mirror of
https://github.com/Z3Prover/z3
synced 2025-04-13 12:28:44 +00:00
code review (#98)
* streamline type conversions Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * nits Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * updates Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * na Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * use fixed array allocation for sum Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * use fixed array allocation for sum Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * revert creation time allocation Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * fix assertion Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * separate grobner_core Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * grobner_core simplifications Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
9661f75246
commit
14094bb052
|
@ -90,18 +90,18 @@ public:
|
|||
}
|
||||
}
|
||||
if (have_factor == false) return nullptr;
|
||||
nex_mul* f = m_nex_creator.mk_mul();
|
||||
m_nex_creator.m_mk_mul.reset();
|
||||
for (const auto & p : m_nex_creator.occurences_map()) { // randomize here: todo
|
||||
if (p.second.m_occs == size) {
|
||||
f->add_child_in_power(m_nex_creator.mk_var(p.first), p.second.m_power);
|
||||
m_nex_creator.m_mk_mul *= nex_pow(m_nex_creator.mk_var(p.first), p.second.m_power);
|
||||
}
|
||||
}
|
||||
return f;
|
||||
return m_nex_creator.m_mk_mul.mk();
|
||||
}
|
||||
|
||||
static bool has_common_factor(const nex_sum* c) {
|
||||
TRACE("nla_cn", tout << "c=" << *c << "\n";);
|
||||
auto & ch = c->children();
|
||||
auto & ch = *c;
|
||||
auto common_vars = get_vars_of_expr(ch[0]);
|
||||
for (lpvar j : common_vars) {
|
||||
bool divides_the_rest = true;
|
||||
|
@ -195,10 +195,10 @@ public:
|
|||
clear_maps();
|
||||
for (const auto * ce : *e) {
|
||||
if (ce->is_mul()) {
|
||||
to_mul(ce)->get_powers_from_mul(m_nex_creator.powers());
|
||||
ce->to_mul().get_powers_from_mul(m_nex_creator.powers());
|
||||
update_occurences_with_powers();
|
||||
} else if (ce->is_var()) {
|
||||
add_var_occs(to_var(ce)->var());
|
||||
add_var_occs(ce->to_var().var());
|
||||
}
|
||||
}
|
||||
remove_singular_occurences();
|
||||
|
@ -317,9 +317,7 @@ public:
|
|||
}
|
||||
}
|
||||
TRACE("nla_cn_details", tout << "occs="; dump_occurences(tout, m_nex_creator.occurences_map()) << "\n";);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
void remove_singular_occurences() {
|
||||
svector<lpvar> r;
|
||||
|
@ -369,27 +367,28 @@ public:
|
|||
return ret;
|
||||
}
|
||||
|
||||
static bool is_divisible_by_var(nex* ce, lpvar j) {
|
||||
static bool is_divisible_by_var(nex const* ce, lpvar j) {
|
||||
return (ce->is_mul() && to_mul(ce)->contains(j))
|
||||
|| (ce->is_var() && to_var(ce)->var() == j);
|
||||
}
|
||||
// all factors of j go to a, the rest to b
|
||||
void pre_split(nex_sum * e, lpvar j, nex_sum*& a, nex*& b) {
|
||||
void pre_split(nex_sum * e, lpvar j, nex_sum const*& a, nex const*& b) {
|
||||
TRACE("nla_cn_details", tout << "e = " << * e << ", j = " << m_nex_creator.ch(j) << std::endl;);
|
||||
SASSERT(m_nex_creator.is_simplified(*e));
|
||||
a = m_nex_creator.mk_sum();
|
||||
nex_creator::sum_factory sf(m_nex_creator);
|
||||
m_b_split_vec.clear();
|
||||
for (nex * ce: *e) {
|
||||
for (nex const* ce: *e) {
|
||||
TRACE("nla_cn_details", tout << "ce = " << *ce << "\n";);
|
||||
if (is_divisible_by_var(ce, j)) {
|
||||
a->add_child(m_nex_creator.mk_div(*ce , j));
|
||||
sf += m_nex_creator.mk_div(*ce , j);
|
||||
} else {
|
||||
m_b_split_vec.push_back(ce);
|
||||
m_b_split_vec.push_back(const_cast<nex*>(ce));
|
||||
}
|
||||
}
|
||||
a = sf.mk();
|
||||
TRACE("nla_cn_details", tout << "a = " << *a << "\n";);
|
||||
SASSERT(a->size() >= 2 && m_b_split_vec.size());
|
||||
a = to_sum(m_nex_creator.simplify_sum(a));
|
||||
a = to_sum(m_nex_creator.simplify_sum(const_cast<nex_sum*>(a)));
|
||||
|
||||
if (m_b_split_vec.size() == 1) {
|
||||
b = m_b_split_vec[0];
|
||||
|
@ -401,11 +400,11 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
void update_front_with_split_with_non_empty_b(nex* &e, lpvar j, vector<nex**> & front, nex_sum* a, nex* b) {
|
||||
void update_front_with_split_with_non_empty_b(nex* &e, lpvar j, vector<nex**> & front, nex_sum const* a, nex const* b) {
|
||||
TRACE("nla_cn_details", tout << "b = " << *b << "\n";);
|
||||
e = m_nex_creator.mk_sum(m_nex_creator.mk_mul(m_nex_creator.mk_var(j), a), b); // e = j*a + b
|
||||
if (!a->is_linear()) {
|
||||
nex **ptr_to_a = ((*to_mul((*to_sum(e))[0])))[1].ee();
|
||||
nex **ptr_to_a = e->to_sum()[0]->to_mul()[1].ee();
|
||||
push_to_front(front, ptr_to_a);
|
||||
}
|
||||
|
||||
|
@ -415,7 +414,7 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
void update_front_with_split(nex* & e, lpvar j, vector<nex**> & front, nex_sum* a, nex* b) {
|
||||
void update_front_with_split(nex* & e, lpvar j, vector<nex**> & front, nex_sum const* a, nex const* b) {
|
||||
if (b == nullptr) {
|
||||
e = m_nex_creator.mk_mul(m_nex_creator.mk_var(j), a);
|
||||
if (!to_sum(a)->is_linear())
|
||||
|
@ -428,7 +427,7 @@ public:
|
|||
bool split_with_var(nex*& e, lpvar j, vector<nex**> & front) {
|
||||
SASSERT(e->is_sum());
|
||||
TRACE("nla_cn", tout << "e = " << *e << ", j=" << nex_creator::ch(j) << "\n";);
|
||||
nex_sum* a; nex * b;
|
||||
nex_sum const* a; nex const* b;
|
||||
pre_split(to_sum(e), j, a, b);
|
||||
/*
|
||||
When we have e without a non-trivial common factor then
|
||||
|
@ -451,6 +450,7 @@ public:
|
|||
}
|
||||
|
||||
bool done() const { return m_done; }
|
||||
|
||||
#if Z3DEBUG
|
||||
nex * normalize_sum(nex_sum* a) {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
|
@ -461,41 +461,7 @@ public:
|
|||
TRACE("nla_cn", tout << *a << "\n";);
|
||||
NOT_IMPLEMENTED_YET();
|
||||
return nullptr;
|
||||
/*
|
||||
int sum_j = -1;
|
||||
for (unsigned j = 0; j < a->size(); j ++) {
|
||||
a->children()[j] = normalize(a->children()[j]);
|
||||
if (a->children()[j]->is_sum())
|
||||
sum_j = j;
|
||||
}
|
||||
|
||||
if (sum_j == -1) {
|
||||
nex * r;
|
||||
a->simplify(&r);
|
||||
SASSERT(r->is_simplified());
|
||||
return r;
|
||||
}
|
||||
|
||||
nex_sum *r = m_nex_creator.mk_sum();
|
||||
nex_sum *as = to_sum(a->children()[sum_j]);
|
||||
for (unsigned k = 0; k < as->size(); k++) {
|
||||
nex_mul *b = m_nex_creator.mk_mul(as->children()[k]);
|
||||
for (unsigned j = 0; j < a->size(); j ++) {
|
||||
if ((int)j != sum_j)
|
||||
b->add_child(a->children()[j]);
|
||||
}
|
||||
nex *e;
|
||||
b->simplify(&e);
|
||||
r->add_child(e);
|
||||
}
|
||||
TRACE("nla_cn", tout << *r << "\n";);
|
||||
nex *rs = normalize_sum(r);
|
||||
SASSERT(rs->is_simplified());
|
||||
return rs;
|
||||
*/
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
nex * normalize(nex* a) {
|
||||
if (a->is_elementary())
|
||||
|
|
|
@ -25,7 +25,7 @@
|
|||
|
||||
namespace nla {
|
||||
typedef intervals::interval interv;
|
||||
horner::horner(core * c, intervals * i) : common(c, i), m_fixed_as_scalars(false) {}
|
||||
horner::horner(core * c, intervals * i) : common(c, i), m_row_sum(m_nex_creator), m_fixed_as_scalars(false) {}
|
||||
|
||||
template <typename T>
|
||||
bool horner::row_has_monomial_to_refine(const T& row) const {
|
||||
|
@ -80,7 +80,7 @@ bool horner::lemmas_on_row(const T& row) {
|
|||
c().clear_and_resize_active_var_set();
|
||||
create_sum_from_row(row, cn.get_nex_creator(), m_row_sum, m_fixed_as_scalars, nullptr);
|
||||
set_active_vars_weights(); // without this call the comparisons will be incorrect
|
||||
nex* e = m_nex_creator.simplify(&m_row_sum);
|
||||
nex* e = m_nex_creator.simplify(m_row_sum.mk());
|
||||
TRACE("nla_horner", tout << "e = " << * e << "\n";);
|
||||
if (e->get_degree() < 2)
|
||||
return false;
|
||||
|
|
|
@ -30,7 +30,7 @@ class core;
|
|||
|
||||
|
||||
class horner : common {
|
||||
nex_sum m_row_sum;
|
||||
nex_creator::sum_factory m_row_sum;
|
||||
unsigned m_row_index;
|
||||
bool m_fixed_as_scalars;
|
||||
public:
|
||||
|
|
|
@ -20,7 +20,6 @@
|
|||
#include <initializer_list>
|
||||
#include "math/lp/nla_defs.h"
|
||||
#include <functional>
|
||||
#include <set>
|
||||
namespace nla {
|
||||
class nex;
|
||||
typedef std::function<bool (const nex*, const nex*)> nex_lt;
|
||||
|
@ -141,14 +140,18 @@ public:
|
|||
};
|
||||
|
||||
class nex_pow {
|
||||
nex* m_e;
|
||||
friend class cross_nested;
|
||||
friend class nex_creator;
|
||||
|
||||
nex const* m_e;
|
||||
unsigned m_power;
|
||||
nex ** ee() const { return & const_cast<nex*&>(m_e); }
|
||||
nex *& e() { return const_cast<nex*&>(m_e); }
|
||||
|
||||
public:
|
||||
explicit nex_pow(nex* e, unsigned p): m_e(e), m_power(p) {}
|
||||
explicit nex_pow(nex const* e, unsigned p): m_e(e), m_power(p) {}
|
||||
const nex * e() const { return m_e; }
|
||||
nex *& e() { return m_e; }
|
||||
|
||||
nex ** ee() { return & m_e; }
|
||||
unsigned pow() const { return m_power; }
|
||||
|
||||
std::ostream& print(std::ostream& s) const {
|
||||
|
@ -168,6 +171,7 @@ public:
|
|||
}
|
||||
return s;
|
||||
}
|
||||
|
||||
std::string to_string() const {
|
||||
std::stringstream s;
|
||||
print(s);
|
||||
|
@ -177,16 +181,24 @@ public:
|
|||
};
|
||||
|
||||
inline unsigned get_degree_children(const vector<nex_pow>& children) {
|
||||
int degree = 0;
|
||||
int degree = 0;
|
||||
for (const auto& p : children) {
|
||||
degree += p.e()->get_degree() * p.pow();
|
||||
degree += p.e()->get_degree() * p.pow();
|
||||
}
|
||||
return degree;
|
||||
}
|
||||
|
||||
class nex_mul : public nex {
|
||||
friend class nex_creator;
|
||||
friend class cross_nested;
|
||||
friend class grobner_core; // only debug.
|
||||
rational m_coeff;
|
||||
vector<nex_pow> m_children;
|
||||
|
||||
nex_pow* begin() { return m_children.begin(); }
|
||||
nex_pow* end() { return m_children.end(); }
|
||||
nex_pow& operator[](unsigned j) { return m_children[j]; }
|
||||
|
||||
public:
|
||||
const nex* get_child_exp(unsigned j) const override { return m_children[j].e(); }
|
||||
unsigned get_child_pow(unsigned j) const override { return m_children[j].pow(); }
|
||||
|
@ -194,26 +206,19 @@ public:
|
|||
unsigned number_of_child_powers() const { return m_children.size(); }
|
||||
|
||||
nex_mul() : m_coeff(1) {}
|
||||
nex_mul(rational const& c, vector<nex_pow> const& args) : m_coeff(c), m_children(args) {}
|
||||
|
||||
const rational& coeff() const {
|
||||
return m_coeff;
|
||||
}
|
||||
|
||||
rational& coeff() {
|
||||
return m_coeff;
|
||||
}
|
||||
const rational& coeff() const { return m_coeff; }
|
||||
|
||||
unsigned size() const override { return m_children.size(); }
|
||||
expr_type type() const override { return expr_type::MUL; }
|
||||
vector<nex_pow>& children() { return m_children;}
|
||||
const vector<nex_pow>& children() const { return m_children;}
|
||||
// A monomial is 'pure' if does not have a numeric coefficient.
