3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 13:28:47 +00:00
z3/src/math/lp/nla_grobner.cpp
Nikolaj Bjorner 14094bb052 code review (#98)
* streamline type conversions

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* nits

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* updates

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* na

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* use fixed array allocation for sum

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* use fixed array allocation for sum

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* revert creation time allocation

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fix assertion

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* separate grobner_core

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* grobner_core simplifications

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2020-01-28 10:04:21 -08:00

828 lines
28 KiB
C++

/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Nikolaj Bjorner (nbjorner)
Lev Nachmanson (levnach)
Revision History:
--*/
#include "math/lp/nla_grobner.h"
#include "math/lp/nla_core.h"
#include "math/lp/factorization_factory_imp.h"
using namespace nla;
grobner::grobner(core *c, intervals *s)
: common(c, s),
m_gc(m_nex_creator,
c->m_reslim,
c->m_nla_settings.grobner_eqs_threshold()
),
m_look_for_fixed_vars_in_rows(false) {
std::function<void (lp::explanation const& e, std::ostream & out)> de;
de = [this](lp::explanation const& e, std::ostream& out) { m_core->print_explanation(e, out); };
m_gc = de;
}
void grobner::grobner_lemmas() {
c().lp_settings().stats().m_grobner_calls++;
init();
ptr_vector<grobner_core::equation> eqs;
TRACE("grobner", tout << "before:\n"; display(tout););
compute_basis();
TRACE("grobner", tout << "after:\n"; display(tout););
}
void grobner::check_eq(grobner_core::equation* target) {
if (m_intervals->check_nex(target->expr(), target->dep())) {
TRACE("grobner", tout << "created a lemma for "; m_gc.display_equation(tout, *target) << "\n";
tout << "vars = \n";
for (lpvar j : get_vars_of_expr(target->expr())) {
c().print_var(j, tout);
}
tout << "\ntarget->expr() val = " << get_nex_val(target->expr(), [this](unsigned j) { return c().val(j); }) << "\n";);
register_report();
}
}
void grobner::register_report() {
m_reported++;
}
void grobner::compute_basis(){
compute_basis_init();
if (m_rows.size() < 2) {
TRACE("nla_grobner", tout << "there are only " << m_rows.size() << " rows, exiting compute_basis()\n";);
return;
}
m_gc.compute_basis_loop();
TRACE("grobner", display(tout););
for (grobner_core::equation* e : m_gc.equations()) {
check_eq(e);
}
}
void grobner::compute_basis_init(){
c().lp_settings().stats().m_grobner_basis_computatins++;
}
void grobner::add_var_and_its_factors_to_q_and_collect_new_rows(lpvar j, svector<lpvar> & q) {
if (c().active_var_set_contains(j) || c().var_is_fixed(j)) return;
TRACE("grobner", tout << "j = " << j << ", "; c().print_var(j, tout) << "\n";);
const auto& matrix = c().m_lar_solver.A_r();
c().insert_to_active_var_set(j);
const auto & core_slv = c().m_lar_solver.m_mpq_lar_core_solver;
for (auto & s : matrix.m_columns[j]) {
unsigned row = s.var();
if (m_rows.contains(row)) continue;
if (c().var_is_free(core_slv.m_r_basis[row])) {
TRACE("grobner", tout << "ignore the row " << row << " with the free basic var\n";);
continue; // mimic the behavior of the legacy solver
}
m_rows.insert(row);
for (auto& rc : matrix.m_rows[row]) {
add_var_and_its_factors_to_q_and_collect_new_rows(rc.var(), q);
}
}
if (!c().is_monic_var(j))
return;
const monic& m = c().emons()[j];
