mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
convert static random fields to non-static
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
df1f7ee5e0
commit
29a49f4427
|
@ -22,7 +22,6 @@ Notes:
|
|||
#include"solve_eqs_tactic.h"
|
||||
#include"elim_uncnstr_tactic.h"
|
||||
#include"smt_tactic.h"
|
||||
// include"mip_tactic.h"
|
||||
#include"recover_01_tactic.h"
|
||||
#include"ctx_simplify_tactic.h"
|
||||
#include"probe_arith.h"
|
||||
|
@ -75,14 +74,15 @@ tactic * mk_qflra_tactic(ast_manager & m, params_ref const & p) {
|
|||
#if 0
|
||||
|
||||
params_ref simplex_0, simplex_1, simplex_2;
|
||||
simplex_0.set("lp.simplex_strategy", 0);
|
||||
simplex_1.set("lp.simplex_strategy", 1);
|
||||
simplex_2.set("lp.simplex_strategy", 1);
|
||||
simplex_0.set_uint("lp.simplex_strategy", 0);
|
||||
simplex_1.set_uint("lp.simplex_strategy", 1);
|
||||
simplex_2.set_uint("lp.simplex_strategy", 2);
|
||||
|
||||
tactic* lp_par = par_or(using_params(mk_smt_tactic(), simplex_0),
|
||||
using_params(mk_smt_tactic(), simplex_1),
|
||||
using_params(mk_smt_tactic(), simplex_2));
|
||||
|
||||
#endif
|
||||
return par(using_params(mk_smt_tactic(), simplex_0),
|
||||
using_params(mk_smt_tactic(), simplex_1),
|
||||
using_params(mk_smt_tactic(), simplex_2));
|
||||
#else
|
||||
return using_params(using_params(mk_smt_tactic(), pivot_p), p);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
|
|
@ -34,6 +34,10 @@ Author: Lev Nachmanson
|
|||
namespace lean {
|
||||
unsigned seed = 1;
|
||||
|
||||
random_gen g_rand;
|
||||
static unsigned my_random() {
|
||||
return g_rand();
|
||||
}
|
||||
struct simple_column_namer:public column_namer
|
||||
{
|
||||
std::string get_column_name(unsigned j) const override {
|
||||
|
@ -1104,7 +1108,7 @@ void update_settings(argument_parser & args_parser, lp_settings& settings) {
|
|||
settings.harris_feasibility_tolerance = d;
|
||||
}
|
||||
if (get_int_from_args_parser("--random_seed", args_parser, n)) {
|
||||
settings.random_seed = n;
|
||||
settings.random_seed(n);
|
||||
}
|
||||
if (get_int_from_args_parser("--simplex_strategy", args_parser, n)) {
|
||||
settings.simplex_strategy() = static_cast<simplex_strategy_enum>(n);
|
||||
|
|
|
@ -367,7 +367,7 @@ public:
|
|||
s.m_x[j] = s.m_low_bounds[j];
|
||||
break;
|
||||
case column_type::boxed:
|
||||
if (my_random() % 2) {
|
||||
if (settings().random_next() % 2) {
|
||||
s.m_x[j] = s.m_low_bounds[j];
|
||||
} else {
|
||||
s.m_x[j] = s.m_upper_bounds[j];
|
||||
|
|
|
@ -348,7 +348,7 @@ public:
|
|||
if (x_is_at_bound(j))
|
||||
break; // we should preserve x if possible
|
||||
// snap randomly
|
||||
if (my_random() % 2 == 1)
|
||||
if (m_settings.random_next() % 2 == 1)
|
||||
m_x[j] = m_low_bounds[j];
|
||||
else
|
||||
m_x[j] = m_upper_bounds[j];
|
||||
|
|
|
@ -64,8 +64,7 @@ allocate_basis_heading() { // the rest of initilization will be handled by the f
|
|||
lean_assert(basis_heading_is_correct());
|
||||
}
|
||||
template <typename T, typename X> void lp_core_solver_base<T, X>::
|
||||
init() {
|
||||
my_random_init(m_settings.random_seed);
|
||||
init() {
|
||||
allocate_basis_heading();
|
||||
if (m_settings.use_lu())
|
||||
init_factorization(m_factorization, m_A, m_basis, m_settings);
