3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 04:28:17 +00:00
z3/src/util/lp/random_updater.hpp
Nikolaj Bjorner 29a49f4427 convert static random fields to non-static
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2017-05-11 16:46:07 -07:00

208 lines
6.8 KiB
C++

/*
Copyright (c) 2017 Microsoft Corporation
Author: Lev Nachmanson
*/
#include "util/lp/random_updater.h"
#include "util/lp/static_matrix.h"
#include "util/lp/lar_solver.h"
#include "util/vector.h"
namespace lean {
random_updater::random_updater(
lar_core_solver & lar_core_solver,
const vector<unsigned> & column_indices) :
m_core_solver(lar_core_solver),
range(100000) {
for (unsigned j : column_indices)
add_column_to_sets(j);
}
random_updater::interval random_updater::get_interval_of_non_basic_var(unsigned j) {
interval ret;
switch (m_core_solver.get_column_type(j)) {
case column_type::free_column:
break;
case column_type::low_bound:
ret.set_low_bound(m_core_solver.m_r_low_bounds[j]);
break;
case column_type::upper_bound:
ret.set_upper_bound(m_core_solver.m_r_upper_bounds[j]);
break;
case column_type::boxed:
case column_type::fixed:
ret.set_low_bound(m_core_solver.m_r_low_bounds[j]);
ret.set_upper_bound(m_core_solver.m_r_upper_bounds[j]);
break;
default:
lean_assert(false);
}
return ret;
}
void random_updater::diminish_interval_for_basic_var(numeric_pair<mpq>& nb_x, unsigned j,
mpq & a,
interval & r) {
lean_assert(m_core_solver.m_r_heading[j] >= 0);
numeric_pair<mpq> delta;
lean_assert(a != zero_of_type<mpq>());
switch (m_core_solver.get_column_type(j)) {
case column_type::free_column:
break;
case column_type::low_bound:
delta = m_core_solver.m_r_x[j] - m_core_solver.m_r_low_bounds[j];
lean_assert(delta >= zero_of_type<numeric_pair<mpq>>());
if (a > 0) {
r.set_upper_bound(nb_x + delta / a);
} else {
r.set_low_bound(nb_x + delta / a);
}
break;
case column_type::upper_bound:
delta = m_core_solver.m_r_upper_bounds()[j] - m_core_solver.m_r_x[j];
lean_assert(delta >= zero_of_type<numeric_pair<mpq>>());
if (a > 0) {
r.set_low_bound(nb_x - delta / a);
} else {
r.set_upper_bound(nb_x - delta / a);
}
break;
case column_type::boxed:
if (a > 0) {
delta = m_core_solver.m_r_x[j] - m_core_solver.m_r_low_bounds[j];
lean_assert(delta >= zero_of_type<numeric_pair<mpq>>());
r.set_upper_bound(nb_x + delta / a);
delta = m_core_solver.m_r_upper_bounds()[j] - m_core_solver.m_r_x[j];
lean_assert(delta >= zero_of_type<numeric_pair<mpq>>());
r.set_low_bound(nb_x - delta / a);
} else { // a < 0
delta = m_core_solver.m_r_upper_bounds()[j] - m_core_solver.m_r_x[j];
lean_assert(delta >= zero_of_type<numeric_pair<mpq>>());
r.set_upper_bound(nb_x - delta / a);
delta = m_core_solver.m_r_x[j] - m_core_solver.m_r_low_bounds[j];
lean_assert(delta >= zero_of_type<numeric_pair<mpq>>());
r.set_low_bound(nb_x + delta / a);
}
break;
case column_type::fixed:
r.set_low_bound(nb_x);
r.set_upper_bound(nb_x);
break;
default:
lean_assert(false);
}
}
void random_updater::diminish_interval_to_leave_basic_vars_feasible(numeric_pair<mpq> &nb_x, interval & r) {
m_column_j->reset();
unsigned i;
mpq a;
while (m_column_j->next(a, i)) {
diminish_interval_for_basic_var(nb_x, m_core_solver.m_r_basis[i], a, r);
if (r.is_empty())
break;
}
}
random_updater::interval random_updater::find_shift_interval(unsigned j) {
interval ret = get_interval_of_non_basic_var(j);
diminish_interval_to_leave_basic_vars_feasible(m_core_solver.m_r_x[j], ret);
return ret;
}
void random_updater::shift_var(unsigned j, interval & r) {
lean_assert(r.contains(m_core_solver.m_r_x[j]));
lean_assert(m_core_solver.m_r_solver.column_is_feasible(j));
auto old_x = m_core_solver.m_r_x[j];
remove_value(old_x);
auto new_val = m_core_solver.m_r_x[j] = get_random_from_interval(r);
add_value(new_val);
lean_assert(r.contains(m_core_solver.m_r_x[j]));
lean_assert(m_core_solver.m_r_solver.column_is_feasible(j));
auto delta = m_core_solver.m_r_x[j] - old_x;
unsigned i;
m_column_j->reset();
mpq a;
while(m_column_j->next(a, i)) {
unsigned bj = m_core_solver.m_r_basis[i];
m_core_solver.m_r_x[bj] -= a * delta;
lean_assert(m_core_solver.m_r_solver.column_is_feasible(bj));
}
lean_assert(m_core_solver.m_r_solver.A_mult_x_is_off() == false);
}
numeric_pair<mpq> random_updater::get_random_from_interval(interval & r) {
unsigned rand = m_core_solver.settings().random_next();
if ((!r.low_bound_is_set) && (!r.upper_bound_is_set))
return numeric_pair<mpq>(rand % range, 0);
if (r.low_bound_is_set && (!r.upper_bound_is_set))
return r.low_bound + numeric_pair<mpq>(rand % range, 0);
if ((!r.low_bound_is_set) && r.upper_bound_is_set)
return r.upper_bound - numeric_pair<mpq>(rand % range, 0);
lean_assert(r.low_bound_is_set && r.upper_bound_is_set);
return r.low_bound + (rand % range) * (r.upper_bound - r.low_bound)/ range;
}
void random_updater::random_shift_var(unsigned j) {
m_column_j = m_core_solver.get_column_iterator(j);
if (m_column_j->size() >= 50) {
delete m_column_j;
return;
}
interval interv = find_shift_interval(j);
if (interv.is_empty()) {
delete m_column_j;
return;
}
shift_var(j, interv);
delete m_column_j;
}
void random_updater::update() {
for (auto j : m_var_set) {
if (m_var_set.size() <= m_values.size()) {
break; // we are done
}
random_shift_var(j);
}
}
void random_updater::add_value(numeric_pair<mpq>& v) {
auto it = m_values.find(v);
if (it == m_values.end()) {
m_values[v] = 1;
} else {
it->second++;
}
}
void random_updater::remove_value(numeric_pair<mpq>& v) {
std::unordered_map<numeric_pair<mpq>, unsigned>::iterator it = m_values.find(v);
lean_assert(it != m_values.end());
it->second--;
if (it->second == 0)
m_values.erase((std::unordered_map<numeric_pair<mpq>, unsigned>::const_iterator)it);
}
void random_updater::add_column_to_sets(unsigned j) {
if (m_core_solver.m_r_heading[j] < 0) {
m_var_set.insert(j);
add_value(m_core_solver.m_r_x[j]);
} else {
unsigned row = m_core_solver.m_r_heading[j];
for (auto row_c : m_core_solver.m_r_A.m_rows[row]) {
unsigned cj = row_c.m_j;
if (m_core_solver.m_r_heading[cj] < 0) {
m_var_set.insert(cj);
add_value(m_core_solver.m_r_x[cj]);
}
}
}
}
}