for (auto fcn : factorization_factory_imp(m, c())) {
for (const factor& fc: fcn) {
q.push_back(var(fc));
}
}
}
void grobner::find_nl_cluster() {
prepare_rows_and_active_vars();
svector<lpvar> q;
for (lpvar j : c().m_to_refine) {
TRACE("grobner", c().print_monic(c().emons()[j], tout) << "\n";);
q.push_back(j);
}
while (!q.empty()) {
lpvar j = q.back();
q.pop_back();
add_var_and_its_factors_to_q_and_collect_new_rows(j, q);
}
set_active_vars_weights();
TRACE("grobner", display(tout););
}
void grobner::prepare_rows_and_active_vars() {
m_rows.clear();
m_rows.resize(c().m_lar_solver.row_count());
c().clear_and_resize_active_var_set();
}
std::unordered_set<lpvar> grobner::get_vars_of_expr_with_opening_terms(const nex *e ) {
auto ret = get_vars_of_expr(e);
auto & ls = c().m_lar_solver;
do {
svector<lpvar> added;
for (lpvar j : ret) {
if (ls.column_corresponds_to_term(j)) {
const auto & t = c().m_lar_solver.get_term(ls.local_to_external(j));
for (auto p : t) {
if (ret.find(p.var()) == ret.end())
added.push_back(p.var());
}
}
}
if (added.size() == 0)
return ret;
for (lpvar j: added)
ret.insert(j);
added.clear();
} while (true);
}
void grobner::display_matrix(std::ostream & out) const {
const auto& matrix = c().m_lar_solver.A_r();
out << m_rows.size() << " rows" <<"\n";
out << "the matrix\n";
for (const auto & r : matrix.m_rows) {
c().print_term(r, out) << std::endl;
}
}
void grobner::init() {
m_gc.reset();
m_reported = 0;
find_nl_cluster();
c().clear_and_resize_active_var_set();
TRACE("grobner", tout << "m_rows.size() = " << m_rows.size() << "\n";);
for (unsigned i : m_rows) {
add_row(i);
}
}
void grobner::add_row(unsigned i) {
const auto& row = c().m_lar_solver.A_r().m_rows[i];
TRACE("grobner", tout << "adding row to gb\n"; c().m_lar_solver.print_row(row, tout) << '\n';
for (auto p : row) c().print_var(p.var(), tout) << "\n"; );
nex_creator::sum_factory sf(m_nex_creator);
ci_dependency* dep = create_sum_from_row(row, m_nex_creator, sf, m_look_for_fixed_vars_in_rows, &m_gc.dep());
nex* e = m_nex_creator.simplify(sf.mk());
TRACE("grobner", tout << "e = " << *e << "\n";);
m_gc.assert_eq_0(e, dep);
}
/// -------------------------------
/// grobner_core
bool grobner_core::compute_basis_loop() {
while (!done()) {
if (compute_basis_step()) {
TRACE("grobner", tout << "progress in compute_basis_step\n";);
return true;
}
TRACE("grobner", tout << "continue compute_basis_loop\n";);
}
TRACE("grobner", tout << "return false from compute_basis_loop\n";);
TRACE("grobner_stats", print_stats(tout););
set_gb_exhausted();
return false;
}
// return true iff cannot pick_next()
bool grobner_core::compute_basis_step() {
equation* eq = pick_next();
if (!eq) {
TRACE("grobner", tout << "cannot pick an equation\n";);
return true;
}
m_stats.m_compute_steps++;
simplify_using_to_superpose(*eq);
if (canceled()) return false;
if (!simplify_to_superpose_with_eq(eq))
return false;
TRACE("grobner", tout << "eq = "; display_equation(tout, *eq););
superpose(eq);
insert_to_superpose(eq);
simplify_m_to_simplify(eq);
TRACE("grobner", tout << "end of iteration:\n"; display(tout););
return false;
}
grobner_core::equation* grobner_core::pick_next() {
equation* r = nullptr;
ptr_buffer<equation> to_delete;
for (equation* curr : m_to_simplify) {
if (is_trivial(curr))
to_delete.push_back(curr);
else if (is_simpler(curr, r)) {
TRACE("grobner", tout << "preferring "; display_equation(tout, *curr););
r = curr;
}
}
for (equation* e : to_delete)
del_equation(e);
if (r)
m_to_simplify.erase(r);
TRACE("grobner", tout << "selected equation: "; if (!r) tout << "<null>\n"; else display_equation(tout, *r););
return r;
}
grobner_core::equation_set const& grobner_core::equations() {
