 0; j < k / 2; ++j) { next(ki + (2 * j)) = current(ki + j); next(ki + (2 * j) + 1) = current(ki + (k / 2) + j); } for (unsigned j = 0; j < (k / 2) - 1; ++j) { exchange(next(ki + (2 * j) + 1), next(ki + (2 * (j + 1))), out); } } std::swap(m_current, m_next); } } bool is_power_of2(unsigned n) const { return n != 0 && ((n-1) & n) == 0; } public: sorting_network(Ext& ext): m_ext(ext), m_current(&m_currentv), m_next(&m_nextv) {} void operator()(vect const& in, vect& out) { out.reset(); out.append(in); if (in.size() <= 1) { return; } while (!is_power_of2(out.size())) { out.push_back(m_ext.mk_default()); } for (unsigned i = 0; i < out.size(); ++i) { m_currentv.push_back(i); m_nextv.push_back(i); } unsigned k = 2; while (k <= out.size()) { sort(k, out); k *= 2; } } }; // parametric sorting network // Described in Abio et.al. CP 2013. template class psort_nw { typedef typename psort_expr::literal literal; typedef typename psort_expr::literal_vector literal_vector; class vc { unsigned v; // number of vertices unsigned c; // number of clauses static const unsigned lambda = 5; public: vc(unsigned v, unsigned c):v(v), c(c) {} bool operator<(vc const& other) const { return to_int() < other.to_int(); } vc operator+(vc const& other) const { return vc(v + other.v, c + other.c); } unsigned to_int() const { return lambda*v + c; } vc operator*(unsigned n) const { return vc(n*v, n*c); } }; static vc mk_min(vc const& v1, vc const& v2) { return (v1.to_int() < v2.to_int())?v1:v2; } enum cmp_t { LE, GE, EQ, GE_FULL, LE_FULL }; psort_expr& ctx; cmp_t m_t; // for testing static const bool m_disable_dcard = false; static const bool m_disable_dsorting = false; static const bool m_disable_dsmerge = false; static const bool m_force_dcard = false; static const bool m_force_dsorting = false; static const bool m_force_dsmerge = false; public: struct stats { unsigned m_num_compiled_vars; unsigned m_num_compiled_clauses; void reset() { memset(this, 0, sizeof(*this)); } stats() { reset(); } }; stats m_stats; psort_nw(psort_expr& c): ctx(c) {} literal ge(bool full, unsigned k, unsigned n, literal const* xs) { if (k > n) { return ctx.mk_false(); } if (k == 0) { return ctx.mk_true(); } SASSERT(0 < k && k <= n); literal_vector in, out; if (dualize(k, n, xs, in)) { return le(full, k, in.size(), in.c_ptr()); } else { SASSERT(2*k <= n); m_t = full?GE_FULL:GE; psort_nw::card(k, n, xs, out); return out[k-1]; } } literal le(bool full, unsigned k, unsigned n, literal const* xs) { if (k >= n) { return ctx.mk_true(); } SASSERT(k < n); literal_vector in, out; if (dualize(k, n, xs, in)) { return ge(full, k, n, in.c_ptr()); } else if (k == 1) { literal_vector ors; return mk_at_most_1(full, n, xs, ors); } else { SASSERT(2*k <= n); m_t = full?LE_FULL:LE; card(k + 1, n, xs, out); return ctx.mk_not(out[k]); } } literal eq(unsigned k, unsigned n, literal const* xs) { if (k > n) { return ctx.mk_false(); } SASSERT(k <= n); literal_vector in, out; if (dualize(k, n, xs, in)) { return eq(k, n, in.c_ptr()); } else if (k == 1) { return mk_exactly_1(true, n, xs); } else { SASSERT(2*k <= n); m_t = EQ; card(k+1, n, xs, out); SASSERT(out.size() >= k+1); if (k == 0) { return ctx.mk_not(out[k]); } else { return ctx.mk_min(out[k-1], ctx.mk_not(out[k])); } } } private: literal mk_and(literal l1, literal l2) { literal result = fresh(); add_clause(ctx.mk_not(result), l1); add_clause(ctx.mk_not(result), l2); add_clause(ctx.mk_not(l1), ctx.mk_not(l2), result); return result; } void mk_implies_or(literal l, unsigned n, literal const* xs) { literal_vector lits(n, xs); lits.push_back(ctx.mk_not(l)); add_clause(lits); } void mk_or_implies(literal l, unsigned n, literal const* xs) { for (unsigned j = 0; j < n; ++j) { add_clause(ctx.mk_not(xs[j]), l); } } literal mk_or(literal_vector const& ors) { if (ors.size() == 1) { return ors[0]; } literal result = fresh(); mk_implies_or(result, ors.size(), ors.c_ptr()); mk_or_implies(result, ors.size(), ors.c_ptr()); return result; } literal mk_exactly_1(bool full, unsigned n, literal const* xs) { literal_vector ors; literal r1 = mk_at_most_1(full, n, xs, ors); if (full) { r1 = mk_and(r1, mk_or(ors)); } else { mk_implies_or(r1, ors.size(), ors.c_ptr()); } return r1; } literal mk_at_most_1(bool full, unsigned n, literal const* xs, literal_vector& ors) { TRACE("pb", tout << (full?"full":"partial") << " "; for (unsigned i = 0; i < n; ++i) tout << xs[i] << " "; tout << "\n";); if (false && !full && n >= 4) { return mk_at_most_1_bimander(n, xs); } literal_vector in(n, xs); literal result = fresh(); unsigned inc_size = 4; literal_vector ands; ands.push_back(result); while (!in.empty()) { ors.reset(); unsigned i = 0; unsigned n = in.size(); if (n + 1 == inc_size) ++inc_size; bool last = n <= inc_size; for (; i + inc_size < n; i += inc_size) { mk_at_most_1_small(full, last, inc_size, in.c_ptr() + i, result, ands, ors); } if (i < n) { mk_at_most_1_small(full, last, n - i, in.c_ptr() + i, result, ands, ors); } if (last) { break; } in.reset(); in.append(ors); } if (full) { add_clause(ands); } return result; } void mk_at_most_1_small(bool full, bool last, unsigned n, literal const* xs, literal result, literal_vector& ands, literal_vector& ors) { SASSERT(n > 0); if (n == 1) { ors.push_back(xs[0]); return; } literal ex = fresh(); mk_or_implies(ex, n, xs); if (full) { mk_implies_or(ex, n, xs); } ors.push_back(ex); // result => xs[0] + ... + xs[n-1] <= 1 for (unsigned i = 0; i < n; ++i) { for (unsigned j = i + 1; j < n; ++j) { add_clause(ctx.mk_not(result), ctx.mk_not(xs[i]), ctx.mk_not(xs[j])); } } // xs[0] + ... + xs[n-1] <= 1 => and_x if (full) { literal and_i = fresh(); for (unsigned i = 0; i < n; ++i) { literal_vector lits; lits.push_back(and_i); for (unsigned j = 0; j < n; ++j) { if (j != i) lits.push_back(xs[j]); } add_clause(lits); } ands.push_back(ctx.mk_not(and_i)); } } literal mk_at_most_1_bimander(unsigned n, literal const* xs) { literal_vector in(n, xs); literal result = fresh(); unsigned inc_size = 2; bool last = false; bool full = false; literal_vector ors, ands; unsigned i = 0; for (; i + inc_size < n; i += inc_size) { mk_at_most_1_small(full, last, inc_size, in.c_ptr() + i, result, ands, ors); } if (i < n) { mk_at_most_1_small(full, last, n - i, in.c_ptr() + i, result, ands, ors); } unsigned nbits = 0; while (static_cast(1 << nbits) < ors.size()) { ++nbits; } literal_vector bits; for (unsigned k = 0; k < nbits; ++k) { bits.push_back(fresh()); } for (i = 0; i < ors.size(); ++i) { for (unsigned k = 0; k < nbits; ++k) { bool bit_set = (i & (static_cast(1 << k))) != 0; add_clause(ctx.mk_not(result), ctx.mk_not(ors[i]), bit_set ? bits[k] : ctx.mk_not(bits[k])); } } return result; } std::ostream& pp(std::ostream& out, unsigned n, literal const* lits) { for (unsigned i = 0; i < n; ++i) ctx.pp(out, lits[i]) << " "; return out; } std::ostream& pp(std::ostream& out, literal_vector const& lits) { for (unsigned i = 0; i < lits.size(); ++i) ctx.pp(out, lits[i]) << " "; return out; } // 0 <= k <= N // SUM x_i >= k // <=> // SUM ~x_i <= N - k // suppose k > N/2, then it is better to solve dual. bool dualize(unsigned& k, unsigned N, literal const* xs, literal_vector& in) { SASSERT(0 <= k && k <= N); if (2*k <= N) { return false; } k = N - k; for (unsigned i = 0; i < N; ++i) { in.push_back(ctx.mk_not(xs[i])); } TRACE("pb", pp(tout << N << ": ", in); tout << " ~ " << k << "\n";); return true; } bool even(unsigned n) const { return (0 == (n & 0x1)); } bool odd(unsigned n) const { return !even(n); } unsigned ceil2(unsigned n) const { return n/2 + odd(n); } unsigned floor2(unsigned n) const { return n/2; } unsigned power2(unsigned n) const { SASSERT(n < 10); return 1 << n; } literal mk_max(literal a, literal b) { if (a == b) return a; m_stats.m_num_compiled_vars++; return ctx.mk_max(a, b); } literal mk_min(literal a, literal b) { if (a == b) return a; m_stats.m_num_compiled_vars++; return ctx.mk_min(a, b); } literal fresh() { m_stats.m_num_compiled_vars++; return ctx.fresh(); } void add_clause(literal l1, literal l2, literal l3) { literal lits[3] = { l1, l2, l3 }; add_clause(3, lits); } void add_clause(literal l1, literal l2) { literal lits[2] = { l1, l2 }; add_clause(2, lits); } void add_clause(literal_vector const& lits) { add_clause(lits.size(), lits.c_ptr()); } void add_clause(unsigned n, literal const* ls) { m_stats.m_num_compiled_clauses++; literal_vector tmp(n, ls); TRACE("pb", for (unsigned i = 0; i < n; ++i) tout << ls[i] << " "; tout << "\n";); ctx.mk_clause(n, tmp.c_ptr()); } // y1 <= mk_max(x1,x2) // y2 <= mk_min(x1,x2) void cmp_ge(literal x1, literal x2, literal y1, literal y2) { add_clause(ctx.mk_not(y2), x1); add_clause(ctx.mk_not(y2), x2); add_clause(ctx.mk_not(y1), x1, x2); } // mk_max(x1,x2) <= y1 // mk_min(x1,x2) <= y2 void cmp_le(literal x1, literal x2, literal y1, literal y2) { add_clause(ctx.mk_not(x1), y1); add_clause(ctx.mk_not(x2), y1); add_clause(ctx.mk_not(x1), ctx.mk_not(x2), y2); } void cmp_eq(literal x1, literal x2, literal y1, literal y2) { cmp_ge(x1, x2, y1, y2); cmp_le(x1, x2, y1, y2); } void cmp(literal x1, literal x2, literal y1, literal y2) { switch(m_t) { case LE: case LE_FULL: cmp_le(x1, x2, y1, y2); break; case GE: case GE_FULL: cmp_ge(x1, x2, y1, y2); break; case EQ: cmp_eq(x1, x2, y1, y2); break; } } vc vc_cmp() { return vc(2, (m_t==EQ)?6:3); } void card(unsigned k, unsigned n, literal const* xs, literal_vector& out) { TRACE("pb", tout << "card k: " << k << " n: " << n << "\n";); if (n <= k) { psort_nw::sorting(n, xs, out); } else if (use_dcard(k, n)) { dsorting(k, n, xs, out); } else { literal_vector out1, out2; unsigned l = n/2; // TBD card(k, l, xs, out1); card(k, n-l, xs + l, out2); smerge(k, out1.size(), out1.c_ptr(), out2.size(), out2.c_ptr(), out); } TRACE("pb", tout << "card k: " << k << " n: " << n << "\n"; pp(tout << "in:", n, xs) << "\n"; pp(tout << "out:", out) << "\n";); } vc vc_card(unsigned k, unsigned n) { if (n <= k) { return vc_sorting(n); } else if (use_dcard(k, n)) { return vc_dsorting(k, n); } else { return vc_card_rec(k, n); } } vc vc_card_rec(unsigned k, unsigned n) { unsigned l = n/2; return vc_card(k, l) + vc_card(k, n-l) + vc_smerge(k, l, n-l); } bool use_dcard(unsigned k, unsigned n) { return m_force_dcard || (!m_disable_dcard && n < 10 && vc_dsorting(k, n) < vc_card_rec(k, n)); } void merge(unsigned a, literal const* as, unsigned b, literal const* bs, literal_vector& out) { TRACE("pb", tout << "merge a: " << a << " b: " << b << "\n";); if (a == 1 && b == 1) { literal y1 = mk_max(as[0], bs[0]); literal y2 = mk_min(as[0], bs[0]); out.push_back(y1); out.push_back(y2); psort_nw::cmp(as[0], bs[0], y1, y2); } else if (a == 0) { out.append(b, bs); } else if (b == 0) { out.append(a, as); } else if (use_dsmerge(a, b, a + b)) { dsmerge(a + b, a, as, b, bs, out); } else if (even(a) && odd(b)) { merge(b, bs, a, as, out); } else { literal_vector even_a, odd_a; literal_vector even_b, odd_b; literal_vector out1, out2; SASSERT(a > 1 || b > 1); split(a, as, even_a, odd_a); split(b, bs, even_b, odd_b); SASSERT(!even_a.empty()); SASSERT(!even_b.empty()); merge(even_a.size(), even_a.c_ptr(), even_b.size(), even_b.c_ptr(), out1); merge(odd_a.size(), odd_a.c_ptr(), odd_b.size(), odd_b.c_ptr(), out2); interleave(out1, out2, out); } TRACE("pb", tout << "merge a: " << a << " b: " << b << "\n"; pp(tout << "a:", a, as) << "\n"; pp(tout << "b:", b, bs) << "\n"; pp(tout << "out:", out) << "\n";); } vc vc_merge(unsigned a, unsigned b) { if (a == 1 && b == 1) { return vc_cmp(); } else if (a == 0 || b == 0) { return vc(0, 0); } else if (use_dsmerge(a, b, a + b)) { return vc_dsmerge(a, b, a + b); } else { return vc_merge_rec(a, b); } } vc vc_merge_rec(unsigned a, unsigned b) { return vc_merge(ceil2(a), ceil2(b)) + vc_merge(floor2(a), floor2(b)) + vc_interleave(ceil2(a) + ceil2(b), floor2(a) + floor2(b)); } void split(unsigned n, literal const* ls, literal_vector& even, literal_vector& odd) { for (unsigned i = 0; i < n; i += 2) { even.push_back(ls[i]); } for (unsigned i = 1; i < n; i += 2) { odd.push_back(ls[i]); } } void interleave(literal_vector const& as, literal_vector const& bs, literal_vector& out) { TRACE("pb", tout << "interleave: " << as.size() << " " << bs.size() << "\n";); SASSERT(as.size() >= bs.size()); SASSERT(as.size() <= bs.size() + 2); SASSERT(!as.empty()); out.push_back(as[0]); unsigned sz = std::min(as.size()-1, bs.size()); for (unsigned i = 0; i < sz; ++i) { literal y1 = mk_max(as[i+1],bs[i]); literal y2 = mk_min(as[i+1],bs[i]); psort_nw::cmp(as[i+1], bs[i], y1, y2); out.push_back(y1); out.push_back(y2); } if (as.size() == bs.size()) { out.push_back(bs[sz]); } else if (as.size() == bs.size() + 2) { out.push_back(as[sz+1]); } SASSERT(out.size() == as.size() + bs.size()); TRACE("pb", tout << "interleave: " << as.size() << " " << bs.size() << "\n"; pp(tout << "a: ", as) << "\n"; pp(tout << "b: ", bs) << "\n"; pp(tout << "out: ", out) << "\n";); } vc vc_interleave(unsigned a, unsigned b) { return