3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-05-09 16:55:47 +00:00
z3/src/math/polysat/op_constraint.cpp
Nikolaj Bjorner 68d9b44d67 add activate for &
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2022-12-03 05:55:14 -08:00

471 lines
17 KiB
C++

/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
polysat constraints for bit operations.
Author:
Jakob Rath, Nikolaj Bjorner (nbjorner) 2021-12-09
Notes:
Additional possible functionality on constraints:
- activate - when operation is first activated. It may be created and only activated later.
- bit-wise assignments - narrow based on bit assignment, not entire word assignment.
- integration with congruence tables
- integration with conflict resolution
--*/
#include "math/polysat/op_constraint.h"
#include "math/polysat/solver.h"
namespace polysat {
op_constraint::op_constraint(constraint_manager& m, code c, pdd const& p, pdd const& q, pdd const& r) :
constraint(m, ckind_t::op_t), m_op(c), m_p(p), m_q(q), m_r(r) {
m_vars.append(p.free_vars());
for (auto v : q.free_vars())
if (!m_vars.contains(v))
m_vars.push_back(v);
for (auto v : r.free_vars())
if (!m_vars.contains(v))
m_vars.push_back(v);
switch (c) {
case code::and_op:
if (p.index() > q.index())
std::swap(m_p, m_q);
break;
default:
break;
}
}
lbool op_constraint::eval() const {
return eval(p(), q(), r());
}
lbool op_constraint::eval(assignment const& a) const {
return eval(a.apply_to(p()), a.apply_to(q()), a.apply_to(r()));
}
lbool op_constraint::eval(pdd const& p, pdd const& q, pdd const& r) const {
switch (m_op) {
case code::lshr_op:
return eval_lshr(p, q, r);
case code::shl_op:
return eval_shl(p, q, r);
case code::and_op:
return eval_and(p, q, r);
default:
return l_undef;
}
}
std::ostream& op_constraint::display(std::ostream& out, lbool status) const {
switch (status) {
case l_true: return display(out, "==");
case l_false: return display(out, "!=");
default: return display(out, "?=");
}
}
std::ostream& operator<<(std::ostream& out, op_constraint::code c) {
switch (c) {
case op_constraint::code::ashr_op:
return out << ">>a";
case op_constraint::code::lshr_op:
return out << ">>";
case op_constraint::code::shl_op:
return out << "<<";
case op_constraint::code::and_op:
return out << "&";
default:
UNREACHABLE();
return out;
}
return out;
}
std::ostream& op_constraint::display(std::ostream& out) const {
return display(out, l_true);
}
std::ostream& op_constraint::display(std::ostream& out, char const* eq) const {
return out << r() << " " << eq << " " << p() << " " << m_op << " " << q();
}
/**
* Propagate consequences or detect conflicts based on partial assignments.
*
* We can assume that op_constraint is only asserted positive.
*/
void op_constraint::narrow(solver& s, bool is_positive, bool first) {
SASSERT(is_positive);
if (is_currently_true(s, is_positive))
return;
if (first)
activate(s);
if (clause_ref lemma = produce_lemma(s, s.assignment()))
s.add_clause(*lemma);
if (!s.is_conflict() && is_currently_false(s, is_positive))
s.set_conflict(signed_constraint(this, is_positive));
}
/**
* Produce lemmas that contradict the given assignment.
*
* We can assume that op_constraint is only asserted positive.
*/
clause_ref op_constraint::produce_lemma(solver& s, assignment const& a, bool is_positive) {
SASSERT(is_positive);
if (is_currently_true(a, is_positive))
return {};
return produce_lemma(s, a);
}
clause_ref op_constraint::produce_lemma(solver& s, assignment const& a) {
switch (m_op) {
case code::lshr_op:
return lemma_lshr(s, a);
case code::shl_op:
return lemma_shl(s, a);
case code::and_op:
return lemma_and(s, a);
default:
NOT_IMPLEMENTED_YET();
return {};
}
}
void op_constraint::activate(solver& s) {
switch (m_op) {
case code::lshr_op:
break;
case code::shl_op:
// TODO: if shift amount is constant p << k, then add p << k == p*2^k
break;
case code::and_op:
// handle masking of high order bits
activate_and(s);
break;
default:
break;
}
}
unsigned op_constraint::hash() const {
return mk_mix(p().hash(), q().hash(), r().hash());
}
bool op_constraint::operator==(constraint const& other) const {
if (other.kind() != ckind_t::op_t)
return false;
auto const& o = other.to_op();
return m_op == o.m_op && p() == o.p() && q() == o.q() && r() == o.r();
}
/**
* Enforce basic axioms for r == p >> q:
*
* q >= K -> r = 0
* q >= k -> r[i] = 0 for K - k <= i < K (bit indices range from 0 to K-1, inclusive)
* q >= k -> r <= 2^{K-k} - 1
* q = k -> r[i] = p[i+k] for 0 <= i < K - k
* r <= p
* q != 0 -> r <= p (subsumed by previous axiom)
* q != 0 /\ p > 0 -> r < p
* q = 0 -> r = p
*
* when q is a constant, several axioms can be enforced at activation time.