m_all_eqs.reset();
for (auto e : m_to_simplify) m_all_eqs.insert(e);
for (auto e : m_to_superpose) m_all_eqs.insert(e);
return m_all_eqs;
}
void grobner_core::reset() {
del_equations(0);
SASSERT(m_equations_to_delete.size() == 0);
m_to_superpose.reset();
m_to_simplify.reset();
m_stats.reset();
}
bool grobner_core::is_trivial(equation* eq) const {
SASSERT(m_nex_creator.is_simplified(*eq->expr()));
return eq->expr()->size() == 0;
}
// returns true if eq1 is simpler than eq2
bool grobner_core::is_simpler(equation * eq1, equation * eq2) {
if (!eq2)
return true;
if (is_trivial(eq1))
return true;
if (is_trivial(eq2))
return false;
return m_nex_creator.gt(eq2->expr(), eq1->expr());
}
void grobner_core::del_equation(equation * eq) {
m_to_superpose.erase(eq);
m_to_simplify.erase(eq);
SASSERT(m_equations_to_delete[eq->m_bidx] == eq);
m_equations_to_delete[eq->m_bidx] = nullptr;
dealloc(eq);
}
void grobner_core::simplify_using_to_superpose(equation& eq) {
bool result = false;
bool simplified;
TRACE("grobner", tout << "simplifying: "; display_equation(tout, eq); tout << "using equalities of m_to_superpose of size " << m_to_superpose.size() << "\n";);
do {
simplified = false;
for (equation* p : m_to_superpose) {
if (simplify_source_target(p, &eq)) {
result = true;
simplified = true;
}
if (canceled() || eq.expr()->is_scalar()) {
break;
}
}
}
while (simplified && !eq.expr()->is_scalar());
TRACE("grobner", tout << "simplification result: "; display_equation(tout, eq););
}
const nex* grobner_core::get_highest_monomial(const nex* e) const {
switch (e->type()) {
case expr_type::MUL:
return e;
case expr_type::SUM:
return e->to_sum()[0];
case expr_type::VAR:
return e;
default:
TRACE("grobner", tout << *e << "\n";);
return nullptr;
}
}
// source 3f + k + l = 0, so f = (-k - l)/3
// target 2fg + 3fp + e = 0
// target is replaced by 2(-k/3 - l/3)g + 3(-k/3 - l/3)p + e = -2/3kg -2/3lg - kp -lp + e
bool grobner_core::simplify_target_monomials(equation * source, equation * target) {
nex const* high_mon = get_highest_monomial(source->expr());
if (high_mon == nullptr)
return false;
SASSERT(high_mon->all_factors_are_elementary());
TRACE("grobner_d", tout << "source = "; display_equation(tout, *source) << "target = "; display_equation(tout, *target) << "high_mon = " << *high_mon << "\n";);
nex * te = target->expr();
nex_sum * targ_sum;
if (te->is_sum()) {
targ_sum = to_sum(te);
} else if (te->is_mul()) {
targ_sum = m_nex_creator.mk_sum(te);
} else {
TRACE("grobner_d", tout << "return false\n";);
return false;
}
return simplify_target_monomials_sum(source, target, targ_sum, *high_mon);
}
unsigned grobner_core::find_divisible(nex_sum const& targ_sum, const nex& high_mon) const {
unsigned j = 0;
for (auto t : targ_sum) {
if (divide_ignore_coeffs_check_only(t, high_mon)) {
TRACE("grobner_d", tout << "yes div: " << *t << " / " << high_mon << "\n";);
return j;
}
++j;
}
TRACE("grobner_d", tout << "no div: " << targ_sum << " / " << high_mon << "\n";);
return -1;
}
bool grobner_core::simplify_target_monomials_sum(equation * source,
equation * target, nex_sum* targ_sum,
const nex& high_mon) {
unsigned j = find_divisible(*targ_sum, high_mon);
if (j + 1 == 0)
return false;
m_changed_leading_term = (j == 0);
unsigned targ_orig_size = targ_sum->size();
simplify_target_monomials_sum_j(source, target, targ_sum, high_mon, j, false); // false to avoid divisibility test
for (j++; j < targ_orig_size; j++) {
simplify_target_monomials_sum_j(source, target, targ_sum, high_mon, j, true);
}
TRACE("grobner_d", tout << "targ_sum = " << *targ_sum << "\n";);
target->expr() = m_nex_creator.simplify(targ_sum);