|
||||
|
|
|
@ -537,7 +537,7 @@ template <typename T, typename X> unsigned lp_dual_core_solver<T, X>::get_number
|
|||
if (this->m_m() > 300) {
|
||||
s = (unsigned)((s / 100.0) * this->m_settings.percent_of_entering_to_check);
|
||||
}
|
||||
return my_random() % s + 1;
|
||||
return m_settings.random_next() % s + 1;
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::delta_keeps_the_sign(int initial_delta_sign, const T & delta) {
|
||||
|
@ -715,7 +715,7 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::update_xb_afte
|
|||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::one_iteration() {
|
||||
unsigned number_of_rows_to_try = get_number_of_rows_to_try_for_leaving();
|
||||
unsigned offset_in_rows = my_random() % this->m_m();
|
||||
unsigned offset_in_rows = m_settings.random_next() % this->m_m();
|
||||
if (this->get_status() == TENTATIVE_DUAL_UNBOUNDED) {
|
||||
number_of_rows_to_try = this->m_m();
|
||||
} else {
|
||||
|
|
|
@ -76,10 +76,10 @@ public:
|
|||
// choices.clear();
|
||||
// choices.push_back(i);
|
||||
// len = row_len;
|
||||
// if (my_random() % 10) break;
|
||||
// if (m_settings.random_next() % 10) break;
|
||||
// } else if (row_len == len) {
|
||||
// choices.push_back(i);
|
||||
// if (my_random() % 10) break;
|
||||
// if (m_settings.random_next() % 10) break;
|
||||
// }
|
||||
// }
|
||||
|
||||
|
@ -89,7 +89,7 @@ public:
|
|||
// if (choices.size() == 1)
|
||||
// return choices[0];
|
||||
|
||||
// unsigned k = my_random() % choices.size();
|
||||
// unsigned k = m_settings.random_next() % choices.size();
|
||||
// return choices[k];
|
||||
// #endif
|
||||
// }
|
||||
|
@ -287,7 +287,7 @@ public:
|
|||
choices.clear();
|
||||
choices.push_back(&rc);
|
||||
} else if (damage == num_of_non_free_basics &&
|
||||
this->m_A.m_columns[j].size() <= len && (my_random() % 2)) {
|
||||
this->m_A.m_columns[j].size() <= len && (m_settings.random_next() % 2)) {
|
||||
choices.push_back(&rc);
|
||||
len = this->m_A.m_columns[j].size();
|
||||
}
|
||||
|
@ -299,7 +299,7 @@ public:
|
|||
return -1;
|
||||
}
|
||||
const row_cell<T>* rc = choices.size() == 1? choices[0] :
|
||||
choices[my_random() % choices.size()];
|
||||
choices[m_settings.random_next() % choices.size()];
|
||||
|
||||
a_ent = rc->m_value;
|
||||
return rc->m_j;
|
||||
|
|
|
@ -199,7 +199,7 @@ int lp_primal_core_solver<T, X>::choose_entering_column_presize(unsigned number_
|
|||
entering_iter = non_basis_iter;
|
||||
if (number_of_benefitial_columns_to_go_over)
|
||||
number_of_benefitial_columns_to_go_over--;
|
||||
} else if (t == j_nz && my_random() % 2 == 0) {
|
||||
} else if (t == j_nz && m_settings.random_next() % 2 == 0) {
|
||||
entering_iter = non_basis_iter;
|
||||
}
|
||||
}// while (number_of_benefitial_columns_to_go_over && initial_offset_in_non_basis != offset_in_nb);
|
||||
|
@ -268,7 +268,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::advance_on_so
|
|||
if (slope_at_entering * m_sign_of_entering_delta > - m_epsilon_of_reduced_cost) { // the slope started to increase infeasibility
|
||||
break;
|
||||
} else {
|
||||
if ((numeric_traits<T>::precise() == false) || ( numeric_traits<T>::is_zero(slope_at_entering) && my_random() % 2 == 0)) {
|