*
* Enforce also inferences and bounds
*
* TODO: use also
* s.m_viable.min_viable();
* s.m_viable.max_viable()
* when r, q are variables.
*/
clause_ref op_constraint::lemma_lshr(solver& s, assignment const& a) {
auto const pv = a.apply_to(p());
auto const qv = a.apply_to(q());
auto const rv = a.apply_to(r());
unsigned const K = p().manager().power_of_2();
signed_constraint const lshr(this, true);
if (pv.is_val() && rv.is_val() && rv.val() > pv.val())
// r <= p
return s.mk_clause(~lshr, s.ule(r(), p()), true);
else if (qv.is_val() && qv.val() >= K && rv.is_val() && !rv.is_zero())
// q >= K -> r = 0
return s.mk_clause(~lshr, ~s.ule(K, q()), s.eq(r()), true);
else if (qv.is_zero() && pv.is_val() && rv.is_val() && pv != rv)
// q = 0 -> p = r
return s.mk_clause(~lshr, ~s.eq(q()), s.eq(p(), r()), true);
else if (qv.is_val() && !qv.is_zero() && pv.is_val() && rv.is_val() && !pv.is_zero() && rv.val() >= pv.val())
// q != 0 & p > 0 -> r < p
return s.mk_clause(~lshr, s.eq(q()), s.ule(p(), 0), s.ult(r(), p()), true);
else if (qv.is_val() && !qv.is_zero() && qv.val() < K && rv.is_val() &&
rv.val() > rational::power_of_two(K - qv.val().get_unsigned()) - 1)
// q >= k -> r <= 2^{K-k} - 1
return s.mk_clause(~lshr, ~s.ule(qv.val(), q()), s.ule(r(), rational::power_of_two(K - qv.val().get_unsigned()) - 1), true);
else if (pv.is_val() && rv.is_val() && qv.is_val() && !qv.is_zero()) {
unsigned const k = qv.val().get_unsigned();
// q = k -> r[i] = p[i+k] for 0 <= i < K - k
for (unsigned i = 0; i < K - k; ++i) {
if (rv.val().get_bit(i) && !pv.val().get_bit(i + k)) {
return s.mk_clause(~lshr, ~s.eq(q(), k), ~s.bit(r(), i), s.bit(p(), i + k), true);
}
if (!rv.val().get_bit(i) && pv.val().get_bit(i + k)) {
return s.mk_clause(~lshr, ~s.eq(q(), k), s.bit(r(), i), ~s.bit(p(), i + k), true);
}
}
}
else {
SASSERT(!(pv.is_val() && qv.is_val() && rv.is_val()));
}
return {};
}
/** Evaluate constraint: r == p >> q */
lbool op_constraint::eval_lshr(pdd const& p, pdd const& q, pdd const& r) {
auto& m = p.manager();
if (q.is_zero() && p == r)
return l_true;
if (q.is_val() && q.val() >= m.power_of_2() && r.is_val())
return to_lbool(r.is_zero());
if (p.is_val() && q.is_val() && r.is_val()) {
SASSERT(q.val().is_unsigned()); // otherwise, previous condition should have been triggered
// TODO: use right-shift operation instead of division
auto divisor = rational::power_of_two(q.val().get_unsigned());
return to_lbool(r.val() == div(p.val(), divisor));
}
// TODO: other cases when we know lower bound of q,
// e.g, q = 2^k*q1 + q2, where q2 is a constant.