vc_cmp()*std::min(a-1,b); } void sorting(unsigned n, literal const* xs, literal_vector& out) { TRACE("pb", tout << "sorting: " << n << "\n";); switch(n) { case 0: break; case 1: out.push_back(xs[0]); break; case 2: psort_nw::merge(1, xs, 1, xs+1, out); break; default: if (use_dsorting(n)) { dsorting(n, n, xs, out); } else { literal_vector out1, out2; unsigned l = n/2; // TBD sorting(l, xs, out1); sorting(n-l, xs+l, out2); merge(out1.size(), out1.c_ptr(), out2.size(), out2.c_ptr(), out); } break; } TRACE("pb", tout << "sorting: " << n << "\n"; pp(tout << "in:", n, xs) << "\n"; pp(tout << "out:", out) << "\n";); } vc vc_sorting(unsigned n) { switch(n) { case 0: return vc(0,0); case 1: return vc(0,0); case 2: return vc_merge(1,1); default: if (use_dsorting(n)) { return vc_dsorting(n, n); } else { return vc_sorting_rec(n); } } } vc vc_sorting_rec(unsigned n) { SASSERT(n > 2); unsigned l = n/2; return vc_sorting(l) + vc_sorting(n-l) + vc_merge(l, n-l); } bool use_dsorting(unsigned n) { SASSERT(n > 2); return m_force_dsorting || (!m_disable_dsorting && n < 10 && vc_dsorting(n, n) < vc_sorting_rec(n)); } void smerge(unsigned c, unsigned a, literal const* as, unsigned b, literal const* bs, literal_vector& out) { TRACE("pb", tout << "smerge: c:" << c << " a:" << a << " b:" << b << "\n";); if (a == 1 && b == 1 && c == 1) { literal y = mk_max(as[0], bs[0]); if (m_t != GE) { // x1 <= mk_max(x1,x2) // x2 <= mk_max(x1,x2) add_clause(ctx.mk_not(as[0]), y); add_clause(ctx.mk_not(bs[0]), y); } if (m_t != LE) { // mk_max(x1,x2) <= x1, x2 add_clause(ctx.mk_not(y), as[0], bs[0]); } out.push_back(y); } else if (a == 0) { out.append(std::min(c, b), bs); } else if (b == 0) { out.append(std::min(c, a), as); } else if (a > c) { smerge(c, c, as, b, bs, out); } else if (b > c) { smerge(c, a, as, c, bs, out); } else if (a + b <= c) { merge(a, as, b, bs, out); } else if (use_dsmerge(a, b, c)) { dsmerge(c, a, as, b, bs, out); } else { literal_vector even_a, odd_a; literal_vector even_b, odd_b; literal_vector out1, out2; split(a, as, even_a, odd_a); split(b, bs, even_b, odd_b); SASSERT(!even_a.empty()); SASSERT(!even_b.empty()); unsigned c1, c2; if (even(c)) { c1 = 1 + c/2; c2 = c/2; } else { c1 = (c + 1)/2; c2 = (c - 1)/2; } smerge(c1, even_a.size(), even_a.c_ptr(), even_b.size(), even_b.c_ptr(), out1); smerge(c2, odd_a.size(), odd_a.c_ptr(), odd_b.size(), odd_b.c_ptr(), out2); SASSERT(out1.size() == std::min(even_a.size()+even_b.size(), c1)); SASSERT(out2.size() == std::min(odd_a.size()+odd_b.size(), c2)); literal y; if (even(c)) { literal z1 = out1.back(); literal z2 = out2.back(); out1.pop_back(); out2.pop_back(); y = mk_max(z1, z2); if (m_t != GE) { add_clause(ctx.mk_not(z1), y); add_clause(ctx.mk_not(z2), y); } if (m_t != LE) { add_clause(ctx.mk_not(y), z1, z2); } } interleave(out1, out2, out); if (even(c)) { out.push_back(y); } } TRACE("pb", tout << "smerge: c:" << c << " a:" << a << " b:" << b << "\n"; pp(tout << "a:", a, as) << "\n"; pp(tout << "b:", b, bs) << "\n"; pp(tout << "out:", out) << "\n"; ); SASSERT(out.size() == std::min(a + b, c)); } vc vc_smerge(unsigned a, unsigned b, unsigned c) { if (a == 1 && b == 1 && c == 1) { vc v(1,0); if (m_t != GE) v = v + vc(0, 2); if (m_t != LE) v = v + vc(0, 1); return v; } if (a == 0 || b == 0) return vc(0, 0); if (a > c) return vc_smerge(c, b, c); if (b > c) return vc_smerge(a, c, c); if (a + b <= c) return vc_merge(a, b); if (use_dsmerge(a, b, c)) return vc_dsmerge(a, b, c); return vc_smerge_rec(a, b, c); } vc vc_smerge_rec(unsigned a, unsigned b, unsigned c) { return vc_smerge(ceil2(a), ceil2(b), even(c)?