|
||||
bool is_pure_monomial() const { return size() == 0 || !m_children[0].e()->is_scalar(); }
|
||||
|
||||
std::ostream & print(std::ostream& out) const override {
|
||||
bool first = true;
|
||||
if (!m_coeff.is_one()) {
|
||||
out << m_coeff;
|
||||
out << m_coeff << " ";
|
||||
first = false;
|
||||
}
|
||||
for (const nex_pow& v : m_children) {
|
||||
|
@ -227,37 +232,9 @@ public:
|
|||
return out;
|
||||
}
|
||||
|
||||
void add_child(const rational& r) {
|
||||
m_coeff *= r;
|
||||
}
|
||||
|
||||
void add_child(nex* e) {
|
||||
if (e->is_scalar()) {
|
||||
m_coeff *= e->to_scalar().value();
|
||||
return;
|
||||
}
|
||||
add_child_in_power(e, 1);
|
||||
}
|
||||
|
||||
void add_child_in_power(nex_pow& p) {
|
||||
add_child_in_power(p.e(), p.pow());
|
||||
}
|
||||
|
||||
const nex_pow& operator[](unsigned j) const { return m_children[j]; }
|
||||
nex_pow& operator[](unsigned j) { return m_children[j]; }
|
||||
const nex_pow* begin() const { return m_children.begin(); }
|
||||
const nex_pow* end() const { return m_children.end(); }
|
||||
nex_pow* begin() { return m_children.begin(); }
|
||||
nex_pow* end() { return m_children.end(); }
|
||||
|
||||
void add_child_in_power(nex* e, int power) {
|
||||
if (e->is_scalar()) {
|
||||
m_coeff *= (e->to_scalar().value()).expt(power);
|
||||
}
|
||||
else {
|
||||
m_children.push_back(nex_pow(e, power));
|
||||
}
|
||||
}
|
||||
|
||||
bool contains(lpvar j) const {
|
||||
for (const nex_pow& c : *this) {
|
||||
|
@ -281,8 +258,12 @@ public:
|
|||
}
|
||||
|
||||
unsigned get_degree() const override {
|
||||
return get_degree_children(children());
|
||||
}
|
||||
int degree = 0;
|
||||
for (const auto& p : *this) {
|
||||
degree += p.e()->get_degree() * p.pow();
|
||||
}
|
||||
return degree;
|
||||
}
|
||||
|
||||
bool is_linear() const override {
|
||||
return get_degree() < 2; // todo: make it more efficient
|
||||
|
@ -303,14 +284,19 @@ public:
|
|||
|
||||
|
||||
class nex_sum : public nex {
|
||||
friend class nex_creator;
|
||||
friend class cross_nested;
|
||||
friend class grobner_core;
|
||||
ptr_vector<nex> m_children;
|
||||
public:
|
||||
nex_sum() {}
|
||||
nex_sum(ptr_vector<nex> const& ch) : m_children(ch) {}
|
||||
|
||||
nex*& operator[](unsigned j) { return m_children[j]; }
|
||||
|
||||
public:
|
||||
|
||||
nex_sum(ptr_vector<nex> const& ch) : m_children(ch) {}
|
||||
|
||||
expr_type type() const override { return expr_type::SUM; }
|
||||
ptr_vector<nex>& children() { return m_children; }
|
||||
const ptr_vector<nex>& children() const { return m_children; }
|
||||
|
||||
unsigned size() const override { return m_children.size(); }
|
||||
|
||||
bool is_linear() const override {
|
||||
|
@ -339,7 +325,7 @@ public:
|
|||
|
||||
std::ostream & print(std::ostream& out) const override {
|
||||
bool first = true;
|
||||
for (const nex* v : m_children) {
|
||||
for (const nex* v : *this) {
|
||||
std::string s = v->str();
|
||||
if (first) {
|
||||
first = false;
|
||||
|
@ -369,12 +355,10 @@ public:
|
|||
}
|
||||
return degree;
|
||||
}
|
||||
const nex* operator[](unsigned j) const { return m_children[j]; }
|
||||
nex*& operator[](unsigned j) { return m_children[j]; }
|
||||
const ptr_vector<nex>::const_iterator begin() const { return m_children.begin(); }
|
||||
const ptr_vector<nex>::const_iterator end() const { return m_children.end(); }
|
||||
nex const* operator[](unsigned j) const { return m_children[j]; }
|
||||
const nex * const* begin() const { return m_children.c_ptr(); }
|
||||
const nex * const* end() const { return m_children.c_ptr() + m_children.size(); }
|
||||
|
||||
void add_child(nex* e) { m_children.push_back(e); }
|
||||
#ifdef Z3DEBUG
|
||||
void sort() override {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
|
@ -413,20 +397,14 @@ inline std::ostream& operator<<(std::ostream& out, const nex& e ) {
|
|||
return e.print(out);
|
||||
}
|
||||
|
||||
// inline bool less_than_nex_standard(const nex* a, const nex* b) {
|
||||
// lt_on_vars lt = [](lpvar j, lpvar k) { return j < k; };
|
||||
// return less_than_nex(a, b, lt);
|
||||
// }
|
||||
|
||||
inline rational get_nex_val(const nex* e, std::function<rational (unsigned)> var_val) {
|
||||
switch (e->type()) {
|
||||
case expr_type::SCALAR:
|
||||
return to_scalar(e)->value();
|
||||
case expr_type::SUM: {
|
||||
rational r(0);
|
||||
for (nex* c: e->to_sum()) {
|
||||
for (nex const* c: e->to_sum())
|
||||
r += get_nex_val(c, var_val);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
case expr_type::MUL: {
|
||||
|
@ -470,7 +448,7 @@ inline std::unordered_set<lpvar> get_vars_of_expr(const nex *e ) {
|
|||
}
|
||||
}
|
||||
|
||||
inline bool is_zero_scalar(nex *e) {
|
||||
inline bool is_zero_scalar(nex const*e) {
|
||||
return e->is_scalar() && e->to_scalar().value().is_zero();
|
||||
}
|
||||
}
|
||||
|
|
|
@ -30,7 +30,7 @@ nex * nex_creator::mk_div(const nex& a, lpvar j) {
|
|||
SASSERT(a.is_mul() || (a.is_var() && a.to_var().var() == j));
|
||||
if (a.is_var())
|
||||
return mk_scalar(rational(1));
|
||||
vector<nex_pow> bv;
|
||||
mul_factory mf(*this);
|
||||
bool seenj = false;
|
||||
auto ma = a.to_mul();
|
||||
for (auto& p : ma) {
|
||||
|
@ -39,54 +39,41 @@ nex * nex_creator::mk_div(const nex& a, lpvar j) {
|
|||
if (!seenj && c->contains(j)) {
|
||||
SASSERT(!c->is_var() || c->to_var().var() == j);
|
||||
if (!c->is_var()) {
|
||||
bv.push_back(nex_pow(mk_div(*c, j), 1));
|
||||
mf *= nex_pow(mk_div(*c, j), 1);
|
||||
}
|
||||
if (pow != 1) {
|
||||
bv.push_back(nex_pow(clone(c), pow - 1));
|
||||
mf *= nex_pow(clone(c), pow - 1);
|
||||
}
|
||||
seenj = true;
|
||||
} else {
|
||||
bv.push_back(nex_pow(clone(c), pow));
|
||||
mf *= nex_pow(clone(c), pow);
|
||||
}
|
||||
}
|
||||
if (bv.size() == 1 && bv.begin()->pow() == 1 && ma.coeff().is_one()) {
|
||||
return bv.begin()->e();
|
||||
}
|
||||
if (bv.empty()) {
|
||||
return mk_scalar(rational(ma.coeff()));
|
||||
}
|
||||
|
||||
auto m = mk_mul(bv);
|
||||
m->coeff() = ma.coeff();
|
||||
return m;
|
||||
|
||||
mf *= ma.coeff();
|
||||
return mf.mk_reduced();
|
||||
}
|
||||
|
||||
// TBD: describe what this does
|
||||
// return true if p is a constant, update r with value of p raised to pow.
|
||||
bool nex_creator::eat_scalar_pow(rational& r, const nex_pow& p, unsigned pow) {
|
||||
if (p.e()->is_mul()) {
|
||||
const nex_mul & m = p.e()->to_mul();
|
||||
if (m.size() == 0) {
|
||||
const rational& coeff = m.coeff();
|
||||
if (coeff.is_one())
|
||||
return true;
|
||||
r *= coeff.expt(p.pow() * pow);
|
||||
return true;
|
||||
if (p.e()->is_mul() && p.e()->to_mul().size() == 0) {
|
||||
auto const& m = p.e()->to_mul();
|
||||
if (!m.coeff().is_one()) {
|
||||
r *= m.coeff().expt(p.pow() * pow);
|
||||
}
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
if (!p.e()->is_scalar())
|
||||
return false;
|
||||
const nex_scalar &pe = p.e()->to_scalar();
|
||||
if (pe.value().is_one())
|
||||
return true; // r does not change here
|
||||
r *= pe.value().expt(p.pow() * pow);
|
||||
if (!pe.value().is_one()) {
|
||||
r *= pe.value().expt(p.pow() * pow);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
void nex_creator::simplify_children_of_mul(vector<nex_pow> & children, rational& coeff) {
|
||||
TRACE("grobner_d", print_vector(children, tout););
|
||||
TRACE("grobner_d", print_vector(children, tout << "children_of_mul: "); tout << "\n";);
|
||||
vector<nex_pow> to_promote;
|
||||
unsigned j = 0;
|
||||
for (nex_pow& p : children) {
|
||||
|
@ -163,14 +150,6 @@ bool nex_creator::children_are_simplified(const vector<nex_pow>& children) const
|
|||
return true;
|
||||
}
|
||||
|
||||
bool nex_creator::gt_on_powers_mul(const vector<nex_pow>& children, const nex_mul& b) const {
|
||||
TRACE("nex_gt", tout << "children = "; print_vector(children, tout) << " , b = " << b << "\n";);
|
||||
SASSERT(children_are_simplified(children) && is_simplified(b));
|
||||
unsigned a_deg = get_degree_children(children);
|
||||
unsigned b_deg = b.get_degree();
|
||||
return a_deg == b_deg ? gt_on_powers_mul_same_degree(children, b) : a_deg > b_deg;
|
||||
}
|
||||
|
||||
bool nex_creator::gt_on_mul_mul(const nex_mul& a, const nex_mul& b) const {
|
||||
TRACE("grobner_d", tout << "a = " << a << " , b = " << b << "\n";);
|
||||
SASSERT(is_simplified(a) && is_simplified(b));
|
||||
|
@ -179,72 +158,52 @@ bool nex_creator::gt_on_mul_mul(const nex_mul& a, const nex_mul& b) const {
|
|||
return a_deg == b_deg ? gt_on_powers_mul_same_degree(a, b) : a_deg > b_deg;
|
||||
}
|
||||
|
||||
bool nex_creator::gt_on_var_nex(const nex_var* a, const nex* b) const {
|
||||
switch (b->type()) {
|
||||
bool nex_creator::gt_on_var_nex(const nex_var& a, const nex& b) const {
|
||||
switch (b.type()) {
|
||||
case expr_type::SCALAR:
|
||||
return true;
|
||||
case expr_type::VAR:
|
||||
return gt(a->var() , to_var(b)->var());
|
||||
return gt(a.var(), b.to_var().var());
|
||||
case expr_type::MUL:
|
||||
return b->get_degree() <= 1 && gt_on_var_nex(a, (*to_mul(b))[0].e());
|
||||
return b.get_degree() <= 1 && gt_on_var_nex(a, *b.to_mul()[0].e());
|
||||
case expr_type::SUM:
|
||||
SASSERT(b->size() > 1);
|
||||
return gt(a, (*to_sum(b))[0]);
|
||||
SASSERT(b.size() > 1);
|
||||
return gt(&a, b.to_sum()[0]);
|
||||
default:
|
||||
UNREACHABLE();
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool nex_creator::gt_nex_powers(const vector<nex_pow>& children, const nex* b) const {
|
||||
switch (b->type()) {
|
||||
bool nex_creator::gt_on_mul_nex(nex_mul const& m, nex const& b) const {
|
||||
switch (b.type()) {
|
||||
case expr_type::SCALAR:
|
||||
return false;
|
||||
case expr_type::VAR:
|
||||
if (get_degree_children(children) > 1)
|
||||
if (m.get_degree() > 1)
|
||||
return true;
|
||||
SASSERT(children[0].pow() == 1);
|
||||
SASSERT(!children[0].e()->is_scalar());
|
||||
return gt(children[0].e(), b);
|
||||
SASSERT(m[0].pow() == 1);
|
||||
SASSERT(!m[0].e()->is_scalar());
|
||||
return gt(m[0].e(), &b);
|
||||
case expr_type::MUL:
|
||||
return gt_on_powers_mul(children, *to_mul(b));
|
||||
return gt_on_mul_mul(m, b.to_mul());
|
||||
case expr_type::SUM:
|
||||
return gt_nex_powers(children, (*to_sum(b))[0]);
|
||||
return gt_on_mul_nex(m, *b.to_sum()[0]);
|
||||
default:
|
||||
UNREACHABLE();
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool nex_creator::gt_on_mul_nex(const nex_mul* a, const nex* b) const {
|
||||
switch (b->type()) {
|
||||
case expr_type::SCALAR:
|
||||
return false;
|
||||
case expr_type::VAR:
|
||||
if (a->get_degree() > 1)
|
||||
return true;
|
||||
SASSERT(a->begin()->pow() == 1);
|
||||
SASSERT(!a->begin()->e()->is_scalar());
|
||||
return gt(a->begin()->e(), b);
|
||||
case expr_type::MUL:
|
||||
return gt_on_mul_mul(*a, *to_mul(b));
|
||||
case expr_type::SUM:
|
||||
return gt(a, (*to_sum(b))[0]);
|
||||
default:
|
||||
UNREACHABLE();
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool nex_creator::gt_on_sum_sum(const nex_sum* a, const nex_sum* b) const {
|
||||
unsigned size = std::min(a->size(), b->size());
|
||||
bool nex_creator::gt_on_sum_sum(const nex_sum& a, const nex_sum& b) const {
|
||||
unsigned size = std::min(a.size(), b.size());
|
||||
for (unsigned j = 0; j < size; j++) {
|
||||
if (gt((*a)[j], (*b)[j]))
|
||||
if (gt(a[j], b[j]))
|
||||
return true;
|
||||
if (gt((*b)[j], (*a)[j]))
|
||||
if (gt(b[j], a[j]))
|
||||
return false;
|
||||
}
|
||||
return a->size() > size;
|
||||
return a.size() > size;
|
||||
}
|
||||
|
||||
// the only difference with gt() that it disregards the coefficient in nex_mul
|
||||
|
@ -255,21 +214,21 @@ bool nex_creator::gt_for_sort_join_sum(const nex* a, const nex* b) const {
|
|||
bool ret;
|
||||
switch (a->type()) {
|
||||
case expr_type::VAR:
|
||||
ret = gt_on_var_nex(to_var(a), b);
|
||||
ret = gt_on_var_nex(a->to_var(), *b);
|
||||
break;
|
||||
case expr_type::SCALAR:
|
||||
if (b->is_scalar())
|
||||
ret = to_scalar(a)->value() > to_scalar(b)->value();
|
||||
ret = a->to_scalar().value() > b->to_scalar().value();
|
||||
else
|
||||
ret = false; // the scalars are the largest
|
||||
break;
|
||||
case expr_type::MUL:
|
||||
ret = gt_nex_powers(to_mul(a)->children(), b);
|
||||
ret = gt_on_mul_nex(a->to_mul(), *b);
|
||||
break;
|
||||
case expr_type::SUM:
|
||||
if (b->is_sum())
|
||||
return gt_on_sum_sum(to_sum(a), to_sum(b));
|
||||
return gt((*to_sum(a))[0], b);
|
||||
return gt_on_sum_sum(a->to_sum(), b->to_sum());
|
||||
return gt(a->to_sum()[0], b);
|
||||
default:
|
||||
UNREACHABLE();
|
||||
return false;
|
||||
|
@ -278,31 +237,31 @@ bool nex_creator::gt_for_sort_join_sum(const nex* a, const nex* b) const {
|
|||
return ret;
|
||||
}
|
||||
|
||||
bool nex_creator::gt(const nex* a, const nex* b) const {
|
||||
TRACE("grobner_d_", tout << *a << " ? " << *b << "\n";);
|
||||
if (a == b)
|
||||
bool nex_creator::gt(const nex& a, const nex& b) const {
|
||||
TRACE("grobner_d_", tout << a << " ? " << b << "\n";);
|
||||
if (&a == &b)
|
||||
return false;
|
||||
bool ret;
|
||||
switch (a->type()) {
|
||||