return l_undef;
}
/**
* Enforce axioms for constraint: r == p << q
*
* q >= K -> r = 0
* q >= k -> r = 0 \/ r >= 2^k
* q >= k -> r[i] = 0 for i < k
* q = k -> r[i+k] = p[i] for 0 <= i < K - k
* r != 0 -> r >= p
* q = 0 -> r = p
*/
clause_ref op_constraint::lemma_shl(solver& s, assignment const& a) {
auto const pv = a.apply_to(p());
auto const qv = a.apply_to(q());
auto const rv = a.apply_to(r());
unsigned const K = p().manager().power_of_2();
signed_constraint const shl(this, true);
if (pv.is_val() && !pv.is_zero() && !pv.is_one() && rv.is_val() && !rv.is_zero() && rv.val() < pv.val())
// r != 0 -> r >= p
// r = 0 \/ r >= p (equivalent)
// r-1 >= p-1 (equivalent unit constraint to better support narrowing)
return s.mk_clause(~shl, s.ule(p() - 1, r() - 1), true);
else if (qv.is_val() && qv.val() >= K && rv.is_val() && !rv.is_zero())
// q >= K -> r = 0
return s.mk_clause(~shl, ~s.ule(K, q()), s.eq(r()), true);
else if (qv.is_zero() && pv.is_val() && rv.is_val() && rv != pv)
// q = 0 -> r = p
return s.mk_clause(~shl, ~s.eq(q()), s.eq(r(), p()), true);
else if (qv.is_val() && !qv.is_zero() && qv.val() < K && rv.is_val() &&
!rv.is_zero() && rv.val() < rational::power_of_two(qv.val().get_unsigned()))
// q >= k -> r = 0 \/ r >= 2^k (intuitive version)
// q >= k -> r - 1 >= 2^k - 1 (equivalent unit constraint to better support narrowing)
return s.mk_clause(~shl, ~s.ule(qv.val(), q()), s.ule(rational::power_of_two(qv.val().get_unsigned()) - 1, r() - 1), true);
else if (pv.is_val() && rv.is_val() && qv.is_val() && !qv.is_zero()) {
unsigned const k = qv.val().get_unsigned();
// q = k -> r[i+k] = p[i] for 0 <= i < K - k
for (unsigned i = 0; i < K - k; ++i) {
if (rv.val().get_bit(i + k) && !pv.val().get_bit(i)) {
return s.mk_clause(~shl, ~s.eq(q(), k), ~s.bit(r(), i + k), s.bit(p(), i), true);
}
if (!rv.val().get_bit(i + k) && pv.val().get_bit(i)) {
return s.mk_clause(~shl, ~s.eq(q(), k), s.bit(r(), i + k), ~s.bit(p(), i), true);
}
}
}
else {
SASSERT(!(pv.is_val() && qv.is_val() && rv.is_val()));
}
return {};
}
/** Evaluate constraint: r == p << q */
lbool op_constraint::eval_shl(pdd const& p, pdd const& q, pdd const& r) {
auto& m = p.manager();
if (q.is_zero() && p == r)
return l_true;
if (q.is_val() && q.val() >= m.power_of_2() && r.is_val())
return to_lbool(r.is_zero());
if (p.is_val() && q.is_val() && r.is_val()) {
SASSERT(q.val().is_unsigned()); // otherwise, previous condition should have been triggered
// TODO: use left-shift operation instead of multiplication?
auto factor = rational::power_of_two(q.val().get_unsigned());
return to_lbool(r == p * m.mk_val(factor));
}
// TODO: other cases when we know lower bound of q,
// e.g, q = 2^k*q1 + q2, where q2 is a constant.
// (bounds should be tracked by viable, then just use min_viable here)
return l_undef;
}
void op_constraint::activate_and(solver& s) {
auto x = p(), y = q();
if (x.is_val())
std::swap(x, y);
if (!y.is_val())
return;
auto& m = x.manager();
auto yv = y.val();
if (!(yv + 1).is_power_of_two())
return;
signed_constraint const andc(this, true);
if (yv == m.max_value())
s.add_clause(~andc, s.eq(x, r()), false);
else if (yv == 0)
s.add_clause(~andc, s.eq(r()), false);
else {
unsigned K = m.power_of_2();
unsigned k = yv.get_num_bits();
SASSERT(k < K);
rational exp = rational::power_of_two(K - k);
s.add_clause(~andc, s.eq(x * exp, r() * exp), false);
s.add_clause(~andc, s.ule(r(), y), false); // maybe always activate these constraints regardless?