(1+c/2):((c+1)/2)) + vc_smerge(floor2(a), floor2(b), even(c)?(c/2):((c-1)/2)) + vc_interleave(ceil2(a)+ceil2(b),floor2(a)+floor2(b)) + vc(1, 0) + ((m_t != GE)?vc(0, 2):vc(0, 0)) + ((m_t != LE)?vc(0, 1):vc(0, 0)); } bool use_dsmerge(unsigned a, unsigned b, unsigned c) { return m_force_dsmerge || (!m_disable_dsmerge && a < (1 << 15) && b < (1 << 15) && vc_dsmerge(a, b, a + b) < vc_smerge_rec(a, b, c)); } void dsmerge( unsigned c, unsigned a, literal const* as, unsigned b, literal const* bs, literal_vector& out) { TRACE("pb", tout << "dsmerge: c:" << c << " a:" << a << " b:" << b << "\n";); SASSERT(a <= c); SASSERT(b <= c); SASSERT(a + b >= c); for (unsigned i = 0; i < c; ++i) { out.push_back(fresh()); } if (m_t != GE) { for (unsigned i = 0; i < a; ++i) { add_clause(ctx.mk_not(as[i]), out[i]); } for (unsigned i = 0; i < b; ++i) { add_clause(ctx.mk_not(bs[i]), out[i]); } for (unsigned i = 1; i <= a; ++i) { for (unsigned j = 1; j <= b && i + j <= c; ++j) { add_clause(ctx.mk_not(as[i-1]),ctx.mk_not(bs[j-1]),out[i+j-1]); } } } if (m_t != LE) { literal_vector ls; for (unsigned k = 0; k < c; ++k) { ls.reset(); ls.push_back(ctx.mk_not(out[k])); if (a <= k) { add_clause(ctx.mk_not(out[k]), bs[k-a]); } if (b <= k) { add_clause(ctx.mk_not(out[k]), as[k-b]); } for (unsigned i = 0; i < std::min(a,k + 1); ++i) { unsigned j = k - i; SASSERT(i + j == k); if (j < b) { ls.push_back(as[i]); ls.push_back(bs[j]); add_clause(ls); ls.pop_back(); ls.pop_back(); } } } } } vc vc_dsmerge(unsigned a, unsigned b, unsigned c) { vc v(c, 0); if (m_t != GE) { v = v + vc(0, a + b + std::min(a, c)*std::min(b, c)/2); } if (m_t != LE) { v = v + vc(0, std::min(a, c)*std::min(b, c)/2); } return v; } void dsorting(unsigned m, unsigned n, literal const* xs, literal_vector& out) { TRACE("pb", tout << "dsorting m: " << m << " n: " << n << "\n";); SASSERT(m <= n); literal_vector lits; for (unsigned i = 0; i < m; ++i) { out.push_back(fresh()); } if (m_t != GE) { for (unsigned k = 1; k <= m; ++k) { lits.push_back(out[k-1]); add_subset(true, k, 0, lits, n, xs); lits.pop_back(); } } if (m_t != LE) { for (unsigned k = 1; k <= m; ++k) { lits.push_back(ctx.mk_not(out[k-1])); add_subset(false, n-k+1, 0, lits, n, xs); lits.pop_back(); } } } vc vc_dsorting(unsigned m, unsigned n) { SASSERT(m <= n && n < 10); vc v(m, 0); if (m_t != GE) { v = v + vc(0, power2(n-1)); } if (m_t != LE) { v = v + vc(0, power2(n-1)); } return v; } void add_subset(bool polarity, unsigned k, unsigned offset, literal_vector& lits, unsigned n, literal const* xs) { TRACE("pb", tout << "k:" << k << " offset: " << offset << " n: " << n << " "; pp(tout, lits) << "\n";); SASSERT(k + offset <= n); if (k == 0) { add_clause(lits); return; } for (unsigned i = offset; i < n - k + 1; ++i) { lits.push_back(polarity?ctx.mk_not(xs[i]):xs[i]); add_subset(polarity, k-1, i+1, lits, n, xs); lits.pop_back(); } } }; #endif