target->dep() = m_dep_manager.mk_join(source->dep(), target->dep());
TRACE("grobner_d", tout << "target = "; display_equation(tout, *target););
return true;
}
bool grobner_core::divide_ignore_coeffs_check_only_nex_mul(nex_mul const& t , const nex& h) const {
TRACE("grobner_d", tout << "t = " << t << ", h=" << h << "\n";);
SASSERT(m_nex_creator.is_simplified(t) && m_nex_creator.is_simplified(h));
unsigned j = 0; // points to t
for(unsigned k = 0; k < h.number_of_child_powers(); k++) {
lpvar h_var = h.get_child_exp(k)->to_var().var();
bool p_swallowed = false;
for (; j < t.size() && !p_swallowed; j++) {
const nex_pow& tp = t[j];
if (tp.e()->to_var().var() == h_var) {
if (tp.pow() >= h.get_child_pow(k)) {
p_swallowed = true;
}
}
}
if (!p_swallowed) {
TRACE("grobner_d", tout << "no div " << t << " / " << h << "\n";);
return false;
}
}
TRACE("grobner_d", tout << "division " << t << " / " << h << "\n";);
return true;
}
// return true if h divides t
bool grobner_core::divide_ignore_coeffs_check_only(nex const* n , const nex& h) const {
if (n->is_mul())
return divide_ignore_coeffs_check_only_nex_mul(n->to_mul(), h);
if (!n->is_var())
return false;
const nex_var * v = to_var(n);
if (h.is_var()) {
return v->var() == h.to_var().var();
}
if (h.is_mul()) {
if (h.number_of_child_powers() > 1)
return false;
if (h.get_child_pow(0) != 1)
return false;
const nex* e = h.get_child_exp(0);
return e->is_var() && e->to_var().var() == v->var();
}
return false;
}
nex_mul * grobner_core::divide_ignore_coeffs_perform_nex_mul(nex_mul const& t, const nex& h) {
m_nex_creator.m_mk_mul.reset();
unsigned j = 0; // j points to t and k runs over h
for(unsigned k = 0; k < h.number_of_child_powers(); k++) {
lpvar h_var = to_var(h.get_child_exp(k))->var();
for (; j < t.size(); j++) {
auto const &tp = t[j];
if (tp.e()->to_var().var() == h_var) {
unsigned h_pow = h.get_child_pow(k);
SASSERT(tp.pow() >= h_pow);
j++;
if (tp.pow() > h_pow) {
m_nex_creator.m_mk_mul *= nex_pow(tp.e(), tp.pow() - h_pow);
}
break;
} else {
m_nex_creator.m_mk_mul *= tp;
}
}
}
for (; j < t.size(); j++) {
m_nex_creator.m_mk_mul *= t[j];
}
nex_mul* r = m_nex_creator.m_mk_mul.mk();
TRACE("grobner", tout << "r = " << *r << " = " << t << " / " << h << "\n";);
TRACE("grobner_d", tout << "r = " << *r << " = " << t << " / " << h << "\n";);
return r;
}
// perform the division t / h, but ignores the coefficients
// h does not change
nex_mul * grobner_core::divide_ignore_coeffs_perform(nex* e, const nex& h) {
if (e->is_mul())
return divide_ignore_coeffs_perform_nex_mul(e->to_mul(), h);
SASSERT(e->is_var());
return m_nex_creator.mk_mul(); // return the empty nex_mul
}
// if targ_sum->children()[j] = c*high_mon*p,
// and b*high_mon + e = 0, so high_mon = -e/b
// then targ_sum->children()[j] = - (c/b) * e*p
void grobner_core::simplify_target_monomials_sum_j(equation * source, equation *target, nex_sum* targ_sum, const nex& high_mon, unsigned j, bool test_divisibility) {
nex * ej = (*targ_sum)[j];
TRACE("grobner_d", tout << "high_mon = " << high_mon << ", ej = " << *ej << "\n";);
if (test_divisibility && !divide_ignore_coeffs_check_only(ej, high_mon)) {
TRACE("grobner_d", tout << "no div\n";);
return;
}
nex_mul * ej_over_high_mon = divide_ignore_coeffs_perform(ej, high_mon);
TRACE("grobner_d", tout << "ej_over_high_mon = " << *ej_over_high_mon << "\n";);
rational c = ej->is_mul()? to_mul(ej)->coeff() : rational(1);
TRACE("grobner_d", tout << "c = " << c << "\n";);
nex_creator::sum_factory sf(m_nex_creator);
add_mul_skip_first(sf ,-c/high_mon.coeff(), source->expr(), ej_over_high_mon);
(*targ_sum)[j] = sf.mk();
TRACE("grobner_d", tout << "targ_sum = " << *targ_sum << "\n";);