switch (a.type()) {
|
||||
case expr_type::VAR:
|
||||
ret = gt_on_var_nex(to_var(a), b);
|
||||
ret = gt_on_var_nex(a.to_var(), b);
|
||||
break;
|
||||
case expr_type::SCALAR:
|
||||
ret = b->is_scalar() && to_scalar(a)->value() > to_scalar(b)->value();
|
||||
ret = b.is_scalar() && a.to_scalar().value() > b.to_scalar().value();
|
||||
// the scalars are the largest
|
||||
break;
|
||||
case expr_type::MUL:
|
||||
ret = gt_on_mul_nex(to_mul(a), b);
|
||||
ret = gt_on_mul_nex(a.to_mul(), b);
|
||||
break;
|
||||
case expr_type::SUM:
|
||||
if (b->is_sum())
|
||||
return gt_on_sum_sum(to_sum(a), to_sum(b));
|
||||
return gt((*to_sum(a))[0], b);
|
||||
if (b.is_sum())
|
||||
return gt_on_sum_sum(a.to_sum(), b.to_sum());
|
||||
return gt(*a.to_sum()[0], b);
|
||||
default:
|
||||
UNREACHABLE();
|
||||
return false;
|
||||
}
|
||||
TRACE("grobner_d_", tout << *a << (ret?" < ":" >= ") << *b << "\n";);
|
||||
TRACE("grobner_d_", tout << a << (ret?" < ":" >= ") << b << "\n";);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
@ -357,8 +316,8 @@ bool nex_creator::mul_is_simplified(const nex_mul& e) const {
|
|||
|
||||
nex * nex_creator::simplify_mul(nex_mul *e) {
|
||||
TRACE("grobner_d", tout << *e << "\n";);
|
||||
rational& coeff = e->coeff();
|
||||
simplify_children_of_mul(e->children(), coeff);
|
||||
rational& coeff = e->m_coeff;
|
||||
simplify_children_of_mul(e->m_children, coeff);
|
||||
if (e->size() == 1 && (*e)[0].pow() == 1 && coeff.is_one())
|
||||
return (*e)[0].e();
|
||||
|
||||
|
@ -371,14 +330,14 @@ nex * nex_creator::simplify_mul(nex_mul *e) {
|
|||
|
||||
nex* nex_creator::simplify_sum(nex_sum *e) {
|
||||
TRACE("grobner_d", tout << "was e = " << *e << "\n";);
|
||||
simplify_children_of_sum(e->children());
|
||||
simplify_children_of_sum(*e);
|
||||
nex *r;
|
||||
if (e->size() == 1) {
|
||||
r = (*e)[0];
|
||||
r = const_cast<nex*>((*e)[0]);
|
||||
} else if (e->size() == 0) {
|
||||
r = mk_scalar(rational(0));
|
||||
} else {
|
||||
r = e;
|
||||
r = const_cast<nex_sum*>(e);
|
||||
}
|
||||
TRACE("grobner_d", tout << "became r = " << *r << "\n";);
|
||||
return r;
|
||||
|
@ -387,7 +346,7 @@ nex* nex_creator::simplify_sum(nex_sum *e) {
|
|||
bool nex_creator::sum_is_simplified(const nex_sum& e) const {
|
||||
if (e.size() < 2) return false;
|
||||
bool scalar = false;
|
||||
for (nex * ee : e) {
|
||||
for (nex const* ee : e) {
|
||||
TRACE("nla_cn_details", tout << "ee = " << *ee << "\n";);
|
||||
if (ee->is_sum()) {
|
||||
TRACE("nla_cn", tout << "not simplified e = " << e << "\n"
|
||||
|
@ -438,7 +397,7 @@ void nex_creator::mul_to_powers(vector<nex_pow>& children) {
|
|||
}
|
||||
|
||||
// returns true if the key exists already
|
||||
bool nex_creator::register_in_join_map(std::map<nex*, rational, nex_lt>& map, nex* e, const rational& r) const{
|
||||
bool nex_creator::register_in_join_map(std::map<nex const*, rational, nex_lt>& map, nex const* e, const rational& r) const{
|
||||
TRACE("grobner_d", tout << *e << ", r = " << r << std::endl;);
|
||||
auto map_it = map.find(e);
|
||||
if (map_it == map.end()) {
|
||||
|
@ -453,12 +412,12 @@ bool nex_creator::register_in_join_map(std::map<nex*, rational, nex_lt>& map, ne
|
|||
}
|
||||
|
||||
bool nex_creator::fill_join_map_for_sum(
|
||||
ptr_vector<nex> & children,
|
||||
std::map<nex*, rational, nex_lt>& map,
|
||||
std::unordered_set<nex*>& existing_nex,
|
||||
nex_sum & sum,
|
||||
std::map<nex const*, rational, nex_lt>& map,
|
||||
std::unordered_set<nex const*>& existing_nex,
|
||||
rational& common_scalar) {
|
||||
bool simplified = false;
|
||||
for (auto e : children) {
|
||||
for (auto e : sum) {
|
||||
if (e->is_scalar()) {
|
||||
simplified = true;
|
||||
common_scalar += e->to_scalar().value();
|
||||
|
@ -466,7 +425,7 @@ bool nex_creator::fill_join_map_for_sum(
|
|||
}
|
||||
existing_nex.insert(e);
|
||||
if (e->is_mul()) {
|
||||
nex_mul * m = to_mul(e);
|
||||
nex_mul const * m = to_mul(e);
|
||||
simplified |= register_in_join_map(map, m, m->coeff());
|
||||
} else {
|
||||
SASSERT(e->is_var());
|
||||
|
@ -476,34 +435,33 @@ bool nex_creator::fill_join_map_for_sum(
|
|||
return simplified;
|
||||
}
|
||||
// a + 3bc + 2bc => a + 5bc
|
||||
void nex_creator::sort_join_sum(ptr_vector<nex> & children) {
|
||||
TRACE("grobner_d", print_vector_of_ptrs(children, tout););
|
||||
std::map<nex*, rational, nex_lt> map([this](const nex *a , const nex *b)
|
||||
void nex_creator::sort_join_sum(nex_sum& sum) {
|
||||
TRACE("grobner_d", tout << sum << "\n";);
|
||||
std::map<nex const*, rational, nex_lt> map([this](const nex *a , const nex *b)
|
||||
{ return gt_for_sort_join_sum(a, b); });
|
||||
std::unordered_set<nex*> allocated_nexs; // handling (nex*) as numbers
|
||||
std::unordered_set<nex const*> allocated_nexs; // handling (nex*) as numbers
|
||||
rational common_scalar(0);
|
||||
fill_join_map_for_sum(children, map, allocated_nexs, common_scalar);
|
||||
fill_join_map_for_sum(sum, map, allocated_nexs, common_scalar);
|
||||
|
||||
TRACE("grobner_d", for (auto & p : map ) { tout << "(" << *p.first << ", " << p.second << ") ";});
|
||||
children.clear();
|
||||
sum.m_children.reset();
|
||||
for (auto& p : map) {
|
||||
process_map_pair(p.first, p.second, children, allocated_nexs);
|
||||
process_map_pair(const_cast<nex*>(p.first), p.second, sum, allocated_nexs);
|
||||
}
|
||||
if (!common_scalar.is_zero()) {
|
||||
children.push_back(mk_scalar(common_scalar));
|
||||
sum.m_children.push_back(mk_scalar(common_scalar));
|
||||
}
|
||||
TRACE("grobner_d",
|
||||
tout << "map=";
|
||||
for (auto & p : map ) tout << "(" << *p.first << ", " << p.second << ") ";
|
||||
tout << "\nchildren="; print_vector_of_ptrs(children, tout) << "\n";);
|
||||
tout << "\nchildren=" << sum << "\n";);
|
||||
}
|
||||
|
||||
void nex_creator::simplify_children_of_sum(ptr_vector<nex> & children) {
|
||||
TRACE("grobner_d", print_vector_of_ptrs(children, tout););
|
||||
void nex_creator::simplify_children_of_sum(nex_sum& s) {
|
||||
ptr_vector<nex> to_promote;
|
||||
unsigned k = 0;
|
||||
for (unsigned j = 0; j < children.size(); j++) {
|
||||
nex* e = children[j] = simplify(children[j]);
|
||||
unsigned k = 0;
|
||||
for (unsigned j = 0; j < s.size(); j++) {
|
||||
nex* e = s[j] = simplify(s[j]);
|
||||
if (e->is_sum()) {
|
||||
to_promote.push_back(e);
|
||||
} else if (is_zero_scalar(e)) {
|
||||
|
@ -511,21 +469,19 @@ void nex_creator::simplify_children_of_sum(ptr_vector<nex> & children) {
|
|||
} else if (e->is_mul() && to_mul(e)->coeff().is_zero() ) {
|
||||
continue;
|
||||
} else {
|
||||
children[k++] = e;
|
||||
s.m_children[k++] = e;
|
||||
}
|
||||
}
|
||||
|
||||
TRACE("grobner_d", print_vector_of_ptrs(children, tout););
|
||||
children.shrink(k);
|
||||
|
||||
s.m_children.shrink(k);
|
||||
|
||||
for (nex *e : to_promote) {
|
||||
for (nex *ee : e->to_sum()) {
|
||||
for (nex const*ee : e->to_sum()) {
|
||||
if (!is_zero_scalar(ee))
|
||||
children.push_back(ee);
|
||||
s.m_children.push_back(const_cast<nex*>(ee));
|
||||
}
|
||||
}
|
||||
|
||||
sort_join_sum(children);
|
||||
|
||||
sort_join_sum(s);
|
||||
}
|
||||
|
||||
|
||||
|
@ -544,10 +500,11 @@ bool nex_mul::all_factors_are_elementary() const {
|
|||
}
|
||||
|
||||
nex * nex_creator::mk_div_sum_by_mul(const nex_sum& m, const nex_mul& b) {
|
||||
nex_sum * r = mk_sum();
|
||||
sum_factory sf(*this);
|
||||
for (auto e : m) {
|
||||
r->add_child(mk_div_by_mul(*e, b));
|
||||
sf += mk_div_by_mul(*e, b);
|
||||
}
|
||||
nex* r = sf.mk();
|
||||
TRACE("grobner_d", tout << *r << "\n";);
|
||||
return r;
|
||||
}
|
||||
|
@ -555,12 +512,12 @@ nex * nex_creator::mk_div_sum_by_mul(const nex_sum& m, const nex_mul& b) {
|
|||
nex * nex_creator::mk_div_mul_by_mul(const nex_mul& a, const nex_mul& b) {
|
||||
SASSERT(a.all_factors_are_elementary() && b.all_factors_are_elementary());
|
||||
b.get_powers_from_mul(m_powers);
|
||||
nex_mul* ret = new nex_mul();
|
||||
m_mk_mul.reset();
|
||||
for (auto& p_from_a : a) {
|
||||
TRACE("grobner_d", tout << "p_from_a = " << p_from_a << "\n";);
|
||||
const nex* e = p_from_a.e();
|
||||
if (e->is_scalar()) {
|
||||
ret->add_child_in_power(clone(e), p_from_a.pow());
|
||||
m_mk_mul *= nex_pow(clone(e), p_from_a.pow());
|
||||
TRACE("grobner_d", tout << "processed scalar\n";);
|
||||
continue;
|
||||
}
|
||||
|
@ -568,13 +525,13 @@ nex * nex_creator::mk_div_mul_by_mul(const nex_mul& a, const nex_mul& b) {
|
|||
lpvar j = to_var(e)->var();
|
||||
auto it = m_powers.find(j);
|
||||
if (it == m_powers.end()) {
|
||||
ret->add_child_in_power(clone(e), p_from_a.pow());
|
||||
m_mk_mul *= nex_pow(clone(e), p_from_a.pow());
|
||||
} else {
|
||||
unsigned pa = p_from_a.pow();
|
||||
unsigned& pb = it->second;
|
||||
SASSERT(pa);
|
||||
if (pa > pb) {
|
||||
ret->add_child_in_power(mk_var(j), pa - pb);
|
||||
m_mk_mul *= nex_pow(mk_var(j), pa - pb);
|
||||
m_powers.erase(it);
|
||||
} else if (pa == pb) {
|
||||
m_powers.erase(it);
|
||||
|
@ -584,17 +541,11 @@ nex * nex_creator::mk_div_mul_by_mul(const nex_mul& a, const nex_mul& b) {
|
|||
// but the key j in m_powers remains
|
||||
pb -= pa;
|
||||
}
|
||||
}
|
||||
TRACE("grobner_d", tout << *ret << "\n";);
|
||||
}
|
||||
}
|
||||
SASSERT(m_powers.size() == 0);
|
||||
if (ret->size() == 0) {
|
||||
delete ret;
|
||||
TRACE("grobner_d", tout << "return scalar\n";);
|
||||
return mk_scalar(a.coeff() / b.coeff());
|
||||
}
|
||||
ret->coeff() = a.coeff() / b.coeff();
|
||||
add_to_allocated(ret);
|
||||
m_mk_mul *= (a.coeff() / b.coeff());
|
||||
nex* ret = m_mk_mul.mk_reduced();
|
||||
TRACE("grobner_d", tout << *ret << "\n";);
|
||||
return ret;
|
||||
}
|
||||
|
@ -634,7 +585,7 @@ nex* nex_creator::simplify(nex* e) {
|
|||
}
|
||||
|
||||
// adds to children the corrected expression and also adds to allocated the new expressions
|
||||
void nex_creator::process_map_pair(nex *e, const rational& coeff, ptr_vector<nex> & children, std::unordered_set<nex*>& allocated_nexs) {
|
||||
void nex_creator::process_map_pair(nex*e, const rational& coeff, nex_sum & sum, std::unordered_set<nex const*>& allocated_nexs) {
|
||||
TRACE("grobner_d", tout << "e=" << *e << " , coeff= " << coeff << "\n";);
|
||||
if (coeff.is_zero()) {
|
||||
TRACE("grobner_d", tout << "did nothing\n";);
|
||||
|
@ -645,14 +596,17 @@ void nex_creator::process_map_pair(nex *e, const rational& coeff, ptr_vector<nex
|
|||
m_allocated.push_back(e);
|
||||
}
|
||||
if (e->is_mul()) {
|
||||
e->to_mul().coeff() = coeff;
|
||||
children.push_back(simplify(e));
|
||||
e->to_mul().m_coeff = coeff;
|
||||
sum.m_children.push_back(simplify(e));
|
||||
} else {
|
||||
SASSERT(e->is_var());
|
||||
if (coeff.is_one()) {
|
||||
children.push_back(e);
|
||||
sum.m_children.push_back(e);
|
||||
} else {
|
||||
children.push_back(mk_mul(mk_scalar(coeff), e));
|
||||
mul_factory mf(*this);
|
||||
mf *= coeff;
|
||||
mf *= e;
|
||||
sum.m_children.push_back(mf.mk());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -684,20 +638,21 @@ nex* nex_creator::canonize_mul(nex_mul *a) {
|
|||
SASSERT(np.pow());
|
||||
unsigned power = np.pow();
|
||||
nex_sum const& s = np.e()->to_sum(); // s is going to explode
|
||||
nex_sum * r = mk_sum();
|
||||
sum_factory sf(*this);
|
||||
nex *sclone = power > 1 ? clone(&s) : nullptr;
|
||||
for (nex *e : s) {
|
||||
nex_mul *m = mk_mul();
|
||||
for (nex const*e : s) {
|
||||
mul_factory mf(*this);
|
||||
if (power > 1)
|
||||
m->add_child_in_power(sclone, power - 1);
|
||||
m->add_child(e);
|
||||
mf *= nex_pow(sclone, power - 1);
|
||||
mf *= nex_pow(e, 1);
|
||||
for (unsigned k = 0; k < a->size(); k++) {
|
||||
if (k == j)
|
||||
continue;
|
||||
m->add_child_in_power(clone((*a)[k].e()), (*a)[k].pow());
|
||||
mf *= nex_pow(clone((*a)[k].e()), (*a)[k].pow());
|
||||
}
|
||||
r->add_child(m);
|
||||
sf += mf.mk();
|
||||
}
|
||||
nex* r = sf.mk();
|
||||
TRACE("grobner_d", tout << "canonized a = " << *r << "\n";);
|
||||
return canonize(r);
|
||||
}
|
||||
|
|
|
@ -19,6 +19,7 @@
|
|||
--*/
|
||||
#pragma once
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include "util/map.h"
|
||||
#include "math/lp/nex.h"
|
||||
namespace nla {
|
||||
|
@ -59,7 +60,7 @@ class nex_creator {
|
|||
public:
|
||||
static std::string ch(unsigned j) {
|
||||
std::stringstream s;
|
||||
s << "v" << j;
|
||||
s << "v" << j;
|
||||
return s.str();
|
||||
}
|
||||
|
||||
|
@ -71,51 +72,76 @@ public:
|
|||
unsigned get_number_of_vars() const {
|
||||
return m_active_vars_weights.size();
|
||||
}
|
||||
|
||||
|
||||
void set_var_weight(unsigned j, unsigned weight) {
|
||||
m_active_vars_weights[j] = weight;
|
||||
}
|
||||
|
||||
private:
|
||||
svector<unsigned>& active_vars_weights() { return m_active_vars_weights;}
|
||||
const svector<unsigned>& active_vars_weights() const { return m_active_vars_weights;}
|
||||
svector<unsigned>& active_vars_weights() { return m_active_vars_weights; }
|
||||
const svector<unsigned>& active_vars_weights() const { return m_active_vars_weights; }
|
||||
|
||||
nex_mul* mk_mul(const vector<nex_pow>& v) {