}
}
/**
* Produce lemmas for constraint: r == p & q
* r <= p
* r <= q
* p = q => r = p
* p[i] && q[i] = r[i]
* p = 2^K - 1 => q = r
* q = 2^K - 1 => p = r
* p = 2^k - 1 => r*2^{K - k} = q*2^{K - k}
* q = 2^k - 1 => r*2^{K - k} = p*2^{K - k}
* r = 0 && q != 0 & p = 2^k - 1 => q >= 2^k
* r = 0 && p != 0 & q = 2^k - 1 => p >= 2^k
*/
clause_ref op_constraint::lemma_and(solver& s, assignment const& a) {
auto& m = p().manager();
auto pv = a.apply_to(p());
auto qv = a.apply_to(q());
auto rv = a.apply_to(r());
signed_constraint const andc(this, true);
// r <= p
if (pv.is_val() && rv.is_val() && rv.val() > pv.val())
return s.mk_clause(~andc, s.ule(r(), p()), true);
// r <= q
if (qv.is_val() && rv.is_val() && rv.val() > qv.val())
return s.mk_clause(~andc, s.ule(r(), q()), true);
// p = q => r = p
if (pv.is_val() && qv.is_val() && rv.is_val() && pv == qv && rv != pv)
return s.mk_clause(~andc, ~s.eq(p(), q()), s.eq(r(), p()), true);
if (pv.is_val() && qv.is_val() && rv.is_val()) {
// p = -1 => r = q
if (pv.val() == m.max_value() && qv != rv)
return s.mk_clause(~andc, ~s.eq(p(), m.max_value()), s.eq(q(), r()), true);
// q = -1 => r = p
if (qv.val() == m.max_value() && pv != rv)
return s.mk_clause(~andc, ~s.eq(q(), m.max_value()), s.eq(p(), r()), true);
unsigned K = m.power_of_2();
// p = 2^k - 1 => r*2^{K - k} = q*2^{K - k}
// TODO
// if ((pv.val() + 1).is_power_of_two() ...)
// q = 2^k - 1 => r*2^{K - k} = p*2^{K - k}
// r = 0 && q != 0 & p = 2^k - 1 => q >= 2^k
if ((pv.val() + 1).is_power_of_two() && rv.val() > pv.val())
return s.mk_clause(~andc, ~s.eq(r()), ~s.eq(p(), pv.val()), s.eq(q()), s.ult(p(), q()), true);
// r = 0 && p != 0 & q = 2^k - 1 => p >= 2^k
if (rv.is_zero() && (qv.val() + 1).is_power_of_two() && pv.val() <= qv.val())
return s.mk_clause(~andc, ~s.eq(r()), ~s.eq(q(), qv.val()), s.eq(p()),s.ult(q(), p()), true);
for (unsigned i = 0; i < K; ++i) {
bool pb = pv.val().get_bit(i);
bool qb = qv.val().get_bit(i);
bool rb = rv.val().get_bit(i);
if (rb == (pb && qb))
continue;
if (pb && qb && !rb)
return s.mk_clause(~andc, ~s.bit(p(), i), ~s.bit(q(), i), s.bit(r(), i), true);
else if (!pb && rb)
return s.mk_clause(~andc, s.bit(p(), i), ~s.bit(r(), i), true);
else if (!qb && rb)
return s.mk_clause(~andc, s.bit(q(), i), ~s.bit(r(), i), true);
else
UNREACHABLE();
return {};
}
}
// Propagate r if p or q are 0
if (pv.is_zero() && !rv.is_zero()) // rv not necessarily fully evaluated
return s.mk_clause(~andc, s.ule(r(), p()), true);
if (qv.is_zero() && !rv.is_zero()) // rv not necessarily fully evaluated
return s.mk_clause(~andc, s.ule(r(), q()), true);
return {};
}
/** Evaluate constraint: r == p & q */
lbool op_constraint::eval_and(pdd const& p, pdd const& q, pdd const& r) {
if ((p.is_zero() || q.is_zero()) && r.is_zero())
return l_true;
if (p.is_val() && q.is_val() && r.is_val())
return r.val() == bitwise_and(p.val(), q.val()) ? l_true : l_false;
return l_undef;
}
void op_constraint::add_to_univariate_solver(solver& s, univariate_solver& us, unsigned dep, bool is_positive) const {
auto p_coeff = s.subst(p()).get_univariate_coefficients();
auto q_coeff = s.subst(q()).get_univariate_coefficients();
auto r_coeff = s.subst(r()).get_univariate_coefficients();
switch (m_op) {
case code::lshr_op:
us.add_lshr(p_coeff, q_coeff, r_coeff, !is_positive, dep);
break;
case code::shl_op:
us.add_shl(p_coeff, q_coeff, r_coeff, !is_positive, dep);
break;
case code::and_op:
us.add_and(p_coeff, q_coeff, r_coeff, !is_positive, dep);
break;
default:
NOT_IMPLEMENTED_YET();
break;
}
}
}