}
// return true iff simplified
bool grobner_core::simplify_source_target(equation * source, equation * target) {
TRACE("grobner", tout << "simplifying: "; display_equation(tout, *target); tout << "\nusing: "; display_equation(tout, *source););
TRACE("grobner_d", tout << "simplifying: " << *(target->expr()) << " using " << *(source->expr()) << "\n";);
SASSERT(m_nex_creator.is_simplified(*source->expr()));
SASSERT(m_nex_creator.is_simplified(*target->expr()));
if (target->expr()->is_scalar()) {
TRACE("grobner_d", tout << "no simplification\n";);
return false;
}
if (source->get_num_monomials() == 0) {
TRACE("grobner_d", tout << "no simplification\n";);
return false;
}
m_stats.m_simplified++;
bool result = false;
do {
if (simplify_target_monomials(source, target)) {
TRACE("grobner", tout << "simplified target = "; display_equation(tout, *target) << "\n";);
result = true;
} else {
break;
}
}
while (!canceled());
if (result) {
target->dep() = m_dep_manager.mk_join(target->dep(), source->dep());
update_stats_max_degree_and_size(target);
TRACE("grobner", tout << "simplified "; display_equation(tout, *target) << "\n";);
TRACE("grobner_d", tout << "simplified to " << *(target->expr()) << "\n";);
return true;
}
TRACE("grobner_d", tout << "no simplification\n";);
return false;
}
void grobner_core::process_simplified_target(equation* target, ptr_buffer<equation>& to_remove) {
if (is_trivial(target)) {
to_remove.push_back(target);
} else if (m_changed_leading_term) {
insert_to_simplify(target);
to_remove.push_back(target);
}
}
bool grobner_core::simplify_to_superpose_with_eq(equation* eq) {
TRACE("grobner_d", tout << "eq->exp " << *(eq->expr()) << "\n";);
ptr_buffer<equation> to_insert;
ptr_buffer<equation> to_remove;
ptr_buffer<equation> to_delete;
for (equation * target : m_to_superpose) {
if (canceled() || done())
break;
m_changed_leading_term = false;
// if the leading term is simplified, then the equation has to be moved to m_to_simplify
if (simplify_source_target(eq, target)) {
process_simplified_target(target, to_remove);
}
if (is_trivial(target)) {
to_delete.push_back(target);
}
else {
SASSERT(m_nex_creator.is_simplified(*target->expr()));
}
}
for (equation* eq : to_insert)
insert_to_superpose(eq);
for (equation* eq : to_remove)
m_to_superpose.erase(eq);
for (equation* eq : to_delete)
del_equation(eq);
return !canceled();
}
/*
Use the given equation to simplify m_to_simplify equations
*/
void grobner_core::simplify_m_to_simplify(equation* eq) {
TRACE("grobner_d", tout << "eq->exp " << *(eq->expr()) << "\n";);
ptr_buffer<equation> to_delete;
for (equation* target : m_to_simplify) {
if (simplify_source_target(eq, target) && is_trivial(target))
to_delete.push_back(target);
}
for (equation* eq : to_delete)
del_equation(eq);
}
// if e is the sum then add to r all children of e multiplied by beta, except the first one
// which corresponds to the highest monomial,
// otherwise do nothing
void grobner_core::add_mul_skip_first(nex_creator::sum_factory& sf, const rational& beta, nex *e, nex_mul* c) {
if (e->is_sum()) {
nex_sum & es = e->to_sum();
for (unsigned j = 1; j < es.size(); j++) {
sf += m_nex_creator.mk_mul(beta, es[j], c);
}
} else {
TRACE("grobner_d", tout << "e = " << *e << "\n";);
}
}
// let e1: alpha*ab+q=0, and e2: beta*ac+e=0, then beta*qc - alpha*eb = 0
nex * grobner_core::expr_superpose(nex* e1, nex* e2, const nex* ab, const nex* ac, nex_mul* b, nex_mul* c) {
TRACE("grobner", tout << "e1 = " << *e1 << "\ne2 = " << *e2 <<"\n";);
nex_creator::sum_factory sf(m_nex_creator);
rational alpha = - ab->coeff();
TRACE("grobner", tout << "e2 *= " << alpha << "*(" << *b << ")\n";);