|
||||
auto r = alloc(nex_mul, rational::zero(), v);
|
||||
add_to_allocated(r);
|
||||
return r;
|
||||
}
|
||||
|
||||
void mul_args() { }
|
||||
|
||||
template <typename K>
|
||||
void mul_args(K e) {
|
||||
m_mk_mul *= e;
|
||||
}
|
||||
|
||||
template <typename K, typename ...Args>
|
||||
void mul_args(K e, Args ... es) {
|
||||
m_mk_mul *= e;
|
||||
mul_args(es...);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void add_sum(T) { }
|
||||
|
||||
template <typename T, typename K, typename ...Args>
|
||||
void add_sum(T& r, K e, Args ... es) {
|
||||
r += e;
|
||||
add_sum(r, es ...);
|
||||
}
|
||||
|
||||
|
||||
|
||||
public:
|
||||
nex* simplify(nex* e);
|
||||
|
||||
bool gt(lpvar j, lpvar k) const{
|
||||
|
||||
bool gt(lpvar j, lpvar k) const {
|
||||
unsigned wj = m_active_vars_weights[j];
|
||||
unsigned wk = m_active_vars_weights[k];
|
||||
return wj != wk ? wj > wk : j > k;
|
||||
}
|
||||
|
||||
void simplify_children_of_mul(vector<nex_pow>& children, rational&);
|
||||
|
||||
// just compare the underlying expressions
|
||||
bool gt_on_nex_pow(const nex_pow & a, const nex_pow& b) const {
|
||||
return gt(a.e(), b.e());
|
||||
}
|
||||
|
||||
void simplify_children_of_mul(vector<nex_pow> & children, rational&);
|
||||
|
||||
nex * clone(const nex* a) {
|
||||
nex* clone(const nex* a) {
|
||||
switch (a->type()) {
|
||||
case expr_type::VAR:
|
||||
case expr_type::VAR:
|
||||
return mk_var(to_var(a)->var());
|
||||
case expr_type::SCALAR:
|
||||
case expr_type::SCALAR:
|
||||
return mk_scalar(to_scalar(a)->value());
|
||||
case expr_type::MUL: {
|
||||
auto m = to_mul(a);
|
||||
auto r = mk_mul();
|
||||
for (const auto& p : m->children()) {
|
||||
r->add_child_in_power(clone(p.e()), p.pow());
|
||||
mul_factory mf(*this);
|
||||
for (const auto& p : a->to_mul()) {
|
||||
mf *= nex_pow(clone(p.e()), p.pow());
|
||||
}
|
||||
r->coeff() = m->coeff();
|
||||
return r;
|
||||
mf *= a->to_mul().coeff();
|
||||
return mf.mk();
|
||||
}
|
||||
case expr_type::SUM: {
|
||||
auto r = mk_sum();
|
||||
for (nex * e : *to_sum(a)) {
|
||||
r->add_child(clone(e));
|
||||
sum_factory sf(*this);
|
||||
for (nex const* e : a->to_sum()) {
|
||||
sf += clone(e);
|
||||
}
|
||||
return r;
|
||||
return sf.mk();
|
||||
}
|
||||
default:
|
||||
UNREACHABLE();
|
||||
|
@ -126,86 +152,110 @@ public:
|
|||
|
||||
const std::unordered_map<lpvar, occ>& occurences_map() const { return m_occurences_map; }
|
||||
std::unordered_map<lpvar, occ>& occurences_map() { return m_occurences_map; }
|
||||
const std::unordered_map<lpvar, unsigned> & powers() const { return m_powers; }
|
||||
std::unordered_map<lpvar, unsigned> & powers() { return m_powers; }
|
||||
|
||||
const std::unordered_map<lpvar, unsigned>& powers() const { return m_powers; }
|
||||
std::unordered_map<lpvar, unsigned>& powers() { return m_powers; }
|
||||
|
||||
void add_to_allocated(nex* r) { m_allocated.push_back(r); }
|
||||
|
||||
// NSB: we can use region allocation, but still need to invoke destructor
|
||||
// because of 'rational' (and m_children in nex_mul unless we get rid of this)
|
||||
void pop(unsigned sz) {
|
||||
for (unsigned j = sz; j < m_allocated.size(); j ++)
|
||||
delete m_allocated[j];
|
||||
for (unsigned j = sz; j < m_allocated.size(); j++)
|
||||
dealloc(m_allocated[j]);
|
||||
m_allocated.resize(sz);
|
||||
}
|
||||
|
||||
void clear() {
|
||||
for (auto e: m_allocated)
|
||||
delete e;
|
||||
for (auto e : m_allocated)
|
||||
dealloc(e);
|
||||
m_allocated.clear();
|
||||
}
|
||||
|
||||
nex_creator() : m_mk_mul(*this) {}
|
||||
|
||||
~nex_creator() {
|
||||
clear();
|
||||
}
|
||||
unsigned size() const { return m_allocated.size(); }
|
||||
|
||||
class mul_factory {
|
||||
nex_creator& c;
|
||||
rational m_coeff;
|
||||
vector<nex_pow> m_args;
|
||||
public:
|
||||
mul_factory(nex_creator& c) :c(c), m_coeff(1) {}
|
||||
void reset() { m_coeff = rational::one(); m_args.reset(); }
|
||||
void operator*=(rational const& coeff) { m_coeff *= coeff; }
|
||||
void operator*=(nex_pow const& p) { m_args.push_back(p); }
|
||||
void operator*=(nex const* n) { m_args.push_back(nex_pow(n, 1)); }
|
||||
bool empty() const { return m_args.empty(); }
|
||||
nex_mul* mk() {
|
||||
auto r = alloc(nex_mul, m_coeff, m_args);
|
||||
c.add_to_allocated(r);
|
||||
return r;
|
||||
}
|
||||
nex* mk_reduced() {
|
||||
if (m_args.empty()) return c.mk_scalar(m_coeff);
|
||||
if (m_coeff.is_one() && m_args.size() == 1 && m_args[0].pow() == 1) return m_args[0].e();
|
||||
return mk();
|
||||
}
|
||||
};
|
||||
|
||||
class sum_factory {
|
||||
nex_creator& c;
|
||||
ptr_vector<nex> m_args;
|
||||
public:
|
||||
sum_factory(nex_creator& c) :c(c) {}
|
||||
void reset() { m_args.reset(); }
|
||||
void operator+=(nex const* n) { m_args.push_back(const_cast<nex*>(n)); }
|
||||
void operator+=(nex* n) { m_args.push_back(n); }
|
||||
bool empty() const { return m_args.empty(); }
|
||||
nex_sum* mk() { return c.mk_sum(m_args); }
|
||||
};
|
||||
|
||||
mul_factory m_mk_mul;
|
||||
|
||||
nex_sum* mk_sum() {
|
||||
auto r = new nex_sum();
|
||||
add_to_allocated(r);
|
||||
return r;
|
||||
}
|
||||
template <typename T>
|
||||
void add_children(T) { }
|
||||
|
||||
template <typename T, typename K, typename ...Args>
|
||||
void add_children(T r, K e, Args ... es) {
|
||||
r->add_child(e);
|
||||
add_children(r, es ...);
|
||||
ptr_vector<nex> v0;
|
||||
return mk_sum(v0);
|
||||
}
|
||||
|
||||
nex_sum* mk_sum(const ptr_vector<nex>& v) {
|
||||
auto r = new nex_sum(v);
|
||||
nex_sum* mk_sum(const ptr_vector<nex>& v) {
|
||||
auto r = alloc(nex_sum, v);
|
||||
add_to_allocated(r);
|
||||
return r;
|
||||
}
|
||||
|
||||
nex_mul* mk_mul(const vector<nex_pow>& v) {
|
||||
auto r = new nex_mul();
|
||||
add_to_allocated(r);
|
||||
r->children() = v;
|
||||
return r;
|
||||
}
|
||||
|
||||
template <typename K, typename...Args>
|
||||
nex_sum* mk_sum(K e, Args... es) {
|
||||
auto r = new nex_sum();
|
||||
add_to_allocated(r);
|
||||
r->add_child(e);
|
||||
add_children(r, es...);
|
||||
return r;
|
||||
sum_factory sf(*this);
|
||||
sf += e;
|
||||
add_sum(sf, es...);
|
||||
return sf.mk();
|
||||
}
|
||||
|
||||
nex_var* mk_var(lpvar j) {
|
||||
auto r = new nex_var(j);
|
||||
auto r = alloc(nex_var, j);
|
||||
add_to_allocated(r);
|
||||
return r;
|
||||
}
|
||||
|
||||
nex_mul* mk_mul() {
|
||||
auto r = new nex_mul();
|
||||
auto r = alloc(nex_mul);
|
||||
add_to_allocated(r);
|
||||
return r;
|
||||
}
|
||||
|
||||
template <typename K, typename...Args>
|
||||
nex_mul* mk_mul(K e, Args... es) {
|
||||
auto r = new nex_mul();
|
||||
add_to_allocated(r);
|
||||
add_children(r, e, es...);
|
||||
return r;
|
||||
m_mk_mul.reset();
|
||||
m_mk_mul *= e;
|
||||
mul_args(es...);
|
||||
return m_mk_mul.mk();
|
||||
}
|
||||
|
||||
nex_scalar* mk_scalar(const rational& v) {
|
||||
auto r = new nex_scalar(v);
|
||||
auto r = alloc(nex_scalar, v);
|
||||
add_to_allocated(r);
|
||||
return r;
|
||||
}
|
||||
|
@ -227,30 +277,31 @@ public:
|
|||
|
||||
void mul_to_powers(vector<nex_pow>& children);
|
||||
|
||||
|
||||
void sort_join_sum(ptr_vector<nex> & children);
|
||||
bool fill_join_map_for_sum(ptr_vector<nex> & children,
|
||||
std::map<nex*, rational, nex_lt>& map,
|
||||
std::unordered_set<nex*>& existing_nex,
|
||||
void sort_join_sum(nex_sum & sum);
|
||||
bool fill_join_map_for_sum(nex_sum & sum,
|
||||
std::map<nex const*, rational, nex_lt>& map,
|
||||
std::unordered_set<nex const*>& existing_nex,
|
||||
rational& common_scalar);
|
||||
bool register_in_join_map(std::map<nex*, rational, nex_lt>&, nex*, const rational&) const;
|
||||
bool register_in_join_map(std::map<nex const*, rational, nex_lt>&, nex const*, const rational&) const;
|
||||
|
||||
void simplify_children_of_sum(ptr_vector<nex> & children);
|
||||
void simplify_children_of_sum(nex_sum & sum);
|
||||
|
||||
bool eat_scalar_pow(rational& r, const nex_pow& p, unsigned);
|
||||
|
||||
bool children_are_simplified(const vector<nex_pow>& children) const;
|
||||
bool gt(const nex* a, const nex* b) const;
|
||||
bool gt_nex_powers(const vector<nex_pow>&, const nex* b) const;
|
||||
bool gt_on_powers_mul(const vector<nex_pow>&, const nex_mul& b) const;
|
||||
bool gt(const nex& a, const nex& b) const;
|
||||
bool gt(const nex* a, const nex* b) const { return gt(*a, *b); }
|
||||
template <typename T>
|
||||
bool gt_on_powers_mul_same_degree(const T&, const nex_mul& b) const;
|
||||
bool gt_for_sort_join_sum(const nex* a, const nex* b) const;
|
||||
bool gt_on_mul_mul(const nex_mul& a, const nex_mul& b) const;
|
||||
bool gt_on_var_nex(const nex_var* a, const nex* b) const;
|
||||
bool gt_on_mul_nex(const nex_mul* a, const nex* b) const;
|
||||
bool gt_on_sum_sum(const nex_sum* a, const nex_sum* b) const;
|
||||
void process_map_pair(nex *e, const rational& coeff, ptr_vector<nex> & children, std::unordered_set<nex*>&);
|
||||
bool gt_on_mul_mul(const nex_mul& a, const nex_mul& b) const;
|
||||
bool gt_on_sum_sum(const nex_sum& a, const nex_sum& b) const;
|
||||
bool gt_on_var_nex(const nex_var& a, const nex& b) const;
|
||||
bool gt_on_mul_nex(nex_mul const&, const nex& b) const;
|
||||
bool gt_on_nex_pow(const nex_pow& a, const nex_pow& b) const {
|
||||
return (a.pow() > b.pow()) || (a.pow() == b.pow() && gt(a.e(), b.e()));
|
||||
}
|
||||
void process_map_pair(nex*e, const rational& coeff, nex_sum & sum, std::unordered_set<nex const*>&);
|
||||
#ifdef Z3DEBUG
|
||||
static
|
||||
bool equal(const nex*, const nex* );
|
||||
|
|
|
@ -139,7 +139,8 @@ nex * common::nexvar(const rational & coeff, lpvar j, nex_creator& cn, bool fixe
|
|||
return cn.mk_mul(cn.mk_scalar(coeff), cn.mk_var(j));
|
||||
}
|
||||
const monic& m = c().emons()[j];
|
||||
nex_mul * e = cn.mk_mul(cn.mk_scalar(coeff));
|
||||
nex_creator::mul_factory mf(cn);
|
||||
mf *= coeff;
|
||||
for (lpvar k : m.vars()) {
|
||||
if (fixed_as_scalars && c().var_is_fixed(k)) {
|
||||
auto & b = c().m_lar_solver.get_lower_bound(k).x;
|
||||
|
@ -147,13 +148,14 @@ nex * common::nexvar(const rational & coeff, lpvar j, nex_creator& cn, bool fixe
|
|||
TRACE("nla_grobner", tout << "[" << k << "] is fixed to zero\n";);
|
||||
return nullptr;
|
||||
}
|
||||
e->coeff() *= b;
|
||||
mf *= b;
|
||||
continue;
|
||||
}
|
||||
c().insert_to_active_var_set(k);
|
||||
e->add_child(cn.mk_var(k));
|
||||
mf *= cn.mk_var(k);
|
||||
CTRACE("nla_grobner", c().is_monic_var(k), c().print_var(k, tout) << "\n";);
|
||||
}
|
||||
nex* e = mf.mk();
|
||||
TRACE("nla_grobner", tout << *e;);
|
||||
return e;
|
||||
}
|
||||
|
@ -161,7 +163,7 @@ nex * common::nexvar(const rational & coeff, lpvar j, nex_creator& cn, bool fixe
|
|||
|
||||
template <typename T> common::ci_dependency* common::create_sum_from_row(const T& row,
|
||||
nex_creator& cn,
|
||||
nex_sum& sum,
|
||||
nex_creator::sum_factory& sum,
|
||||
bool fixed_as_scalars,
|
||||
ci_dependency_manager* dep_manager
|
||||
) {
|
||||
|
@ -169,7 +171,7 @@ template <typename T> common::ci_dependency* common::create_sum_from_row(const T
|
|||
TRACE("nla_horner", tout << "row="; m_core->print_term(row, tout) << "\n";);
|
||||
ci_dependency * dep = nullptr;
|
||||
SASSERT(row.size() > 1);
|
||||
sum.children().clear();
|
||||
sum.reset();
|
||||
for (const auto &p : row) {
|
||||
nex* e = nexvar(p.coeff(), p.var(), cn, fixed_as_scalars);
|
||||
if (!e)
|
||||
|
@ -181,10 +183,9 @@ template <typename T> common::ci_dependency* common::create_sum_from_row(const T
|
|||
dep = dep_manager->mk_join(dep, dep_manager->mk_leaf(lc));
|
||||
if (uc + 1)
|
||||
dep = dep_manager->mk_join(dep, dep_manager->mk_leaf(uc));
|
||||
sum.add_child(e);
|
||||
sum += e;
|
||||
}
|
||||
}
|
||||
TRACE("nla_grobner", tout << "sum =" << sum << "\ndep="; m_intervals->print_dependencies(dep, tout););
|
||||
return dep;
|
||||
}
|
||||
|
||||
|
@ -255,6 +256,6 @@ var_weight common::get_var_weight(lpvar j) const {
|
|||
|
||||
|
||||
}
|
||||
template nla::common::ci_dependency* nla::common::create_sum_from_row<old_vector<lp::row_cell<rational>, true, unsigned int> >(old_vector<lp::row_cell<rational>, true, unsigned int> const&, nla::nex_creator&, nla::nex_sum&, bool, ci_dependency_manager*);
|
||||
template nla::common::ci_dependency* nla::common::create_sum_from_row<old_vector<lp::row_cell<rational>, true, unsigned int> >(old_vector<lp::row_cell<rational>, true, unsigned int> const&, nla::nex_creator&, nla::nex_creator::sum_factory&, bool, ci_dependency_manager*);
|
||||
|
||||
template dependency_manager<nla::common::ci_dependency_config>::dependency* nla::common::get_fixed_vars_dep_from_row<old_vector<lp::row_cell<rational>, true, unsigned int> >(old_vector<lp::row_cell<rational>, true, unsigned int> const&, dependency_manager<nla::common::ci_dependency_config>&);
|
||||
|
|
|
@ -122,7 +122,7 @@ struct common {
|
|||
// nex* nexvar(lpvar j, nex_creator&, svector<lp::constraint_index> & fixed_vars_constraints);
|
||||
nex* nexvar(const rational& coeff, lpvar j, nex_creator&, bool);
|
||||
template <typename T>
|
