mirror of
https://github.com/Z3Prover/z3
synced 2025-04-29 11:55:51 +00:00
173 lines
5.7 KiB
C++
173 lines
5.7 KiB
C++
/*++
|
|
Copyright (c) 2021 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
Polysat core saturation
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2021-03-19
|
|
Jakob Rath 2021-04-6
|
|
|
|
--*/
|
|
#pragma once
|
|
|
|
#include "sat/smt/polysat/constraints.h"
|
|
|
|
namespace polysat {
|
|
|
|
/// Normalized inequality:
|
|
/// lhs <= rhs, if !is_strict
|
|
/// lhs < rhs, otherwise
|
|
class inequality {
|
|
core& c;
|
|
constraint_id m_id;
|
|
pdd m_lhs;
|
|
pdd m_rhs;
|
|
signed_constraint m_src;
|
|
|
|
inequality(core& c, constraint_id id, pdd lhs, pdd rhs, signed_constraint src) :
|
|
c(c), m_id(id), m_lhs(std::move(lhs)), m_rhs(std::move(rhs)), m_src(std::move(src)) {}
|
|
|
|
void set(pdd& dst, pdd const& src) const {
|
|
dst.reset(src.manager());
|
|
dst = src;
|
|
}
|
|
|
|
// p := coeff*x*y where coeff_x = coeff*x, x a variable
|
|
bool is_coeffxY(pdd const& x, pdd const& p, pdd& y) const {
|
|
pdd xy = x.manager().zero();
|
|
return x.is_unary() && p.try_div(x.hi().val(), xy) && xy.factor(x.var(), 1, y);
|
|
}
|
|
|
|
public:
|
|
static inequality from_ule(core& c, constraint_id id);
|
|
pdd const& lhs() const { return m_lhs; }
|
|
pdd const& rhs() const { return m_rhs; }
|
|
bool is_strict() const { return m_src.is_negative(); }
|
|
constraint_id id() const { return m_id; }
|
|
dependency dep() const;
|
|
signed_constraint as_signed_constraint() const { return m_src; }
|
|
operator signed_constraint() const { return m_src; }
|
|
|
|
// c := lhs ~ v
|
|
// where ~ is < or <=
|
|
bool is_l_v(pvar v) const { return rhs() == c.var(v); }
|
|
static bool is_l_v(pdd const& v, signed_constraint const& sc);
|
|
|
|
// c := v ~ rhs
|
|
bool is_g_v(pvar v) const { return lhs() == c.var(v); }
|
|
static bool is_g_v(pdd const& v, signed_constraint const& sc);
|
|
|
|
// c := x ~ Y
|
|
bool is_x_l_Y(pvar x, pdd& y) const { return is_g_v(x) && (set(y, rhs()), true); }
|
|
|
|
// c := Y ~ x
|
|
bool is_Y_l_x(pvar x, pdd& y) const { return is_l_v(x) && (set(y, lhs()), true); }
|
|
|
|
// c := Y ~ Ax
|
|
bool is_Y_l_Ax(pvar x, pdd& a, pdd& y) const { return is_xY(x, rhs(), a) && (set(y, lhs()), true); }
|
|
bool verify_Y_l_Ax(pvar x, pdd const& a, pdd const& y) const { return lhs() == y && rhs() == a * c.var(x); }
|
|
|
|
// c := X*y ~ X*Z
|
|
bool is_Xy_l_XZ(pvar y, pdd& x, pdd& z) const { return is_xY(y, lhs(), x) && (false); }
|
|
bool verify_Xy_l_XZ(pvar y, pdd const& x, pdd const& z) const { return lhs() == c.var(y) * x && rhs() == z * x; }
|
|
|
|
// c := Ax ~ Y
|
|
bool is_Ax_l_Y(pvar x, pdd& a, pdd& y) const;
|
|