add_mul_skip_first(sf, alpha, e2, b);
rational beta = ac->coeff();
TRACE("grobner", tout << "e1 *= " << beta << "*(" << *c << ")\n";);
add_mul_skip_first(sf, beta, e1, c);
nex * ret = m_nex_creator.simplify(sf.mk());
TRACE("grobner", tout << "e1 = " << *e1 << "\ne2 = " << *e2 <<"\nsuperpose = " << *ret << "\n";);
CTRACE("grobner", ret->is_scalar(), tout << "\n";);
return ret;
}
// let eq1: ab+q=0, and eq2: ac+e=0, then qc - eb = 0
void grobner_core::superpose(equation * eq1, equation * eq2) {
TRACE("grobner", tout << "eq1="; display_equation(tout, *eq1) << "eq2="; display_equation(tout, *eq2););
const nex * ab = get_highest_monomial(eq1->expr());
const nex * ac = get_highest_monomial(eq2->expr());
nex_mul *b = nullptr, *c = nullptr;
TRACE("grobner", tout << "ab="; if(ab) { tout << *ab; } else { tout << "null"; };
tout << " , " << " ac="; if(ac) { tout << *ac; } else { tout << "null"; }; tout << "\n";);
if (!find_b_c(ab, ac, b, c)) {
TRACE("grobner", tout << "there is no non-trivial common divider, no superposing\n";);
return;
}
equation* eq = alloc(equation);
init_equation(eq, expr_superpose( eq1->expr(), eq2->expr(), ab, ac, b, c), m_dep_manager.mk_join(eq1->dep(), eq2->dep()));
m_stats.m_superposed++;
update_stats_max_degree_and_size(eq);
eq->expr() = m_nex_creator.simplify(eq->expr());
insert_to_simplify(eq);
}
// Let a be the greatest common divider of ab and bc,
// then ab/a is stored in b, and ac/a is stored in c
bool grobner_core::find_b_c(const nex* ab, const nex* ac, nex_mul*& b, nex_mul*& c) {
if (!find_b_c_check_only(ab, ac))
return false;
nex_creator::mul_factory fb(m_nex_creator), fc(m_nex_creator);
unsigned ab_size = ab->number_of_child_powers();
unsigned ac_size = ac->number_of_child_powers();
unsigned i = 0, j = 0;
for (;;) {
const nex* m = ab->get_child_exp(i);
const nex* n = ac->get_child_exp(j);
if (m_nex_creator.gt(m, n)) {
fb *= (nex_pow(const_cast<nex*>(m), ab->get_child_pow(i)));
if (++i == ab_size)
break;
} else if (m_nex_creator.gt(n, m)) {
fc *= (nex_pow(const_cast<nex*>(n), ac->get_child_pow(j)));
if (++j == ac_size)
break;
} else {
unsigned b_pow = ab->get_child_pow(i);
unsigned c_pow = ac->get_child_pow(j);
if (b_pow > c_pow) {
fb *= (nex_pow(const_cast<nex*>(m), b_pow - c_pow));
} else if (c_pow > b_pow) {
fc *= (nex_pow(const_cast<nex*>(n), c_pow - b_pow));
} // otherwise the power are equal and no child added to either b or c
i++; j++;
if (i == ab_size || j == ac_size) {
break;
}
}
}
while (i != ab_size) {
fb *= (nex_pow(const_cast<nex*>(ab->get_child_exp(i)), ab->get_child_pow(i)));
i++;
}
while (j != ac_size) {
fc *= (nex_pow(const_cast<nex*>(ac->get_child_exp(j)), ac->get_child_pow(j)));
j++;
}
b = fb.mk();
c = fc.mk();
TRACE("nla_grobner", tout << "b=" << *b << ", c=" <<*c << "\n";);
// debug region
nex_mul *a = divide_ignore_coeffs_perform(m_nex_creator.clone(ab), *b);
SASSERT(ab->get_degree() == a->get_degree() + b->get_degree());
SASSERT(ac->get_degree() == a->get_degree() + c->get_degree());
SASSERT(test_find_b_c(ab, ac, b, c));
return true;
}
// Finds out if ab and bc have a non-trivial common divider
bool grobner_core::find_b_c_check_only(const nex* ab, const nex* ac) const {
if (ab == nullptr || ac == nullptr)
return false;
SASSERT(m_nex_creator.is_simplified(*ab) && m_nex_creator.is_simplified(*ac));
unsigned i = 0, j = 0; // i points to ab, j points to ac
for (;;) {
const nex* m = ab->get_child_exp(i);
const nex* n = ac->get_child_exp(j);
if (m_nex_creator.gt(m , n)) {
i++;
if (i == ab->number_of_child_powers())
return false;
} else if (m_nex_creator.gt(n, m)) {
j++;
if (j == ac->number_of_child_powers())