||||
ci_dependency* create_sum_from_row(const T&, nex_creator&, nex_sum&, bool, ci_dependency_manager*);
|
||||
ci_dependency* create_sum_from_row(const T&, nex_creator&, nex_creator::sum_factory&, bool, ci_dependency_manager*);
|
||||
template <typename T>
|
||||
ci_dependency* get_fixed_vars_dep_from_row(const T&, ci_dependency_manager& dep_manager);
|
||||
void set_active_vars_weights();
|
||||
|
|
|
@ -90,7 +90,7 @@ public:
|
|||
intervals m_intervals;
|
||||
horner m_horner;
|
||||
nla_settings m_nla_settings;
|
||||
grobner m_grobner;
|
||||
grobner m_grobner;
|
||||
private:
|
||||
emonics m_emons;
|
||||
svector<lpvar> m_add_buffer;
|
||||
|
|
|
@ -24,27 +24,60 @@ using namespace nla;
|
|||
|
||||
grobner::grobner(core *c, intervals *s)
|
||||
: common(c, s),
|
||||
m_nl_gb_exhausted(false),
|
||||
m_dep_manager(m_val_manager, m_alloc),
|
||||
m_changed_leading_term(false),
|
||||
m_look_for_fixed_vars_in_rows(false)
|
||||
{}
|
||||
m_gc(m_nex_creator,
|
||||
c->m_reslim,
|
||||
c->m_nla_settings.grobner_eqs_threshold()
|
||||
),
|
||||
m_look_for_fixed_vars_in_rows(false) {
|
||||
std::function<void (lp::explanation const& e, std::ostream & out)> de;
|
||||
de = [this](lp::explanation const& e, std::ostream& out) { m_core->print_explanation(e, out); };
|
||||
m_gc = de;
|
||||
}
|
||||
|
||||
void grobner::grobner_lemmas() {
|
||||
c().lp_settings().stats().m_grobner_calls++;
|
||||
init();
|
||||
ptr_vector<equation> eqs;
|
||||
ptr_vector<grobner_core::equation> eqs;
|
||||
TRACE("grobner", tout << "before:\n"; display(tout););
|
||||
compute_basis();
|
||||
TRACE("grobner", tout << "after:\n"; display(tout););
|
||||
}
|
||||
|
||||
bool grobner::internalize_gb_eq(equation* ) {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
return false;
|
||||
void grobner::check_eq(grobner_core::equation* target) {
|
||||
if (m_intervals->check_nex(target->expr(), target->dep())) {
|
||||
TRACE("grobner", tout << "created a lemma for "; m_gc.display_equation(tout, *target) << "\n";
|
||||
tout << "vars = \n";
|
||||
for (lpvar j : get_vars_of_expr(target->expr())) {
|
||||
c().print_var(j, tout);
|
||||
}
|
||||
tout << "\ntarget->expr() val = " << get_nex_val(target->expr(), [this](unsigned j) { return c().val(j); }) << "\n";);
|
||||
register_report();
|
||||
}
|
||||
}
|
||||
|
||||
void grobner::add_var_and_its_factors_to_q_and_collect_new_rows(lpvar j, std::queue<lpvar> & q) {
|
||||
void grobner::register_report() {
|
||||
m_reported++;
|
||||
}
|
||||
|
||||
void grobner::compute_basis(){
|
||||
compute_basis_init();
|
||||
if (m_rows.size() < 2) {
|
||||
TRACE("nla_grobner", tout << "there are only " << m_rows.size() << " rows, exiting compute_basis()\n";);
|
||||
return;
|
||||
}
|
||||
m_gc.compute_basis_loop();
|
||||
|
||||
TRACE("grobner", display(tout););
|
||||
for (grobner_core::equation* e : m_gc.equations()) {
|
||||
check_eq(e);
|
||||
}
|
||||
}
|
||||
|
||||
void grobner::compute_basis_init(){
|
||||
c().lp_settings().stats().m_grobner_basis_computatins++;
|
||||
}
|
||||
|
||||
void grobner::add_var_and_its_factors_to_q_and_collect_new_rows(lpvar j, svector<lpvar> & q) {
|
||||
if (c().active_var_set_contains(j) || c().var_is_fixed(j)) return;
|
||||
TRACE("grobner", tout << "j = " << j << ", "; c().print_var(j, tout) << "\n";);
|
||||
const auto& matrix = c().m_lar_solver.A_r();
|
||||
|
@ -69,22 +102,22 @@ void grobner::add_var_and_its_factors_to_q_and_collect_new_rows(lpvar j, std::qu
|
|||
const monic& m = c().emons()[j];
|
||||
for (auto fcn : factorization_factory_imp(m, c())) {
|
||||
for (const factor& fc: fcn) {
|
||||
q.push(var(fc));
|
||||
q.push_back(var(fc));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void grobner::find_nl_cluster() {
|
||||
prepare_rows_and_active_vars();
|
||||
std::queue<lpvar> q;
|
||||
svector<lpvar> q;
|
||||
for (lpvar j : c().m_to_refine) {
|
||||
TRACE("grobner", c().print_monic(c().emons()[j], tout) << "\n";);
|
||||
q.push(j);
|
||||
q.push_back(j);
|
||||
}
|
||||
|
||||
|
||||
while (!q.empty()) {
|
||||
lpvar j = q.front();
|
||||
q.pop();
|
||||
lpvar j = q.back();
|
||||
q.pop_back();
|
||||
add_var_and_its_factors_to_q_and_collect_new_rows(j, q);
|
||||
}
|
||||
set_active_vars_weights();
|
||||
|
@ -97,6 +130,29 @@ void grobner::prepare_rows_and_active_vars() {
|
|||
c().clear_and_resize_active_var_set();
|
||||
}
|
||||
|
||||
|
||||
std::unordered_set<lpvar> grobner::get_vars_of_expr_with_opening_terms(const nex *e ) {
|
||||
auto ret = get_vars_of_expr(e);
|
||||
auto & ls = c().m_lar_solver;
|
||||
do {
|
||||
svector<lpvar> added;
|
||||
for (lpvar j : ret) {
|
||||
if (ls.column_corresponds_to_term(j)) {
|
||||
const auto & t = c().m_lar_solver.get_term(ls.local_to_external(j));
|
||||
for (auto p : t) {
|
||||
if (ret.find(p.var()) == ret.end())
|
||||
added.push_back(p.var());
|
||||
}
|
||||
}
|
||||
}
|
||||
if (added.size() == 0)
|
||||
return ret;
|
||||
for (lpvar j: added)
|
||||
ret.insert(j);
|
||||
added.clear();
|
||||
} while (true);
|
||||
}
|
||||
|
||||
void grobner::display_matrix(std::ostream & out) const {
|
||||
const auto& matrix = c().m_lar_solver.A_r();
|
||||
out << m_rows.size() << " rows" <<"\n";
|
||||
|
@ -107,56 +163,106 @@ void grobner::display_matrix(std::ostream & out) const {
|
|||
}
|
||||
}
|
||||
|
||||
std::ostream & grobner::display(std::ostream & out) const {
|
||||
display_equations(out, m_to_superpose, "m_to_superpose:");
|
||||
display_equations(out, m_to_simplify, "m_to_simplify:");
|
||||
return out;
|
||||
}
|
||||
|
||||
common::ci_dependency* grobner::dep_from_vector(svector<lp::constraint_index> & cs) {
|
||||
ci_dependency * d = nullptr;
|
||||
for (auto c : cs)
|
||||
d = m_dep_manager.mk_join(d, m_dep_manager.mk_leaf(c));
|
||||
return d;
|
||||
}
|
||||
|
||||
void grobner::add_row(unsigned i) {
|
||||
const auto& row = c().m_lar_solver.A_r().m_rows[i];
|
||||
TRACE("grobner", tout << "adding row to gb\n"; c().m_lar_solver.print_row(row, tout) << '\n';
|
||||
for (auto p : row) c().print_var(p.var(), tout) << "\n"; );
|
||||
nex_sum * ns = m_nex_creator.mk_sum();
|
||||
ci_dependency* dep = create_sum_from_row(row, m_nex_creator, *ns, m_look_for_fixed_vars_in_rows, &m_dep_manager);
|
||||
nex* e = m_nex_creator.simplify(ns);
|
||||
TRACE("grobner", tout << "e = " << *e << "\n";);
|
||||
assert_eq_0(e, dep);
|
||||
}
|
||||
|
||||
void grobner::init() {
|
||||
|
||||
m_reported = 0;
|
||||
del_equations(0);
|
||||
SASSERT(m_equations_to_delete.size() == 0);
|
||||
m_to_superpose.reset();
|
||||
m_to_simplify.reset();
|
||||
m_gc.reset();
|
||||
|
||||
m_reported = 0;
|
||||
find_nl_cluster();
|
||||
c().clear_and_resize_active_var_set();
|
||||
TRACE("grobner", tout << "m_rows.size() = " << m_rows.size() << "\n";);
|
||||
for (unsigned i : m_rows) {
|
||||
add_row(i);
|
||||
}
|
||||
for (equation* eq : m_to_simplify) {
|
||||
eq->expr() = m_nex_creator.simplify(eq->expr());
|
||||
}
|
||||
}
|
||||
|
||||
bool grobner::is_trivial(equation* eq) const {
|
||||
void grobner::add_row(unsigned i) {
|
||||
const auto& row = c().m_lar_solver.A_r().m_rows[i];
|
||||
TRACE("grobner", tout << "adding row to gb\n"; c().m_lar_solver.print_row(row, tout) << '\n';
|
||||
for (auto p : row) c().print_var(p.var(), tout) << "\n"; );
|
||||
nex_creator::sum_factory sf(m_nex_creator);
|
||||
ci_dependency* dep = create_sum_from_row(row, m_nex_creator, sf, m_look_for_fixed_vars_in_rows, &m_gc.dep());
|
||||
nex* e = m_nex_creator.simplify(sf.mk());
|
||||
TRACE("grobner", tout << "e = " << *e << "\n";);
|
||||
m_gc.assert_eq_0(e, dep);
|
||||
}
|
||||
|
||||
/// -------------------------------
|
||||
/// grobner_core
|
||||
|
||||
bool grobner_core::compute_basis_loop() {
|
||||
while (!done()) {
|
||||
if (compute_basis_step()) {
|
||||
TRACE("grobner", tout << "progress in compute_basis_step\n";);
|
||||
return true;
|
||||
}
|
||||
TRACE("grobner", tout << "continue compute_basis_loop\n";);
|
||||
}
|
||||
TRACE("grobner", tout << "return false from compute_basis_loop\n";);
|
||||
TRACE("grobner_stats", print_stats(tout););
|
||||
set_gb_exhausted();
|
||||
return false;
|
||||
}
|
||||
|
||||
// return true iff cannot pick_next()
|
||||
bool grobner_core::compute_basis_step() {
|
||||
equation* eq = pick_next();
|
||||
if (!eq) {
|
||||
TRACE("grobner", tout << "cannot pick an equation\n";);
|
||||
return true;
|
||||
}
|
||||
m_stats.m_compute_steps++;
|
||||
simplify_using_to_superpose(*eq);
|
||||
if (canceled()) return false;
|
||||
if (!simplify_to_superpose_with_eq(eq))
|
||||
return false;
|
||||
TRACE("grobner", tout << "eq = "; display_equation(tout, *eq););
|
||||
superpose(eq);
|
||||
insert_to_superpose(eq);
|
||||
simplify_m_to_simplify(eq);
|
||||
TRACE("grobner", tout << "end of iteration:\n"; display(tout););
|
||||
return false;
|
||||
}
|
||||
|
||||
grobner_core::equation* grobner_core::pick_next() {
|
||||
equation* r = nullptr;
|
||||
ptr_buffer<equation> to_delete;
|
||||
for (equation* curr : m_to_simplify) {
|
||||
if (is_trivial(curr))
|
||||
to_delete.push_back(curr);
|
||||
else if (is_simpler(curr, r)) {
|
||||
TRACE("grobner", tout << "preferring "; display_equation(tout, *curr););
|
||||
r = curr;
|
||||
}
|
||||
}
|
||||
for (equation* e : to_delete)
|
||||
del_equation(e);
|
||||
if (r)
|
||||
m_to_simplify.erase(r);
|
||||
TRACE("grobner", tout << "selected equation: "; if (!r) tout << "<null>\n"; else display_equation(tout, *r););
|
||||
return r;
|
||||
}
|
||||
grobner_core::equation_set const& grobner_core::equations() {
|
||||
m_all_eqs.reset();
|
||||
for (auto e : m_to_simplify) m_all_eqs.insert(e);
|
||||
for (auto e : m_to_superpose) m_all_eqs.insert(e);
|
||||
return m_all_eqs;
|
||||
}
|
||||
|
||||
void grobner_core::reset() {
|
||||
del_equations(0);
|
||||
SASSERT(m_equations_to_delete.size() == 0);
|
||||
m_to_superpose.reset();
|
||||
m_to_simplify.reset();
|
||||
m_stats.reset();
|
||||
}
|
||||
|
||||
bool grobner_core::is_trivial(equation* eq) const {
|
||||
SASSERT(m_nex_creator.is_simplified(*eq->expr()));
|
||||
return eq->expr()->size() == 0;
|
||||
}
|
||||
|
||||
// returns true if eq1 is simpler than eq2
|
||||
bool grobner::is_simpler(equation * eq1, equation * eq2) {
|
||||
bool grobner_core::is_simpler(equation * eq1, equation * eq2) {
|
||||
if (!eq2)
|
||||
return true;
|
||||
if (is_trivial(eq1))
|
||||
|
@ -166,7 +272,7 @@ bool grobner::is_simpler(equation * eq1, equation * eq2) {
|
|||
return m_nex_creator.gt(eq2->expr(), eq1->expr());
|
||||
}
|
||||
|
||||
void grobner::del_equation(equation * eq) {
|
||||
void grobner_core::del_equation(equation * eq) {
|
||||
m_to_superpose.erase(eq);
|
||||
m_to_simplify.erase(eq);
|
||||
SASSERT(m_equations_to_delete[eq->m_bidx] == eq);
|
||||
|
@ -174,56 +280,33 @@ void grobner::del_equation(equation * eq) {
|
|||
dealloc(eq);
|
||||
}
|
||||
|
||||
grobner::equation* grobner::pick_next() {
|
||||
equation * r = nullptr;
|
||||
ptr_buffer<equation> to_delete;
|
||||
for (equation * curr : m_to_simplify) {
|
||||
if (is_trivial(curr))
|
||||
to_delete.push_back(curr);
|
||||
else if (is_simpler(curr, r)) {
|
||||
TRACE("grobner", tout << "preferring "; display_equation(tout, *curr););
|
||||
r = curr;
|
||||
}
|
||||
}
|
||||
for (equation * e : to_delete)
|
||||
del_equation(e);
|
||||
if (r)
|
||||
m_to_simplify.erase(r);
|
||||
TRACE("grobner", tout << "selected equation: "; if (!r) tout << "<null>\n"; else display_equation(tout, *r););
|
||||
return r;
|
||||
}
|
||||
|
||||
grobner::equation* grobner::simplify_using_to_superpose(equation* eq) {
|
||||
void grobner_core::simplify_using_to_superpose(equation& eq) {
|
||||
bool result = false;
|
||||
bool simplified;
|
||||
TRACE("grobner", tout << "simplifying: "; display_equation(tout, *eq); tout << "using equalities of m_to_superpose of size " << m_to_superpose.size() << "\n";);
|
||||
TRACE("grobner", tout << "simplifying: "; display_equation(tout, eq); tout << "using equalities of m_to_superpose of size " << m_to_superpose.size() << "\n";);
|
||||
do {
|
||||
simplified = false;
|
||||
for (equation* p : m_to_superpose) {
|
||||
if (simplify_source_target(p, eq)) {
|
||||
if (simplify_source_target(p, &eq)) {
|
||||
result = true;
|
||||
simplified = true;
|
||||
}
|
||||
if (canceled()) {
|
||||
return nullptr;
|
||||
}
|
||||
if (eq->expr()->is_scalar()) {
|
||||
if (canceled() || eq.expr()->is_scalar()) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
while (simplified && !eq->expr()->is_scalar());
|
||||
while (simplified && !eq.expr()->is_scalar());
|
||||
|
||||
TRACE("grobner", tout << "simplification result: "; display_equation(tout, *eq););
|
||||
return result ? eq : nullptr;
|
||||
TRACE("grobner", tout << "simplification result: "; display_equation(tout, eq););
|
||||
}
|
||||
|
||||
const nex* grobner::get_highest_monomial(const nex* e) const {
|
||||
const nex* grobner_core::get_highest_monomial(const nex* e) const {
|
||||
switch (e->type()) {
|
||||
case expr_type::MUL:
|
||||