||||
if ((numeric_traits<T>::precise() == false) || ( numeric_traits<T>::is_zero(slope_at_entering) && m_settings.random_next() % 2 == 0)) {
|
||||
// it is not cost benefitial to advance the delta more, so just break to increas the randomness
|
||||
break;
|
||||
}
|
||||
|
@ -307,7 +307,7 @@ find_leaving_on_harris_theta(X const & harris_theta, X & t) {
|
|||
// we also know that harris_theta is limited, so we will find a leaving
|
||||
zero_harris_eps();
|
||||
unsigned steps = this->m_ed.m_index.size();
|
||||
unsigned k = my_random() % steps;
|
||||
unsigned k = m_settings.random_next() % steps;
|
||||
unsigned initial_k = k;
|
||||
do {
|
||||
unsigned i = this->m_ed.m_index[k];
|
||||
|
@ -398,7 +398,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leaving_
|
|||
return find_leaving_and_t_with_breakpoints(entering, t);
|
||||
bool unlimited = true;
|
||||
unsigned steps = this->m_ed.m_index.size();
|
||||
unsigned k = my_random() % steps;
|
||||
unsigned k = m_settings.random_next() % steps;
|
||||
unsigned initial_k = k;
|
||||
unsigned row_min_nz = this->m_n() + 1;
|
||||
m_leaving_candidates.clear();
|
||||
|
@ -454,7 +454,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leaving_
|
|||
t = ratio;
|
||||
return entering;
|
||||
}
|
||||
k = my_random() % m_leaving_candidates.size();
|
||||
k = m_settings.random_next() % m_leaving_candidates.size();
|
||||
return m_leaving_candidates[k];
|
||||
}
|
||||
|
||||
|
@ -833,7 +833,7 @@ template <typename T, typename X> unsigned lp_primal_core_solver<T, X>::get_num
|
|||
if (ret == 0) {
|
||||
return 0;
|
||||
}
|
||||
return std::max(static_cast<unsigned>(my_random() % ret), 1u);
|
||||
return std::max(static_cast<unsigned>(m_settings.random_next() % ret), 1u);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::print_column_norms(std::ostream & out) {
|
||||
|
@ -961,7 +961,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::init_column_
|
|||
for (unsigned j = 0; j < this->m_n(); j++) {
|
||||
this->m_column_norms[j] = T(static_cast<int>(this->m_A.m_columns[j].size() + 1))
|
||||
|
||||
+ T(static_cast<int>(my_random() % 10000)) / T(100000);
|
||||
+ T(static_cast<int>(m_settings.random_next() % 10000)) / T(100000);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -62,7 +62,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::choose_enteri
|
|||
if (number_of_benefitial_columns_to_go_over)
|
||||
number_of_benefitial_columns_to_go_over--;
|
||||
}
|
||||
else if (t == j_nz && my_random() % 2 == 0) {
|
||||
else if (t == j_nz && m_settings.random_next() % 2 == 0) {
|
||||
entering_iter = non_basis_iter;
|
||||
}
|
||||
}// while (number_of_benefitial_columns_to_go_over && initial_offset_in_non_basis != offset_in_nb);
|
||||
|
@ -293,7 +293,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leaving_
|
|||
}
|
||||
if (m_leaving_candidates.size() == 1)
|
||||
return m_leaving_candidates[0];
|
||||
k = my_random() % m_leaving_candidates.size();
|
||||
k = m_settings.random_next() % m_leaving_candidates.size();
|
||||
return m_leaving_candidates[k];
|
||||
}
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::init_run_tableau() {
|
||||
|
|
|
@ -71,8 +71,6 @@ template <typename X> bool is_epsilon_small(const X & v, const double& eps);