return false;
} else {
TRACE("grobner", tout << "found common " << *m << "\n";);
return true;
}
}
TRACE("grobner", tout << "not found common " << " in " << *ab << " and " << *ac << "\n";);
return false;
}
void grobner_core::superpose(equation * eq) {
for (equation * target : m_to_superpose) {
superpose(eq, target);
}
}
bool grobner_core::canceled() {
return m_limit.get_cancel_flag();
}
bool grobner_core::done() {
return num_of_equations() >= m_grobner_eqs_threshold || canceled();
}
void grobner_core::set_gb_exhausted(){
m_nl_gb_exhausted = true;
}
void grobner_core::del_equations(unsigned old_size) {
TRACE("grobner", );
SASSERT(m_equations_to_delete.size() >= old_size);
equation_vector::iterator it = m_equations_to_delete.begin();
equation_vector::iterator end = m_equations_to_delete.end();
it += old_size;
for (; it != end; ++it) {
equation * eq = *it;
if (eq)
del_equation(eq);
}
m_equations_to_delete.shrink(old_size);
}
std::ostream& grobner_core::print_stats(std::ostream & out) const {
return out << "stats:\nsteps = " << m_stats.m_compute_steps << "\nsimplified: " <<
m_stats.m_simplified << "\nsuperposed: " <<
m_stats.m_superposed << "\nexpr degree: " << m_stats.m_max_expr_degree <<
"\nexpr size: " << m_stats.m_max_expr_size << "\n";
}
void grobner_core::update_stats_max_degree_and_size(const equation *e) {
m_stats.m_max_expr_size = std::max(m_stats.m_max_expr_size, e->expr()->size());
m_stats.m_max_expr_degree = std::max(m_stats.m_max_expr_degree, e->expr()->get_degree());
}
void grobner_core::display_equations(std::ostream & out, equation_set const & v, char const * header) const {
out << header << "\n";
for (const equation* e : v)
display_equation(out, *e);
}
std::ostream& grobner_core::display_equation(std::ostream & out, const equation & eq) const {
out << "expr = " << *eq.expr() << "\n";
return display_dependency(out, eq.dep());
}
std::ostream& grobner_core::display(std::ostream& out) const {
display_equations(out, m_to_superpose, "m_to_superpose:");
display_equations(out, m_to_simplify, "m_to_simplify:");
return out;
}
void grobner_core::assert_eq_0(nex* e, common::ci_dependency * dep) {
if (e == nullptr || is_zero_scalar(e))
return;
m_tmp_var_set.clear();
equation * eq = alloc(equation);
init_equation(eq, e, dep);
TRACE("grobner",
display_equation(tout, *eq);
/*tout << "\nvars\n";
for (unsigned j : get_vars_of_expr_with_opening_terms(e)) {
c().print_var(j, tout << "(") << ")\n";
} */);
insert_to_simplify(eq);
}
void grobner_core::init_equation(equation* eq, nex*e, common::ci_dependency * dep) {
eq->m_bidx = m_equations_to_delete.size();
eq->dep() = dep;
eq->expr() = e;
m_equations_to_delete.push_back(eq);
SASSERT(m_equations_to_delete[eq->m_bidx] == eq);
}
grobner_core::~grobner_core() {
del_equations(0);
}
std::ostream& grobner_core::display_dependency(std::ostream& out, common::ci_dependency* dep) const {
svector<lp::constraint_index> expl;
m_dep_manager.linearize(dep, expl);
lp::explanation e(expl);
if (!expl.empty()) {
out << "constraints\n";
m_print_explanation(e, out);
out << "\n";
} else {
out << "no deps\n";
}
return out;
}
#ifdef Z3DEBUG
bool grobner_core::test_find_b(const nex* ab, const nex_mul* b) {
nex_mul& ab_clone = m_nex_creator.clone(ab)->to_mul();
nex_mul * a= divide_ignore_coeffs_perform(&ab_clone, *b);
ab_clone.m_coeff = rational(1);
SASSERT(b->coeff().is_one());
nex * m = m_nex_creator.mk_mul(a, m_nex_creator.clone(b));
m = m_nex_creator.simplify(m);
return m_nex_creator.equal(m, &ab_clone);
}
bool grobner_core::test_find_b_c(const nex* ab, const nex* ac, const nex_mul* b, const nex_mul* c) {
return test_find_b(ab, b) && test_find_b(ac, c);
}
#endif