return to_mul(e);
|
||||
return e;
|
||||
case expr_type::SUM:
|
||||
return *(to_sum(e)->begin());
|
||||
return e->to_sum()[0];
|
||||
case expr_type::VAR:
|
||||
return e;
|
||||
default:
|
||||
|
@ -234,8 +317,8 @@ const nex* grobner::get_highest_monomial(const nex* e) const {
|
|||
// source 3f + k + l = 0, so f = (-k - l)/3
|
||||
// target 2fg + 3fp + e = 0
|
||||
// target is replaced by 2(-k/3 - l/3)g + 3(-k/3 - l/3)p + e = -2/3kg -2/3lg - kp -lp + e
|
||||
bool grobner::simplify_target_monomials(equation * source, equation * target) {
|
||||
auto * high_mon = get_highest_monomial(source->expr());
|
||||
bool grobner_core::simplify_target_monomials(equation * source, equation * target) {
|
||||
nex const* high_mon = get_highest_monomial(source->expr());
|
||||
if (high_mon == nullptr)
|
||||
return false;
|
||||
SASSERT(high_mon->all_factors_are_elementary());
|
||||
|
@ -252,26 +335,26 @@ bool grobner::simplify_target_monomials(equation * source, equation * target) {
|
|||
return false;
|
||||
}
|
||||
|
||||
return simplify_target_monomials_sum(source, target, targ_sum, high_mon);
|
||||
return simplify_target_monomials_sum(source, target, targ_sum, *high_mon);
|
||||
}
|
||||
|
||||
unsigned grobner::find_divisible(nex_sum* targ_sum, const nex* high_mon) const {
|
||||
unsigned grobner_core::find_divisible(nex_sum const& targ_sum, const nex& high_mon) const {
|
||||
unsigned j = 0;
|
||||
for (auto t : *targ_sum) {
|
||||
for (auto t : targ_sum) {
|
||||
if (divide_ignore_coeffs_check_only(t, high_mon)) {
|
||||
TRACE("grobner_d", tout << "yes div: " << *t << " / " << *high_mon << "\n";);
|
||||
TRACE("grobner_d", tout << "yes div: " << *t << " / " << high_mon << "\n";);
|
||||
return j;
|
||||
}
|
||||
++j;
|
||||
}
|
||||
TRACE("grobner_d", tout << "no div: " << *targ_sum << " / " << *high_mon << "\n";);
|
||||
TRACE("grobner_d", tout << "no div: " << targ_sum << " / " << high_mon << "\n";);
|
||||
return -1;
|
||||
}
|
||||
|
||||
bool grobner::simplify_target_monomials_sum(equation * source,
|
||||
bool grobner_core::simplify_target_monomials_sum(equation * source,
|
||||
equation * target, nex_sum* targ_sum,
|
||||
const nex* high_mon) {
|
||||
unsigned j = find_divisible(targ_sum, high_mon);
|
||||
const nex& high_mon) {
|
||||
unsigned j = find_divisible(*targ_sum, high_mon);
|
||||
if (j + 1 == 0)
|
||||
return false;
|
||||
m_changed_leading_term = (j == 0);
|
||||
|
@ -287,88 +370,93 @@ bool grobner::simplify_target_monomials_sum(equation * source,
|
|||
return true;
|
||||
}
|
||||
|
||||
bool grobner::divide_ignore_coeffs_check_only_nex_mul(nex_mul* t , const nex* h) const {
|
||||
TRACE("grobner_d", tout << "t = " << *t << ", h=" << *h << "\n";);
|
||||
SASSERT(m_nex_creator.is_simplified(*t) && m_nex_creator.is_simplified(*h));
|
||||
bool grobner_core::divide_ignore_coeffs_check_only_nex_mul(nex_mul const& t , const nex& h) const {
|
||||
TRACE("grobner_d", tout << "t = " << t << ", h=" << h << "\n";);
|
||||
SASSERT(m_nex_creator.is_simplified(t) && m_nex_creator.is_simplified(h));
|
||||
unsigned j = 0; // points to t
|
||||
for(unsigned k = 0; k < h->number_of_child_powers(); k++) {
|
||||
lpvar h_var = to_var(h->get_child_exp(k))->var();
|
||||
for(unsigned k = 0; k < h.number_of_child_powers(); k++) {
|
||||
lpvar h_var = h.get_child_exp(k)->to_var().var();
|
||||
bool p_swallowed = false;
|
||||
for (; j < t->size() && !p_swallowed; j++) {
|
||||
auto &tp = (*t)[j];
|
||||
for (; j < t.size() && !p_swallowed; j++) {
|
||||
const nex_pow& tp = t[j];
|
||||
if (tp.e()->to_var().var() == h_var) {
|
||||
if (tp.pow() >= h->get_child_pow(k)) {
|
||||
if (tp.pow() >= h.get_child_pow(k)) {
|
||||
p_swallowed = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!p_swallowed) {
|
||||
TRACE("grobner_d", tout << "no div " << *t << " / " << *h << "\n";);
|
||||
TRACE("grobner_d", tout << "no div " << t << " / " << h << "\n";);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
TRACE("grobner_d", tout << "division " << *t << " / " << *h << "\n";);
|
||||
TRACE("grobner_d", tout << "division " << t << " / " << h << "\n";);
|
||||
return true;
|
||||
}
|
||||
|
||||
// return true if h divides t
|
||||
bool grobner::divide_ignore_coeffs_check_only(nex* n , const nex* h) const {
|
||||
bool grobner_core::divide_ignore_coeffs_check_only(nex const* n , const nex& h) const {
|
||||
if (n->is_mul())
|
||||
return divide_ignore_coeffs_check_only_nex_mul(to_mul(n), h);
|
||||
return divide_ignore_coeffs_check_only_nex_mul(n->to_mul(), h);
|
||||
if (!n->is_var())
|
||||
return false;
|
||||
|
||||
const nex_var * v = to_var(n);
|
||||
if (h->is_var()) {
|
||||
return v->var() == h->to_var().var();
|
||||
if (h.is_var()) {
|
||||
return v->var() == h.to_var().var();
|
||||
}
|
||||
|
||||
if (h->is_mul() || h->is_var()) {
|
||||
if (h->number_of_child_powers() > 1)
|
||||
if (h.is_mul()) {
|
||||
if (h.number_of_child_powers() > 1)
|
||||
return false;
|
||||
if (h->get_child_pow(0) != 1)
|
||||
if (h.get_child_pow(0) != 1)
|
||||
return false;
|
||||
const nex* e = h->get_child_exp(0);
|
||||
const nex* e = h.get_child_exp(0);
|
||||
return e->is_var() && e->to_var().var() == v->var();
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
nex_mul * grobner::divide_ignore_coeffs_perform_nex_mul(nex_mul* t, const nex* h) {
|
||||
nex_mul * r = m_nex_creator.mk_mul();
|
||||
nex_mul * grobner_core::divide_ignore_coeffs_perform_nex_mul(nex_mul const& t, const nex& h) {
|
||||
|
||||
m_nex_creator.m_mk_mul.reset();
|
||||
|
||||
unsigned j = 0; // j points to t and k runs over h
|
||||
for(unsigned k = 0; k < h->number_of_child_powers(); k++) {
|
||||
lpvar h_var = to_var(h->get_child_exp(k))->var();
|
||||
for (; j < t->size(); j++) {
|
||||
auto &tp = (*t)[j];
|
||||
for(unsigned k = 0; k < h.number_of_child_powers(); k++) {
|
||||
lpvar h_var = to_var(h.get_child_exp(k))->var();
|
||||
for (; j < t.size(); j++) {
|
||||
auto const &tp = t[j];
|
||||
if (tp.e()->to_var().var() == h_var) {
|
||||
unsigned h_pow = h->get_child_pow(k);
|
||||
unsigned h_pow = h.get_child_pow(k);
|
||||
SASSERT(tp.pow() >= h_pow);
|
||||
j++;
|
||||
if (tp.pow() > h_pow) {
|
||||
r->add_child_in_power(tp.e(), tp.pow() - h_pow);
|
||||
m_nex_creator.m_mk_mul *= nex_pow(tp.e(), tp.pow() - h_pow);
|
||||
}
|
||||
break;
|
||||
} else {
|
||||
r->add_child_in_power(tp);
|
||||
m_nex_creator.m_mk_mul *= tp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (; j < t->size(); j++) {
|
||||
r->add_child_in_power((*t)[j]);
|
||||
for (; j < t.size(); j++) {
|
||||
m_nex_creator.m_mk_mul *= t[j];
|
||||
}
|
||||
|
||||
nex_mul* r = m_nex_creator.m_mk_mul.mk();
|
||||
TRACE("grobner", tout << "r = " << *r << " = " << t << " / " << h << "\n";);
|
||||
|
||||
|
||||
TRACE("grobner_d", tout << "r = " << *r << " = " << *t << " / " << *h << "\n";);
|
||||
TRACE("grobner_d", tout << "r = " << *r << " = " << t << " / " << h << "\n";);
|
||||
return r;
|
||||
}
|
||||
|
||||
// perform the division t / h, but ignores the coefficients
|
||||
// h does not change
|
||||
nex_mul * grobner::divide_ignore_coeffs_perform(nex* e, const nex* h) {
|
||||
nex_mul * grobner_core::divide_ignore_coeffs_perform(nex* e, const nex& h) {
|
||||
if (e->is_mul())
|
||||
return divide_ignore_coeffs_perform_nex_mul(to_mul(e), h);
|
||||
return divide_ignore_coeffs_perform_nex_mul(e->to_mul(), h);
|
||||
SASSERT(e->is_var());
|
||||
return m_nex_creator.mk_mul(); // return the empty nex_mul
|
||||
}
|
||||
|
@ -377,9 +465,9 @@ nex_mul * grobner::divide_ignore_coeffs_perform(nex* e, const nex* h) {
|
|||
// and b*high_mon + e = 0, so high_mon = -e/b
|
||||
// then targ_sum->children()[j] = - (c/b) * e*p
|
||||
|
||||
void grobner::simplify_target_monomials_sum_j(equation * source, equation *target, nex_sum* targ_sum, const nex* high_mon, unsigned j, bool test_divisibility) {
|
||||
void grobner_core::simplify_target_monomials_sum_j(equation * source, equation *target, nex_sum* targ_sum, const nex& high_mon, unsigned j, bool test_divisibility) {
|
||||
nex * ej = (*targ_sum)[j];
|
||||
TRACE("grobner_d", tout << "high_mon = " << *high_mon << ", ej = " << *ej << "\n";);
|
||||
TRACE("grobner_d", tout << "high_mon = " << high_mon << ", ej = " << *ej << "\n";);
|
||||
if (test_divisibility && !divide_ignore_coeffs_check_only(ej, high_mon)) {
|
||||
TRACE("grobner_d", tout << "no div\n";);
|
||||
return;
|
||||
|
@ -388,15 +476,16 @@ void grobner::simplify_target_monomials_sum_j(equation * source, equation *targe
|
|||
TRACE("grobner_d", tout << "ej_over_high_mon = " << *ej_over_high_mon << "\n";);
|
||||
rational c = ej->is_mul()? to_mul(ej)->coeff() : rational(1);
|
||||
TRACE("grobner_d", tout << "c = " << c << "\n";);
|
||||
|
||||
nex_sum * ej_sum = m_nex_creator.mk_sum();
|
||||
(*targ_sum)[j] = ej_sum;
|
||||
add_mul_skip_first(ej_sum ,-c/high_mon->coeff(), source->expr(), ej_over_high_mon);
|
||||
|
||||
nex_creator::sum_factory sf(m_nex_creator);
|
||||
add_mul_skip_first(sf ,-c/high_mon.coeff(), source->expr(), ej_over_high_mon);
|
||||
|
||||
(*targ_sum)[j] = sf.mk();
|
||||
TRACE("grobner_d", tout << "targ_sum = " << *targ_sum << "\n";);
|
||||
}
|
||||
|
||||
// return true iff simplified
|
||||
bool grobner::simplify_source_target(equation * source, equation * target) {
|
||||
bool grobner_core::simplify_source_target(equation * source, equation * target) {
|
||||
TRACE("grobner", tout << "simplifying: "; display_equation(tout, *target); tout << "\nusing: "; display_equation(tout, *source););
|
||||
TRACE("grobner_d", tout << "simplifying: " << *(target->expr()) << " using " << *(source->expr()) << "\n";);
|
||||
SASSERT(m_nex_creator.is_simplified(*source->expr()));
|
||||
|
@ -418,7 +507,8 @@ bool grobner::simplify_source_target(equation * source, equation * target) {
|
|||
} else {
|
||||
break;
|
||||
}
|
||||
} while (!canceled());
|
||||
}
|
||||
while (!canceled());
|
||||
if (result) {
|
||||
target->dep() = m_dep_manager.mk_join(target->dep(), source->dep());
|
||||
update_stats_max_degree_and_size(target);
|
||||
|
@ -430,9 +520,7 @@ bool grobner::simplify_source_target(equation * source, equation * target) {
|
|||
return false;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void grobner::process_simplified_target(equation* target, ptr_buffer<equation>& to_remove) {
|
||||
void grobner_core::process_simplified_target(equation* target, ptr_buffer<equation>& to_remove) {
|
||||
if (is_trivial(target)) {
|
||||
to_remove.push_back(target);
|
||||
} else if (m_changed_leading_term) {
|
||||
|
@ -441,19 +529,8 @@ void grobner::process_simplified_target(equation* target, ptr_buffer<equation>&
|
|||
}
|
||||
}
|
||||
|
||||
void grobner::check_eq(equation* target) {
|
||||
if (m_intervals->check_nex(target->expr(), target->dep())) {
|
||||
TRACE("grobner", tout << "created a lemma for "; display_equation(tout, *target) << "\n";
|
||||
tout << "vars = \n";
|
||||
for (lpvar j : get_vars_of_expr(target->expr())) {
|
||||
c().print_var(j, tout);
|
||||
}
|
||||
tout << "\ntarget->expr() val = " << get_nex_val(target->expr(), [this](unsigned j) { return c().val(j); }) << "\n";);
|
||||
register_report();
|
||||
}
|
||||
}
|
||||
|
||||
bool grobner::simplify_to_superpose_with_eq(equation* eq) {
|
||||
bool grobner_core::simplify_to_superpose_with_eq(equation* eq) {
|
||||
TRACE("grobner_d", tout << "eq->exp " << *(eq->expr()) << "\n";);
|
||||
|
||||
ptr_buffer<equation> to_insert;
|
||||
|
@ -486,7 +563,7 @@ bool grobner::simplify_to_superpose_with_eq(equation* eq) {
|
|||
/*
|
||||
Use the given equation to simplify m_to_simplify equations
|
||||
*/
|
||||
void grobner::simplify_m_to_simplify(equation* eq) {
|
||||
void grobner_core::simplify_m_to_simplify(equation* eq) {
|
||||
TRACE("grobner_d", tout << "eq->exp " << *(eq->expr()) << "\n";);
|
||||
ptr_buffer<equation> to_delete;
|
||||
for (equation* target : m_to_simplify) {
|
||||
|
@ -500,13 +577,12 @@ void grobner::simplify_m_to_simplify(equation* eq) {
|
|||
// if e is the sum then add to r all children of e multiplied by beta, except the first one
|
||||
// which corresponds to the highest monomial,
|
||||
// otherwise do nothing
|
||||
void grobner::add_mul_skip_first(nex_sum* r, const rational& beta, nex *e, nex_mul* c) {
|
||||
void grobner_core::add_mul_skip_first(nex_creator::sum_factory& sf, const rational& beta, nex *e, nex_mul* c) {
|
||||
if (e->is_sum()) {
|
||||
nex_sum *es = to_sum(e);
|
||||
for (unsigned j = 1; j < es->size(); j++) {
|
||||
r->add_child(m_nex_creator.mk_mul(beta, (*es)[j], c));
|
||||
nex_sum & es = e->to_sum();
|
||||
for (unsigned j = 1; j < es.size(); j++) {
|
||||
sf += m_nex_creator.mk_mul(beta, es[j], c);
|
||||
}
|
||||
TRACE("grobner_d", tout << "r = " << *r << "\n";);
|
||||
} else {
|
||||
TRACE("grobner_d", tout << "e = " << *e << "\n";);
|
||||
}
|
||||
|
@ -514,23 +590,23 @@ void grobner::add_mul_skip_first(nex_sum* r, const rational& beta, nex *e, nex_m
|
|||
|
||||
|
||||
// let e1: alpha*ab+q=0, and e2: beta*ac+e=0, then beta*qc - alpha*eb = 0
