/*++ Copyright (c) 2021 Microsoft Corporation Module Name: polysat constraints for bit operations. Author: Jakob Rath, Nikolaj Bjorner (nbjorner) 2021-12-09 Notes: Additional possible functionality on constraints: - activate - when operation is first activated. It may be created and only activated later. - bit-wise assignments - narrow based on bit assignment, not entire word assignment. - integration with congruence tables - integration with conflict resolution --*/ #include "math/polysat/op_constraint.h" #include "math/polysat/solver.h" namespace polysat { op_constraint::op_constraint(constraint_manager& m, code c, pdd const& p, pdd const& q, pdd const& r) : constraint(m, ckind_t::op_t), m_op(c), m_p(p), m_q(q), m_r(r) { m_vars.append(p.free_vars()); for (auto v : q.free_vars()) if (!m_vars.contains(v)) m_vars.push_back(v); for (auto v : r.free_vars()) if (!m_vars.contains(v)) m_vars.push_back(v); switch (c) { case code::and_op: if (p.index() > q.index()) std::swap(m_p, m_q); break; default: break; } } lbool op_constraint::eval() const { return eval(p(), q(), r()); } lbool op_constraint::eval(assignment const& a) const { return eval(a.apply_to(p()), a.apply_to(q()), a.apply_to(r())); } lbool op_constraint::eval(pdd const& p, pdd const& q, pdd const& r) const { switch (m_op) { case code::lshr_op: return eval_lshr(p, q, r); case code::shl_op: return eval_shl(p, q, r); case code::and_op: return eval_and(p, q, r); default: return l_undef; } } std::ostream& op_constraint::display(std::ostream& out, lbool status) const { switch (status) { case l_true: return display(out, "=="); case l_false: return display(out, "!="); default: return display(out, "?="); } } std::ostream& operator<<(std::ostream& out, op_constraint::code c) { switch (c) { case op_constraint::code::ashr_op: return out << ">>a"; case op_constraint::code::lshr_op: return out << ">>"; case op_constraint::code::shl_op: return out << "<<"; case op_constraint::code::and_op: return out << "&"; default: UNREACHABLE(); return out; } return out; } std::ostream& op_constraint::display(std::ostream& out) const { return display(out, l_true); } std::ostream& op_constraint::display(std::ostream& out, char const* eq) const { return out << r() << " " << eq << " " << p() << " " << m_op << " " << q(); } /** * Propagate consequences or detect conflicts based on partial assignments. * * We can assume that op_constraint is only asserted positive. */ void op_constraint::narrow(solver& s, bool is_positive, bool first) { SASSERT(is_positive); if (is_currently_true(s, is_positive)) return; if (first) activate(s); if (clause_ref lemma = produce_lemma(s, s.assignment())) s.add_clause(*lemma); if (!s.is_conflict() && is_currently_false(s, is_positive)) s.set_conflict(signed_constraint(this, is_positive)); } /** * Produce lemmas that contradict the given assignment. * * We can assume that op_constraint is only asserted positive. */ clause_ref op_constraint::produce_lemma(solver& s, assignment const& a, bool is_positive) { SASSERT(is_positive); if (is_currently_true(a, is_positive)) return {}; return produce_lemma(s, a); } clause_ref op_constraint::produce_lemma(solver& s, assignment const& a) { switch (m_op) { case code::lshr_op: return lemma_lshr(s, a); case code::shl_op: return lemma_shl(s, a); case code::and_op: return lemma_and(s, a); default: NOT_IMPLEMENTED_YET(); return {}; } } void op_constraint::activate(solver& s) { switch (m_op) { case code::lshr_op: break; case