|
|||
|
||||
int get_millisecond_count();
|
||||
int get_millisecond_span(int start_time);
|
||||
unsigned my_random();
|
||||
void my_random_init(long unsigned seed);
|
||||
|
||||
|
||||
class lp_resource_limit {
|
||||
|
@ -111,6 +109,7 @@ private:
|
|||
std::ostream* m_message_out;
|
||||
|
||||
stats m_stats;
|
||||
random_gen m_rand;
|
||||
|
||||
public:
|
||||
unsigned reps_in_scaler;
|
||||
|
@ -194,16 +193,15 @@ public:
|
|||
m_bound_propagation ( true),
|
||||
presolve_with_double_solver_for_lar(true),
|
||||
m_simplex_strategy(simplex_strategy_enum::tableau_rows),
|
||||
report_frequency(1000),
|
||||
print_statistics(false),
|
||||
column_norms_update_frequency(12000),
|
||||
scale_with_ratio(true),
|
||||
density_threshold(0.7),
|
||||
use_breakpoints_in_feasibility_search(false),
|
||||
random_seed(1),
|
||||
max_row_length_for_bound_propagation(300),
|
||||
backup_costs(true),
|
||||
column_number_threshold_for_using_lu_in_lar_solver(4000)
|
||||
report_frequency(1000),
|
||||
print_statistics(false),
|
||||
column_norms_update_frequency(12000),
|
||||
scale_with_ratio(true),
|
||||
density_threshold(0.7),
|
||||
use_breakpoints_in_feasibility_search(false),
|
||||
max_row_length_for_bound_propagation(300),
|
||||
backup_costs(true),
|
||||
column_number_threshold_for_using_lu_in_lar_solver(4000)
|
||||
{}
|
||||
|
||||
void set_resource_limit(lp_resource_limit& lim) { m_resource_limit = &lim; }
|
||||
|
@ -305,8 +303,8 @@ public:
|
|||
static unsigned ddd; // used for debugging
|
||||
#endif
|
||||
bool use_breakpoints_in_feasibility_search;
|
||||
unsigned random_seed;
|
||||
static unsigned long random_next;
|
||||
unsigned random_next() { return m_rand(); }
|
||||
void random_seed(unsigned s) { m_rand.set_seed(s); }
|
||||
unsigned max_row_length_for_bound_propagation;
|
||||
bool backup_costs;
|
||||
unsigned column_number_threshold_for_using_lu_in_lar_solver;
|
||||
|
|
|
@ -67,15 +67,6 @@ int get_millisecond_span(int start_time) {
|
|||
|
||||
|
||||
|
||||
void my_random_init(long unsigned seed) {
|
||||
lp_settings::random_next = seed;
|
||||
}
|
||||
|
||||
unsigned my_random() {
|
||||
lp_settings::random_next = lp_settings::random_next * 1103515245 + 12345;
|
||||
return((unsigned)(lp_settings::random_next/65536) % 32768);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool vectors_are_equal(T * a, vector<T> &b, unsigned n) {
|
||||
if (numeric_traits<T>::precise()) {
|
||||
|
@ -126,7 +117,6 @@ bool vectors_are_equal(const vector<T> & a, const vector<T> &b) {
|
|||
}
|
||||
return true;
|
||||
}
|
||||
unsigned long lp_settings::random_next = 1;
|
||||
#ifdef LEAN_DEBUG
|
||||
unsigned lp_settings::ddd = 0;
|
||||
#endif
|
||||
|
|
|
@ -136,7 +136,7 @@ void random_updater::shift_var(unsigned j, interval & r) {
|
|||
}
|
||||
|
||||
numeric_pair<mpq> random_updater::get_random_from_interval(interval & r) {
|
||||
unsigned rand = my_random();
|
||||
unsigned rand = m_core_solver.settings().random_next();
|
||||
if ((!r.low_bound_is_set) && (!r.upper_bound_is_set))
|
||||
return numeric_pair<mpq>(rand % range, 0);
|
||||
if (r.low_bound_is_set && (!r.upper_bound_is_set))
|
||||
|
|
Loading…
Reference in a new issue