|
||||
nex * grobner::expr_superpose(nex* e1, nex* e2, const nex* ab, const nex* ac, nex_mul* b, nex_mul* c) {
|
||||
nex * grobner_core::expr_superpose(nex* e1, nex* e2, const nex* ab, const nex* ac, nex_mul* b, nex_mul* c) {
|
||||
TRACE("grobner", tout << "e1 = " << *e1 << "\ne2 = " << *e2 <<"\n";);
|
||||
nex_sum * r = m_nex_creator.mk_sum();
|
||||
nex_creator::sum_factory sf(m_nex_creator);
|
||||
rational alpha = - ab->coeff();
|
||||
TRACE("grobner", tout << "e2 *= " << alpha << "*(" << *b << ")\n";);
|
||||
add_mul_skip_first(r, alpha, e2, b);
|
||||
add_mul_skip_first(sf, alpha, e2, b);
|
||||
rational beta = ac->coeff();
|
||||
TRACE("grobner", tout << "e1 *= " << beta << "*(" << *c << ")\n";);
|
||||
add_mul_skip_first(r, beta, e1, c);
|
||||
nex * ret = m_nex_creator.simplify(r);
|
||||
add_mul_skip_first(sf, beta, e1, c);
|
||||
nex * ret = m_nex_creator.simplify(sf.mk());
|
||||
TRACE("grobner", tout << "e1 = " << *e1 << "\ne2 = " << *e2 <<"\nsuperpose = " << *ret << "\n";);
|
||||
CTRACE("grobner", ret->is_scalar(), tout << "\n";);
|
||||
return ret;
|
||||
}
|
||||
|
||||
// let eq1: ab+q=0, and eq2: ac+e=0, then qc - eb = 0
|
||||
void grobner::superpose(equation * eq1, equation * eq2) {
|
||||
void grobner_core::superpose(equation * eq1, equation * eq2) {
|
||||
TRACE("grobner", tout << "eq1="; display_equation(tout, *eq1) << "eq2="; display_equation(tout, *eq2););
|
||||
const nex * ab = get_highest_monomial(eq1->expr());
|
||||
const nex * ac = get_highest_monomial(eq2->expr());
|
||||
|
@ -545,18 +621,18 @@ void grobner::superpose(equation * eq1, equation * eq2) {
|
|||
init_equation(eq, expr_superpose( eq1->expr(), eq2->expr(), ab, ac, b, c), m_dep_manager.mk_join(eq1->dep(), eq2->dep()));
|
||||
m_stats.m_superposed++;
|
||||
update_stats_max_degree_and_size(eq);
|
||||
eq->expr() = m_nex_creator.simplify(eq->expr());
|
||||
insert_to_simplify(eq);
|
||||
}
|
||||
|
||||
void grobner::register_report() {
|
||||
m_reported++;
|
||||
}
|
||||
|
||||
|
||||
// Let a be the greatest common divider of ab and bc,
|
||||
// then ab/a is stored in b, and ac/a is stored in c
|
||||
bool grobner::find_b_c(const nex* ab, const nex* ac, nex_mul*& b, nex_mul*& c) {
|
||||
bool grobner_core::find_b_c(const nex* ab, const nex* ac, nex_mul*& b, nex_mul*& c) {
|
||||
if (!find_b_c_check_only(ab, ac))
|
||||
return false;
|
||||
b = m_nex_creator.mk_mul(); c = m_nex_creator.mk_mul();
|
||||
nex_creator::mul_factory fb(m_nex_creator), fc(m_nex_creator);
|
||||
unsigned ab_size = ab->number_of_child_powers();
|
||||
unsigned ac_size = ac->number_of_child_powers();
|
||||
unsigned i = 0, j = 0;
|
||||
|
@ -564,20 +640,20 @@ bool grobner::find_b_c(const nex* ab, const nex* ac, nex_mul*& b, nex_mul*& c) {
|
|||
const nex* m = ab->get_child_exp(i);
|
||||
const nex* n = ac->get_child_exp(j);
|
||||
if (m_nex_creator.gt(m, n)) {
|
||||
b->add_child_in_power(const_cast<nex*>(m), ab->get_child_pow(i));
|
||||
fb *= (nex_pow(const_cast<nex*>(m), ab->get_child_pow(i)));
|
||||
if (++i == ab_size)
|
||||
break;
|
||||
} else if (m_nex_creator.gt(n, m)) {
|
||||
c->add_child_in_power(const_cast<nex*>(n), ac->get_child_pow(j));
|
||||
fc *= (nex_pow(const_cast<nex*>(n), ac->get_child_pow(j)));
|
||||
if (++j == ac_size)
|
||||
break;
|
||||
} else {
|
||||
unsigned b_pow = ab->get_child_pow(i);
|
||||
unsigned c_pow = ac->get_child_pow(j);
|
||||
if (b_pow > c_pow) {
|
||||
b->add_child_in_power(const_cast<nex*>(m), b_pow - c_pow);
|
||||
fb *= (nex_pow(const_cast<nex*>(m), b_pow - c_pow));
|
||||
} else if (c_pow > b_pow) {
|
||||
c->add_child_in_power(const_cast<nex*>(n), c_pow - b_pow);
|
||||
fc *= (nex_pow(const_cast<nex*>(n), c_pow - b_pow));
|
||||
} // otherwise the power are equal and no child added to either b or c
|
||||
i++; j++;
|
||||
|
||||
|
@ -587,16 +663,18 @@ bool grobner::find_b_c(const nex* ab, const nex* ac, nex_mul*& b, nex_mul*& c) {
|
|||
}
|
||||
}
|
||||
while (i != ab_size) {
|
||||
b->add_child_in_power(const_cast<nex*>(ab->get_child_exp(i)), ab->get_child_pow(i));
|
||||
fb *= (nex_pow(const_cast<nex*>(ab->get_child_exp(i)), ab->get_child_pow(i)));
|
||||
i++;
|
||||
}
|
||||
while (j != ac_size) {
|
||||
c->add_child_in_power(const_cast<nex*>(ac->get_child_exp(j)), ac->get_child_pow(j));
|
||||
fc *= (nex_pow(const_cast<nex*>(ac->get_child_exp(j)), ac->get_child_pow(j)));
|
||||
j++;
|
||||
}
|
||||
b = fb.mk();
|
||||
c = fc.mk();
|
||||
TRACE("nla_grobner", tout << "b=" << *b << ", c=" <<*c << "\n";);
|
||||
// debug region
|
||||
nex_mul *a = divide_ignore_coeffs_perform(m_nex_creator.clone(ab), b);
|
||||
nex_mul *a = divide_ignore_coeffs_perform(m_nex_creator.clone(ab), *b);
|
||||
SASSERT(ab->get_degree() == a->get_degree() + b->get_degree());
|
||||
SASSERT(ac->get_degree() == a->get_degree() + c->get_degree());
|
||||
SASSERT(test_find_b_c(ab, ac, b, c));
|
||||
|
@ -604,7 +682,7 @@ bool grobner::find_b_c(const nex* ab, const nex* ac, nex_mul*& b, nex_mul*& c) {
|
|||
}
|
||||
|
||||
// Finds out if ab and bc have a non-trivial common divider
|
||||
bool grobner::find_b_c_check_only(const nex* ab, const nex* ac) const {
|
||||
bool grobner_core::find_b_c_check_only(const nex* ab, const nex* ac) const {
|
||||
if (ab == nullptr || ac == nullptr)
|
||||
return false;
|
||||
SASSERT(m_nex_creator.is_simplified(*ab) && m_nex_creator.is_simplified(*ac));
|
||||
|
@ -630,94 +708,25 @@ bool grobner::find_b_c_check_only(const nex* ab, const nex* ac) const {
|
|||
return false;
|
||||
}
|
||||
|
||||
void grobner::superpose(equation * eq) {
|
||||
void grobner_core::superpose(equation * eq) {
|
||||
for (equation * target : m_to_superpose) {
|
||||
superpose(eq, target);
|
||||
}
|
||||
}
|
||||
|
||||
// return true iff cannot pick_next()
|
||||
bool grobner::compute_basis_step() {
|
||||
equation * eq = pick_next();
|
||||
if (!eq) {
|
||||
TRACE("grobner", tout << "cannot pick an equation\n";);
|
||||
return true;
|
||||
}
|
||||
m_stats.m_compute_steps++;
|
||||
equation * new_eq = simplify_using_to_superpose(eq);
|
||||
if (new_eq != nullptr && eq != new_eq) {
|
||||
// equation was updated using non destructive updates
|
||||
eq = new_eq;
|
||||
}
|
||||
if (canceled()) return false;
|
||||
if (!simplify_to_superpose_with_eq(eq))
|
||||
return false;
|
||||
TRACE("grobner", tout << "eq = "; display_equation(tout, *eq););
|
||||
superpose(eq);
|
||||
insert_to_superpose(eq);
|
||||
simplify_m_to_simplify(eq);
|
||||
TRACE("grobner", tout << "end of iteration:\n"; display(tout););
|
||||
return false;
|
||||
bool grobner_core::canceled() {
|
||||
return m_limit.get_cancel_flag();
|
||||
}
|
||||
|
||||
void grobner::compute_basis(){
|
||||
compute_basis_init();
|
||||
if (m_rows.size() < 2) {
|
||||
TRACE("nla_grobner", tout << "there are only " << m_rows.size() << " rows, exiting compute_basis()\n";);
|
||||
return;
|
||||
}
|
||||
if (!compute_basis_loop()) {
|
||||
TRACE("grobner", tout << "false from compute_basis_loop\n";);
|
||||
set_gb_exhausted();
|
||||
} else {
|
||||
TRACE("grobner", display(tout););
|
||||
for (equation* e : m_to_simplify) {
|
||||
check_eq(e);
|
||||
}
|
||||
for (equation* e : m_to_superpose) {
|
||||
check_eq(e);
|
||||
}
|
||||
}
|
||||
}
|
||||
void grobner::compute_basis_init(){
|
||||
c().lp_settings().stats().m_grobner_basis_computatins++;
|
||||
m_stats.reset();
|
||||
}
|
||||
|
||||
bool grobner::canceled() const {
|
||||
return c().lp_settings().get_cancel_flag();
|
||||
bool grobner_core::done() {
|
||||
return num_of_equations() >= m_grobner_eqs_threshold || canceled();
|
||||
}
|
||||
|
||||
bool grobner::done() const {
|
||||
CTRACE("grobner", (num_of_equations() >= c().m_nla_settings.grobner_eqs_threshold()),
|
||||
tout << "m_num_of_equations = " << num_of_equations() << "\n";);
|
||||
CTRACE("grobner", canceled(), tout << "canceled\n";);
|
||||
CTRACE("grobner", m_reported > 0, tout << "m_reported = " << m_reported;);
|
||||
return
|
||||
num_of_equations() >= c().m_nla_settings.grobner_eqs_threshold() ||
|
||||
canceled() || m_reported > 0;
|
||||
}
|
||||
|
||||
|
||||
bool grobner::compute_basis_loop(){
|
||||
while (!done()) {
|
||||
if (compute_basis_step()) {
|
||||
TRACE("grobner", tout << "progress in compute_basis_step\n";);
|
||||
return true;
|
||||
}
|
||||
TRACE("grobner", tout << "continue compute_basis_loop\n";);
|
||||
}
|
||||
TRACE("grobner", tout << "return false from compute_basis_loop\n";);
|
||||
TRACE("grobner_stats", print_stats(tout););
|
||||
return false;
|
||||
}
|
||||
|
||||
void grobner::set_gb_exhausted(){
|
||||
void grobner_core::set_gb_exhausted(){
|
||||
m_nl_gb_exhausted = true;
|
||||
}
|
||||
|
||||
|
||||
void grobner:: del_equations(unsigned old_size) {
|
||||
void grobner_core::del_equations(unsigned old_size) {
|
||||
TRACE("grobner", );
|
||||
SASSERT(m_equations_to_delete.size() >= old_size);
|
||||
equation_vector::iterator it = m_equations_to_delete.begin();
|
||||
|
@ -731,53 +740,36 @@ void grobner:: del_equations(unsigned old_size) {
|
|||
m_equations_to_delete.shrink(old_size);
|
||||
}
|
||||
|
||||
std::ostream& grobner::print_stats(std::ostream & out) const {
|
||||
std::ostream& grobner_core::print_stats(std::ostream & out) const {
|
||||
return out << "stats:\nsteps = " << m_stats.m_compute_steps << "\nsimplified: " <<
|
||||
m_stats.m_simplified << "\nsuperposed: " <<
|
||||
m_stats.m_superposed << "\nexpr degree: " << m_stats.m_max_expr_degree <<
|
||||
"\nexpr size: " << m_stats.m_max_expr_size << "\n";
|
||||
}
|
||||
|
||||
void grobner::update_stats_max_degree_and_size(const equation *e) {
|
||||
void grobner_core::update_stats_max_degree_and_size(const equation *e) {
|
||||
m_stats.m_max_expr_size = std::max(m_stats.m_max_expr_size, e->expr()->size());
|
||||
m_stats.m_max_expr_degree = std::max(m_stats.m_max_expr_degree, e->expr()->get_degree());
|
||||
}
|
||||
|
||||
void grobner::display_equations(std::ostream & out, equation_set const & v, char const * header) const {
|
||||
void grobner_core::display_equations(std::ostream & out, equation_set const & v, char const * header) const {
|
||||
out << header << "\n";
|
||||
for (const equation* e : v)
|
||||
display_equation(out, *e);
|
||||
}
|
||||
|
||||
std::ostream& grobner::display_equation(std::ostream & out, const equation & eq) const {
|
||||
std::ostream& grobner_core::display_equation(std::ostream & out, const equation & eq) const {
|
||||
out << "expr = " << *eq.expr() << "\n";
|
||||
display_dependency(out, eq.dep());
|
||||
return display_dependency(out, eq.dep());
|
||||
}
|
||||
|
||||
std::ostream& grobner_core::display(std::ostream& out) const {
|
||||
display_equations(out, m_to_superpose, "m_to_superpose:");
|
||||
display_equations(out, m_to_simplify, "m_to_simplify:");
|
||||
return out;
|
||||
}
|
||||
|
||||
std::unordered_set<lpvar> grobner::get_vars_of_expr_with_opening_terms(const nex *e ) {
|
||||
auto ret = get_vars_of_expr(e);
|
||||
auto & ls = c().m_lar_solver;
|
||||
do {
|
||||
svector<lpvar> added;
|
||||
for (lpvar j : ret) {
|
||||
if (ls.column_corresponds_to_term(j)) {
|
||||
const auto & t = c().m_lar_solver.get_term(ls.local_to_external(j));
|
||||
for (auto p : t) {
|
||||
if (ret.find(p.var()) == ret.end())
|
||||
added.push_back(p.var());
|
||||
}
|
||||
}
|
||||
}
|
||||
if (added.size() == 0)
|
||||
return ret;
|
||||
for (lpvar j: added)
|
||||
ret.insert(j);
|
||||
added.clear();
|
||||
} while (true);
|
||||
}
|
||||
|
||||
void grobner::assert_eq_0(nex* e, ci_dependency * dep) {
|
||||
void grobner_core::assert_eq_0(nex* e, common::ci_dependency * dep) {
|
||||
if (e == nullptr || is_zero_scalar(e))
|
||||
return;
|
||||
m_tmp_var_set.clear();
|
||||
|
@ -785,14 +777,14 @@ void grobner::assert_eq_0(nex* e, ci_dependency * dep) {
|
|||
init_equation(eq, e, dep);
|
||||
TRACE("grobner",
|
||||
display_equation(tout, *eq);
|
||||
tout << "\nvars\n";
|
||||
/*tout << "\nvars\n";
|
||||
for (unsigned j : get_vars_of_expr_with_opening_terms(e)) {
|
||||
c().print_var(j, tout << "(") << ")\n";
|
||||
});
|
||||
} */);
|
||||
insert_to_simplify(eq);
|
||||
}
|
||||
|
||||
void grobner::init_equation(equation* eq, nex*e, ci_dependency * dep) {
|
||||
void grobner_core::init_equation(equation* eq, nex*e, common::ci_dependency * dep) {
|
||||
eq->m_bidx = m_equations_to_delete.size();
|
||||
eq->dep() = dep;
|
||||
eq->expr() = e;
|
||||
|
@ -800,17 +792,17 @@ void grobner::init_equation(equation* eq, nex*e, ci_dependency * dep) {
|
|||
SASSERT(m_equations_to_delete[eq->m_bidx] == eq);
|
||||
}
|
||||
|
||||
grobner::~grobner() {
|
||||
grobner_core::~grobner_core() {
|
||||
del_equations(0);
|
||||
}
|
||||
|
||||
std::ostream& grobner::display_dependency(std::ostream& out, ci_dependency* dep) const {
|
||||
std::ostream& grobner_core::display_dependency(std::ostream& out, common::ci_dependency* dep) const {
|
||||
svector<lp::constraint_index> expl;
|
||||
m_dep_manager.linearize(dep, expl);
|
||||
lp::explanation e(expl);
|
||||
if (!expl.empty()) {