code::shl_op: // TODO: if shift amount is constant p << k, then add p << k == p*2^k break; case code::and_op: // handle masking of high order bits activate_and(s); break; default: break; } } unsigned op_constraint::hash() const { return mk_mix(p().hash(), q().hash(), r().hash()); } bool op_constraint::operator==(constraint const& other) const { if (other.kind() != ckind_t::op_t) return false; auto const& o = other.to_op(); return m_op == o.m_op && p() == o.p() && q() == o.q() && r() == o.r(); } /** * Enforce basic axioms for r == p >> q: * * q >= K -> r = 0 * q >= k -> r[i] = 0 for K - k <= i < K (bit indices range from 0 to K-1, inclusive) * q >= k -> r <= 2^{K-k} - 1 * q = k -> r[i] = p[i+k] for 0 <= i < K - k * r <= p * q != 0 -> r <= p (subsumed by previous axiom) * q != 0 /\ p > 0 -> r < p * q = 0 -> r = p * * when q is a constant, several axioms can be enforced at activation time. * * Enforce also inferences and bounds * * TODO: use also * s.m_viable.min_viable(); * s.m_viable.max_viable() * when r, q are variables. */ clause_ref op_constraint::lemma_lshr(solver& s, assignment const& a) { auto const pv = a.apply_to(p()); auto const qv = a.apply_to(q()); auto const rv = a.apply_to(r()); unsigned const K = p().manager().power_of_2(); signed_constraint const lshr(this, true); if (pv.is_val() && rv.is_val() && rv.val() > pv.val()) // r <= p return s.mk_clause(~lshr, s.ule(r(), p()), true); else if (qv.is_val() && qv.val() >= K && rv.is_val() && !rv.is_zero()) // q >= K -> r = 0 return s.mk_clause(~lshr, ~s.ule(K, q()), s.eq(r()), true); else if (qv.is_zero() && pv.is_val() && rv.is_val() && pv != rv) // q = 0 -> p = r return s.mk_clause(~lshr, ~s.eq(q()), s.eq(p(), r()), true); else if (qv.is_val() && !qv.is_zero() && pv.is_val() && rv.is_val() && !pv.is_zero() && rv.val() >= pv.val()) // q != 0 & p > 0 -> r < p return s.mk_clause(~lshr, s.eq(q()), s.ule(p(), 0), s.ult(r(), p()), true); else if (qv.is_val() && !qv.is_zero() && qv.val() < K && rv.is_val() && rv.val() > rational::power_of_two(K - qv.val().get_unsigned()) - 1) // q >= k -> r <= 2^{K-k} - 1 return s.mk_clause(~lshr, ~s.ule(qv.val(), q()), s.ule(r(), rational::power_of_two(K - qv.val().get_unsigned()) - 1), true); else if (pv.is_val() && rv.is_val() && qv.is_val() && !qv.is_zero()) { unsigned const k = qv.val().get_unsigned(); // q = k -> r[i] = p[i+k] for 0 <= i < K - k for (unsigned i = 0; i < K - k; ++i) { if (rv.val().get_bit(i) && !pv.val().get_bit(i + k)) { return s.mk_clause(~lshr, ~s.eq(q(), k), ~s.bit(r(), i), s.bit(p(), i + k), true); } if (!rv.val().get_bit(i) && pv.val().get_bit(i + k)) { return s.mk_clause(~lshr, ~s.eq(q(), k), s.bit(r(), i), ~s.bit(p(), i + k), true); } } } else { SASSERT(!(pv.is_val() && qv.is_val() && rv.is_val())); } return {}; } /** Evaluate constraint: r == p >> q */ lbool op_constraint::eval_lshr(pdd const& p, pdd const& q, pdd const& r) { auto& m = p.manager(); if (q.is_zero() && p == r) return l_true; if (q.is_val() && q.val() >= m.power_of_2() && r.is_val()) return to_lbool(r.is_zero()); if (p.is_val() && q.is_val() && r.is_val()) { SASSERT(q.val().is_unsigned()); // otherwise, previous condition should have been triggered // TODO: use right-shift operation instead of division auto divisor = rational::power_of_two(q.val().get_unsigned()); return to_lbool(r.val() == div(p.val(), divisor)); } // TODO: other cases when we know lower bound of q, // e.g, q = 2^k*q1 + q2, where q2 is a constant. return l_undef; } /** * Enforce