bool verify_Ax_l_Y(pvar x, pdd const& a, pdd const& y) const;
|
|
|
|
// c := Ax + B ~ Y
|
|
bool is_AxB_l_Y(pvar x, pdd& a, pdd& b, pdd& y) const {
|
|
return lhs().degree(x) == 1 && (set(y, rhs()), lhs().factor(x, 1, a, b), true);
|
|
}
|
|
bool verify_AxB_l_Y(pvar x, pdd const& a, pdd const& b, pdd const& y) const { return rhs() == y && lhs() == a * c.var(x) + b; }
|
|
|
|
// c := Y ~ Ax + B
|
|
bool is_Y_l_AxB(pvar x, pdd& y, pdd& a, pdd& b) const { return rhs().degree(x) == 1 && (set(y, lhs()), rhs().factor(x, 1, a, b), true); }
|
|
bool verify_Y_l_AxB(pvar x, pdd const& y, pdd const& a, pdd& b) const;
|
|
|
|
// c := Ax + B ~ Y, val(Y) = 0
|
|
bool is_AxB_eq_0(pvar x, pdd& a, pdd& b, pdd& y) const;
|
|
bool verify_AxB_eq_0(pvar x, pdd const& a, pdd const& b, pdd const& y) const;
|
|
|
|
// c := Ax + B != Y, val(Y) = 0
|
|
bool is_AxB_diseq_0(pvar x, pdd& a, pdd& b, pdd& y) const;
|
|
|
|
// c := Y*X ~ z*X
|
|
bool is_YX_l_zX(pvar z, pdd& x, pdd& y) const { return is_xY(z, rhs(), x) && is_coeffxY(x, lhs(), y); }
|
|
bool verify_YX_l_zX(pvar z, pdd const& x, pdd const& y) const;
|
|
|
|
// c := xY <= xZ
|
|
bool is_xY_l_xZ(pvar x, pdd& y, pdd& z) const { return is_xY(x, lhs(), y) && is_xY(x, rhs(), z); }
|
|
|
|
/**
|
|
* Match xy = x * Y
|
|
*/
|
|
static bool is_xY(pvar x, pdd const& xy, pdd& y) { return xy.degree(x) == 1 && xy.factor(x, 1, y); }
|
|
|
|
/**
|
|
* Rewrite to one of six equivalent forms:
|
|
*
|
|
* i=0 p <= q (unchanged)
|
|
* i=1 p <= p - q - 1
|
|
* i=2 q - p <= q
|
|
* i=3 q - p <= -p - 1
|
|
* i=4 -q - 1 <= -p - 1
|
|
* i=5 -q - 1 <= p - q - 1
|
|
*/
|
|
//inequality rewrite_equiv(int i) const;
|
|
|
|
//std::ostream& display(std::ostream& out) const;
|
|
};
|
|
|
|
|
|
struct bilinear {
|
|
rational a, b, c, d;
|
|
|
|
rational eval(rational const& x, rational const& y) const {
|
|
return a*x*y + b*x + c*y + d;
|
|
}
|
|
|
|
bilinear operator-() const {
|
|
bilinear r(*this);
|
|
r.a = -r.a;
|
|
r.b = -r.b;
|
|
r.c = -r.c;
|
|
r.d = -r.d;
|
|
return r;
|
|
}
|
|
|
|
bilinear operator-(bilinear const& other) const {
|
|
bilinear r(*this);
|
|
r.a -= other.a;
|
|
r.b -= other.b;
|
|
r.c -= other.c;
|
|
r.d -= other.d;
|
|
return r;
|
|
}
|
|
|
|
bilinear operator+(rational const& d) const {
|
|
bilinear r(*this);
|
|
r.d += d;
|
|
return r;
|
|
}
|
|
|
|
bilinear operator-(rational const& d) const {
|
|
bilinear r(*this);
|
|
r.d -= d;
|
|
return r;
|
|
}
|
|
|
|
bilinear operator-(int d) const {
|
|
bilinear r(*this);
|
|
r.d -= d;
|
|
return r;
|
|
}
|
|
};
|
|
|
|
inline std::ostream& operator<<(std::ostream& out, bilinear const& b) {
|
|
return out << b.a << "*x*y + " << b.b << "*x + " << b.c << "*y + " << b.d;
|
|
}
|
|
}
|