|
||||
out << "constraints\n";
|
||||
m_core->print_explanation(e, out);
|
||||
m_print_explanation(e, out);
|
||||
out << "\n";
|
||||
} else {
|
||||
out << "no deps\n";
|
||||
|
@ -818,17 +810,17 @@ std::ostream& grobner::display_dependency(std::ostream& out, ci_dependency* dep)
|
|||
return out;
|
||||
}
|
||||
#ifdef Z3DEBUG
|
||||
bool grobner::test_find_b(const nex* ab, const nex_mul* b) {
|
||||
bool grobner_core::test_find_b(const nex* ab, const nex_mul* b) {
|
||||
nex_mul& ab_clone = m_nex_creator.clone(ab)->to_mul();
|
||||
nex_mul * a= divide_ignore_coeffs_perform(&ab_clone, b);
|
||||
ab_clone.coeff() = rational(1);
|
||||
nex_mul * a= divide_ignore_coeffs_perform(&ab_clone, *b);
|
||||
ab_clone.m_coeff = rational(1);
|
||||
SASSERT(b->coeff().is_one());
|
||||
nex * m = m_nex_creator.mk_mul(a, m_nex_creator.clone(b));
|
||||
m = m_nex_creator.simplify(m);
|
||||
return m_nex_creator.equal(m, &ab_clone);
|
||||
}
|
||||
|
||||
bool grobner::test_find_b_c(const nex* ab, const nex* ac, const nex_mul* b, const nex_mul* c) {
|
||||
bool grobner_core::test_find_b_c(const nex* ab, const nex* ac, const nex_mul* b, const nex_mul* c) {
|
||||
return test_find_b(ab, b) && test_find_b(ac, c);
|
||||
}
|
||||
|
||||
|
|
|
@ -22,7 +22,6 @@
|
|||
#include "math/lp/nla_common.h"
|
||||
#include "math/lp/nex.h"
|
||||
#include "math/lp/nex_creator.h"
|
||||
//#include "util/dependency.h"
|
||||
|
||||
namespace nla {
|
||||
class core;
|
||||
|
@ -37,11 +36,12 @@ struct grobner_stats {
|
|||
grobner_stats() { reset(); }
|
||||
};
|
||||
|
||||
class grobner : common {
|
||||
class grobner_core {
|
||||
public:
|
||||
class equation {
|
||||
unsigned m_bidx; //!< position at m_equations_to_delete
|
||||
nex * m_expr; // simplified expressionted monomials
|
||||
ci_dependency * m_dep; //!< justification for the equality
|
||||
common::ci_dependency * m_dep; //!< justification for the equality
|
||||
public:
|
||||
unsigned get_num_monomials() const {
|
||||
switch(m_expr->type()) {
|
||||
|
@ -67,18 +67,21 @@ class grobner : common {
|
|||
}
|
||||
nex* & expr() { return m_expr; }
|
||||
const nex* expr() const { return m_expr; }
|
||||
ci_dependency * dep() const { return m_dep; }
|
||||
ci_dependency *& dep() { return m_dep; }
|
||||
common::ci_dependency * dep() const { return m_dep; }
|
||||
common::ci_dependency *& dep() { return m_dep; }
|
||||
unsigned hash() const { return m_bidx; }
|
||||
friend class grobner;
|
||||
friend class grobner_core;
|
||||
};
|
||||
|
||||
private:
|
||||
typedef obj_hashtable<equation> equation_set;
|
||||
typedef ptr_vector<equation> equation_vector;
|
||||
|
||||
typedef std::function<void (lp::explanation const& e, std::ostream& out)> print_expl_t;
|
||||
// fields
|
||||
nex_creator& m_nex_creator;
|
||||
reslimit& m_limit;
|
||||
print_expl_t m_print_explanation;
|
||||
equation_vector m_equations_to_delete;
|
||||
lp::int_set m_rows;
|
||||
grobner_stats m_stats;
|
||||
equation_set m_to_superpose;
|
||||
equation_set m_to_simplify;
|
||||
|
@ -86,34 +89,46 @@ class grobner : common {
|
|||
ptr_vector<nex> m_allocated;
|
||||
lp::int_set m_tmp_var_set;
|
||||
region m_alloc;
|
||||
ci_value_manager m_val_manager;
|
||||
mutable ci_dependency_manager m_dep_manager;
|
||||
common::ci_value_manager m_val_manager;
|
||||
mutable common::ci_dependency_manager m_dep_manager;
|
||||
nex_lt m_lt;
|
||||
bool m_changed_leading_term;
|
||||
unsigned m_reported;
|
||||
bool m_look_for_fixed_vars_in_rows;
|
||||
equation_set m_all_eqs;
|
||||
unsigned m_grobner_eqs_threshold;
|
||||
public:
|
||||
grobner(core *, intervals *);
|
||||
void grobner_lemmas();
|
||||
~grobner();
|
||||
private:
|
||||
void find_nl_cluster();
|
||||
void prepare_rows_and_active_vars();
|
||||
void add_var_and_its_factors_to_q_and_collect_new_rows(lpvar j, std::queue<lpvar>& q);
|
||||
void init();
|
||||
void compute_basis();
|
||||
void compute_basis_init();
|
||||
grobner_core(nex_creator& nc, reslimit& lim, unsigned eqs_threshold) :
|
||||
m_nex_creator(nc),
|
||||
m_limit(lim),
|
||||
m_nl_gb_exhausted(false),
|
||||
m_dep_manager(m_val_manager, m_alloc),
|
||||
m_changed_leading_term(false),
|
||||
m_grobner_eqs_threshold(eqs_threshold)
|
||||
{}
|
||||
|
||||
~grobner_core();
|
||||
void reset();
|
||||
bool compute_basis_loop();
|
||||
void assert_eq_0(nex*, common::ci_dependency * dep);
|
||||
equation_set const& equations();
|
||||
common::ci_dependency_manager& dep() const { return m_dep_manager; }
|
||||
|
||||
void display_equations(std::ostream& out, equation_set const& v, char const* header) const;
|
||||
std::ostream& display_equation(std::ostream& out, const equation& eq) const;
|
||||
std::ostream& display(std::ostream& out) const;
|
||||
|
||||
void operator=(print_expl_t& pe) { m_print_explanation = pe; }
|
||||
|
||||
private:
|
||||
bool compute_basis_step();
|
||||
bool simplify_source_target(equation * source, equation * target);
|
||||
equation* simplify_using_to_superpose(equation*);
|
||||
void simplify_using_to_superpose(equation &);
|
||||
bool simplify_target_monomials(equation * source, equation * target);
|
||||
void process_simplified_target(equation* target, ptr_buffer<equation>& to_remove);
|
||||
bool simplify_to_superpose_with_eq(equation*);
|
||||
void simplify_m_to_simplify(equation*);
|
||||
equation* pick_next();
|
||||
void set_gb_exhausted();
|
||||
bool canceled() const;
|
||||
bool canceled();
|
||||
void superpose(equation * eq1, equation * eq2);
|
||||
void superpose(equation * eq);
|
||||
bool find_b_c(const nex *ab, const nex* ac, nex_mul*& b, nex_mul*& c);
|
||||
|
@ -122,42 +137,29 @@ private:
|
|||
bool is_simpler(equation * eq1, equation * eq2);
|
||||
void del_equations(unsigned old_size);
|
||||
void del_equation(equation * eq);
|
||||
void display_equations(std::ostream & out, equation_set const & v, char const * header) const;
|
||||
std::ostream& display_equation(std::ostream & out, const equation & eq) const;
|
||||
|
||||
void display_matrix(std::ostream & out) const;
|
||||
std::ostream& display(std::ostream & out) const;
|
||||
bool internalize_gb_eq(equation*);
|
||||
void add_row(unsigned);
|
||||
void assert_eq_0(nex*, ci_dependency * dep);
|
||||
void init_equation(equation* eq, nex*, ci_dependency* d);
|
||||
void init_equation(equation* eq, nex*, common::ci_dependency* d);
|
||||
|
||||
std::ostream& display_dependency(std::ostream& out, ci_dependency*) const;
|
||||
std::ostream& display_dependency(std::ostream& out, common::ci_dependency*) const;
|
||||
void insert_to_simplify(equation *eq) {
|
||||
TRACE("nla_grobner", display_equation(tout, *eq););
|
||||
TRACE("grobner", display_equation(tout, *eq););
|
||||
m_to_simplify.insert(eq);
|
||||
}
|
||||
void insert_to_superpose(equation *eq) {
|
||||
SASSERT(m_nex_creator.is_simplified(*eq->expr()));
|
||||
TRACE("nla_grobner", display_equation(tout, *eq););
|
||||
TRACE("grobner", display_equation(tout, *eq););
|
||||
m_to_superpose.insert(eq);
|
||||
}
|
||||
void simplify_equations_in_m_to_simplify();
|
||||
const nex * get_highest_monomial(const nex * e) const;
|
||||
ci_dependency* dep_from_vector(svector<lp::constraint_index> & fixed_vars_constraints);
|
||||
bool simplify_target_monomials_sum(equation *, equation *, nex_sum*, const nex*);
|
||||
unsigned find_divisible(nex_sum*, const nex*) const;
|
||||
void simplify_target_monomials_sum_j(equation *, equation *, nex_sum*, const nex*, unsigned, bool);
|
||||
bool divide_ignore_coeffs_check_only(nex* , const nex*) const;
|
||||
bool divide_ignore_coeffs_check_only_nex_mul(nex_mul* , const nex*) const;
|
||||
nex_mul * divide_ignore_coeffs_perform(nex* , const nex*);
|
||||
nex_mul * divide_ignore_coeffs_perform_nex_mul(nex_mul* , const nex*);
|
||||
bool simplify_target_monomials_sum(equation *, equation *, nex_sum*, const nex&);
|
||||
unsigned find_divisible(nex_sum const&, const nex&) const;
|
||||
void simplify_target_monomials_sum_j(equation *, equation *, nex_sum*, const nex&, unsigned, bool);
|
||||
bool divide_ignore_coeffs_check_only(nex const* , const nex&) const;
|
||||
bool divide_ignore_coeffs_check_only_nex_mul(nex_mul const&, nex const&) const;
|
||||
nex_mul * divide_ignore_coeffs_perform(nex* , const nex&);
|
||||
nex_mul * divide_ignore_coeffs_perform_nex_mul(nex_mul const& , const nex&);
|
||||
nex * expr_superpose(nex* e1, nex* e2, const nex* ab, const nex* ac, nex_mul* b, nex_mul* c);
|
||||
void add_mul_skip_first(nex_sum* r, const rational& beta, nex *e, nex_mul* c);
|
||||
bool done() const;
|
||||
void check_eq(equation*);
|
||||
void register_report();
|
||||
std::unordered_set<lpvar> get_vars_of_expr_with_opening_terms(const nex *e );
|
||||
void add_mul_skip_first(nex_creator::sum_factory& sf, const rational& beta, nex *e, nex_mul* c);
|
||||
bool done();
|
||||
unsigned num_of_equations() const { return m_to_simplify.size() + m_to_superpose.size(); }
|
||||
std::ostream& print_stats(std::ostream&) const;
|
||||
void update_stats_max_degree_and_size(const equation*);
|
||||
|
@ -165,5 +167,30 @@ private:
|
|||
bool test_find_b_c(const nex* ab, const nex* ac, const nex_mul* b, const nex_mul* c);
|
||||
bool test_find_b(const nex* ab, const nex_mul* b);
|
||||
#endif
|
||||
};
|
||||
|
||||
class grobner : common {
|
||||
grobner_core m_gc;
|
||||
unsigned m_reported;
|
||||
lp::int_set m_rows;
|
||||
bool m_look_for_fixed_vars_in_rows;
|
||||
public:
|
||||
grobner(core *, intervals *);
|
||||
void grobner_lemmas();
|
||||
~grobner() {}
|
||||
private:
|
||||
void find_nl_cluster();
|
||||
void prepare_rows_and_active_vars();
|
||||
void add_var_and_its_factors_to_q_and_collect_new_rows(lpvar j, svector<lpvar>& q);
|
||||
void init();
|
||||
void compute_basis();
|
||||
void compute_basis_init();
|
||||
std::unordered_set<lpvar> grobner::get_vars_of_expr_with_opening_terms(const nex* e);
|
||||
void display_matrix(std::ostream & out) const;
|
||||
std::ostream& display(std::ostream& out) const { return m_gc.display(out); }
|
||||
void add_row(unsigned);
|
||||
void check_eq(grobner_core::equation*);
|
||||
void register_report();
|
||||
|
||||
}; // end of grobner
|
||||
}
|
||||
|
|
|
@ -129,7 +129,7 @@ intervals::interv intervals::interval_of_expr(const nex* e, unsigned power) {
|
|||
}
|
||||
|
||||
const nex* intervals::get_inf_interval_child(const nex_sum* e) const {
|
||||
for (auto * c : e->children()) {
|
||||
for (auto * c : *e) {
|
||||
if (has_inf_interval(c))
|
||||
return c;
|
||||
}
|
||||
|
@ -138,7 +138,7 @@ const nex* intervals::get_inf_interval_child(const nex_sum* e) const {
|
|||
|
||||
bool intervals::mul_has_inf_interval(const nex_mul* e) const {
|
||||
bool has_inf = false;
|
||||
for (const auto & p : e->children()) {
|
||||
for (const auto & p : *e) {
|
||||
const nex *c = p.e();
|
||||
if (!c->is_elementary())
|
||||
return false;
|
||||
|
@ -157,7 +157,7 @@ bool intervals::has_inf_interval(const nex* e) const {
|
|||
}
|
||||
if (e->is_scalar())
|
||||
return false;
|
||||
for (auto * c : to_sum(e)->children()) {
|
||||
for (auto * c : e->to_sum()) {
|
||||
if (has_inf_interval(c))
|
||||
return true;
|
||||
}
|
||||
|
@ -166,13 +166,11 @@ bool intervals::has_inf_interval(const nex* e) const {
|
|||
|
||||
bool intervals::has_zero_interval(const nex* e) const {
|
||||
SASSERT(!e->is_scalar() || !to_scalar(e)->value().is_zero());
|
||||
if (! e->is_var())
|
||||
return false;
|
||||
return m_core->var_is_fixed_to_zero(to_var(e)->var());
|
||||
return e->is_var() && m_core->var_is_fixed_to_zero(e->to_var().var());
|
||||
}
|
||||
|
||||
const nex* intervals::get_zero_interval_child(const nex_mul* e) const {
|
||||
for (const auto & p : e->children()) {
|
||||
for (const auto & p : *e) {
|
||||
const nex * c = p.e();
|
||||
if (has_zero_interval(c))
|
||||
return c;
|
||||
|
@ -279,7 +277,7 @@ intervals::interv intervals::interval_of_sum_no_term_with_deps(const nex_sum* e)
|
|||
if (inf_e) {
|
||||
return interv();
|
||||
}
|
||||
auto & es = e->children();
|
||||
auto & es = *e;
|
||||
interv a = interval_of_expr_with_deps(es[0], 1);
|
||||
for (unsigned k = 1; k < es.size(); k++) {
|
||||
TRACE("nla_intervals_details_sum", tout << "es[" << k << "]= " << *es[k] << "\n";);
|
||||
|
@ -303,7 +301,7 @@ intervals::interv intervals::interval_of_sum_no_term(const nex_sum* e) {
|
|||
if (inf_e) {
|
||||
return interv();
|
||||
}
|
||||
auto & es = e->children();
|
||||
auto & es = *e;
|
||||
interv a = interval_of_expr(es[0], 1);
|
||||
for (unsigned k = 1; k < es.size(); k++) {
|
||||
TRACE("nla_intervals_details_sum", tout << "es[" << k << "]= " << *es[k] << "\n";);
|
||||
|
@ -351,7 +349,7 @@ lp::lar_term intervals::expression_to_normalized_term(const nex_sum* e, rational
|
|||
vector<std::pair<rational, lpvar>> v;
|
||||
b = rational(0);
|
||||
unsigned a_index;
|
||||
for (const nex* c : e->children()) {
|
||||
for (const nex* c : *e) {
|
||||
if (c->is_scalar()) {
|
||||
b += to_scalar(c)->value();
|
||||
} else {
|
||||
|
|
Loading…
Reference in a new issue