axioms for constraint: r == p << q * * q >= K -> r = 0 * q >= k -> r = 0 \/ r >= 2^k * q >= k -> r[i] = 0 for i < k * q = k -> r[i+k] = p[i] for 0 <= i < K - k * r != 0 -> r >= p * q = 0 -> r = p */ clause_ref op_constraint::lemma_shl(solver& s, assignment const& a) { auto const pv = a.apply_to(p()); auto const qv = a.apply_to(q()); auto const rv = a.apply_to(r()); unsigned const K = p().manager().power_of_2(); signed_constraint const shl(this, true); if (pv.is_val() && !pv.is_zero() && !pv.is_one() && rv.is_val() && !rv.is_zero() && rv.val() < pv.val()) // r != 0 -> r >= p // r = 0 \/ r >= p (equivalent) // r-1 >= p-1 (equivalent unit constraint to better support narrowing) return s.mk_clause(~shl, s.ule(p() - 1, r() - 1), true); else if (qv.is_val() && qv.val() >= K && rv.is_val() && !rv.is_zero()) // q >= K -> r = 0 return s.mk_clause(~shl, ~s.ule(K, q()), s.eq(r()), true); else if (qv.is_zero() && pv.is_val() && rv.is_val() && rv != pv) // q = 0 -> r = p return s.mk_clause(~shl, ~s.eq(q()), s.eq(r(), p()), true); else if (qv.is_val() && !qv.is_zero() && qv.val() < K && rv.is_val() && !rv.is_zero() && rv.val() < rational::power_of_two(qv.val().get_unsigned())) // q >= k -> r = 0 \/ r >= 2^k (intuitive version) // q >= k -> r - 1 >= 2^k - 1 (equivalent unit constraint to better support narrowing) return s.mk_clause(~shl, ~s.ule(qv.val(), q()), s.ule(rational::power_of_two(qv.val().get_unsigned()) - 1, r() - 1), true); else if (pv.is_val() && rv.is_val() && qv.is_val() && !qv.is_zero()) { unsigned const k = qv.val().get_unsigned(); // q = k -> r[i+k] = p[i] for 0 <= i < K - k for (unsigned i = 0; i < K - k; ++i) { if (rv.val().get_bit(i + k) && !pv.val().get_bit(i)) { return s.mk_clause(~shl, ~s.eq(q(), k), ~s.bit(r(), i + k), s.bit(p(), i), true); } if (!rv.val().get_bit(i + k) && pv.val().get_bit(i)) { return s.mk_clause(~shl, ~s.eq(q(), k), s.bit(r(), i + k), ~s.bit(p(), i), true); } } } else { SASSERT(!(pv.is_val() && qv.is_val() && rv.is_val())); } return {}; } /** Evaluate constraint: r == p << q */ lbool op_constraint::eval_shl(pdd const& p, pdd const& q, pdd const& r) { auto& m = p.manager(); if (q.is_zero() && p == r) return l_true; if (q.is_val() && q.val() >= m.power_of_2() && r.is_val()) return to_lbool(r.is_zero()); if (p.is_val() && q.is_val() && r.is_val()) { SASSERT(q.val().is_unsigned()); // otherwise, previous condition should have been triggered // TODO: use left-shift operation instead of multiplication? auto factor = rational::power_of_two(q.val().get_unsigned()); return to_lbool(r == p * m.mk_val(factor)); } // TODO: other cases when we know lower bound of q, // e.g, q = 2^k*q1 + q2, where q2 is a constant. // (bounds should be tracked by viable, then just use min_viable here) return l_undef; } void op_constraint::activate_and(solver& s) { auto x = p(), y = q(); if (x.is_val()) std::swap(x, y); if (!y.is_val()) return; auto& m = x.manager(); auto yv = y.val(); if (!(yv + 1).is_power_of_two()) return; signed_constraint const andc(this, true); if (yv == m.max_value()) s.add_clause(~andc, s.eq(x, r()), false); else if (yv == 0) s.add_clause(~andc, s.eq(r()), false); else { unsigned K = m.power_of_2(); unsigned k = yv.get_num_bits(); SASSERT(k < K); rational exp = rational::power_of_two(K - k); s.add_clause(~andc, s.eq(x * exp, r() * exp), false); s.add_clause(~andc, s.ule(r(), y), false); // maybe always activate these constraints regardless? } } /** * Produce lemmas for constraint: r == p & q * r <= p * r <= q * p = q => r = p * p[i] && q[i] = r[i] * p = 2^K - 1 => q = r * q = 2^K - 1 => p = r * p = 2^k - 1 => r*2^{K - k} = q*2^{K - k} * q = 2^k - 1 => r*2^{K - k} = p*2^{K - k} * r = 0 && q != 0 & p = 2^k - 1 => q >= 2^k * r = 0 && p != 0 & q = 2^k - 1 => p >= 2^k */ clause_ref op_constraint::lemma_and(solver& s, assignment const& a) { auto& m = p().manager(); auto pv = a.apply_to(p()); auto qv = a.apply_to(q()); auto rv = a.apply_to(r()); signed_constraint const andc(this, true); // r <= p if (pv.is_val() && rv.is_val() && rv.val() > pv.val()) return s.mk_clause(~andc, s.ule(r(), p()), true); // r <= q if (qv.is_val() && rv.is_val() && rv.val() > qv.val()) return s.mk_clause(~andc, s.ule(r(), q()), true); // p = q => r = p if (pv.is_val() && qv.is_val() && rv.is_val() && pv == qv && rv != pv) return s.mk_clause(~andc, ~s.eq(p(), q()), s.eq(r(), p()), true); if (pv.is_val() && qv.is_val() && rv.is_val()) { // p = -1 => r = q if (pv.val() == m.max_value() && qv != rv) return s.mk_clause(~andc, ~s.eq(p(), m.max_value()), s.eq(q(), r()), true); // q = -1 => r = p if (qv.val() == m.max_value() && pv != rv) return s.mk_clause(~andc, ~s.eq(q(), m.max_value()), s.eq(p(), r()), true); unsigned K = m.power_of_2(); // p = 2^k - 1 => r*2^{K - k} = q*2^{K - k} // TODO // if ((pv.val() + 1).is_power_of_two() ...) // q = 2^k - 1 => r*2^{K - k} = p*2^{K - k} // r = 0 && q != 0 & p = 2^k - 1 => q >= 2^k if ((pv.val() + 1).is_power_of_two() && rv.val() > pv.val()) return s.mk_clause(~andc, ~s.eq(r()), ~s.eq(p(), pv.val()), s.eq(q()), s.ult(p(), q()), true); // r = 0 && p != 0 & q = 2^k - 1 => p >= 2^k if (rv.is_zero() && (qv.val() + 1).is_power_of_two() && pv.val() <= qv.val()) return s.mk_clause(~andc, ~s.eq(r()), ~s.eq(q(), qv.val()), s.eq(p()),s.ult(q(), p()), true); for (unsigned i = 0; i < K; ++i) { bool pb = pv.val().get_bit(i); bool qb = qv.val().get_bit(i); bool rb = rv.val().get_bit(i); if (rb == (pb && qb)) continue; if (pb && qb && !rb) return s.mk_clause(~andc, ~s.bit(p(), i), ~s.bit(q(), i), s.bit(r(), i), true); else if (!pb && rb) return s.mk_clause(~andc, s.bit(p(), i), ~s.bit(r(), i), true); else if (!qb && rb) return s.mk_clause(~andc, s.bit(q(), i), ~s.bit(r(), i), true); else UNREACHABLE(); return {}; } } // Propagate r if p or q are 0 if (pv.is_zero() && !rv.is_zero()) // rv not necessarily fully evaluated return s.mk_clause(~andc, s.ule(r(), p()), true); if (qv.is_zero() && !rv.is_zero()) // rv not necessarily fully evaluated return s.mk_clause(~andc, s.ule(r(), q()), true); return {}; } /** Evaluate constraint: r == p & q */ lbool op_constraint::eval_and(pdd const& p, pdd const& q, pdd const& r) { if ((p.is_zero() || q.is_zero()) && r.is_zero()) return l_true; if (p.is_val() && q.is_val() && r.is_val()) return r.val() == bitwise_and(p.val(), q.val()) ? l_true : l_false; return l_undef; } void op_constraint::add_to_univariate_solver(solver& s, univariate_solver& us, unsigned dep, bool is_positive) const { auto p_coeff = s.subst(p()).get_univariate_coefficients(); auto q_coeff = s.subst(q()).get_univariate_coefficients(); auto r_coeff = s.subst(r()).get_univariate_coefficients(); switch (m_op) { case code::lshr_op: us.add_lshr(p_coeff, q_coeff, r_coeff, !is_positive, dep); break; case code::shl_op: us.add_shl(p_coeff, q_coeff, r_coeff, !is_positive, dep); break; case code::and_op: us.add_and(p_coeff, q_coeff, r_coeff, !is_positive, dep); break; default: NOT_IMPLEMENTED_YET(); break; } } }