3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-29 11:55:51 +00:00
z3/src/sat/smt/polysat/inequality.h
Nikolaj Bjorner ac8efad7e1 bugfixes
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2023-12-27 16:06:27 -08:00

173 lines
5.7 KiB
C++

/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
Polysat core saturation
Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-6
--*/
#pragma once
#include "sat/smt/polysat/constraints.h"
namespace polysat {
/// Normalized inequality:
/// lhs <= rhs, if !is_strict
/// lhs < rhs, otherwise
class inequality {
core& c;
constraint_id m_id;
pdd m_lhs;
pdd m_rhs;
signed_constraint m_src;
inequality(core& c, constraint_id id, pdd lhs, pdd rhs, signed_constraint src) :
c(c), m_id(id), m_lhs(std::move(lhs)), m_rhs(std::move(rhs)), m_src(std::move(src)) {}
void set(pdd& dst, pdd const& src) const {
dst.reset(src.manager());
dst = src;
}
// p := coeff*x*y where coeff_x = coeff*x, x a variable
bool is_coeffxY(pdd const& x, pdd const& p, pdd& y) const {
pdd xy = x.manager().zero();
return x.is_unary() && p.try_div(x.hi().val(), xy) && xy.factor(x.var(), 1, y);
}
public:
static inequality from_ule(core& c, constraint_id id);
pdd const& lhs() const { return m_lhs; }
pdd const& rhs() const { return m_rhs; }
bool is_strict() const { return m_src.is_negative(); }
constraint_id id() const { return m_id; }
dependency dep() const;
signed_constraint as_signed_constraint() const { return m_src; }
operator signed_constraint() const { return m_src; }
// c := lhs ~ v
// where ~ is < or <=
bool is_l_v(pvar v) const { return rhs() == c.var(v); }
static bool is_l_v(pdd const& v, signed_constraint const& sc);
// c := v ~ rhs
bool is_g_v(pvar v) const { return lhs() == c.var(v); }
static bool is_g_v(pdd const& v, signed_constraint const& sc);
// c := x ~ Y
bool is_x_l_Y(pvar x, pdd& y) const { return is_g_v(x) && (set(y, rhs()), true); }
// c := Y ~ x
bool is_Y_l_x(pvar x, pdd& y) const { return is_l_v(x) && (set(y, lhs()), true); }
// c := Y ~ Ax
bool is_Y_l_Ax(pvar x, pdd& a, pdd& y) const { return is_xY(x, rhs(), a) && (set(y, lhs()), true); }
bool verify_Y_l_Ax(pvar x, pdd const& a, pdd const& y) const { return lhs() == y && rhs() == a * c.var(x); }
// c := X*y ~ X*Z
bool is_Xy_l_XZ(pvar y, pdd& x, pdd& z) const { return is_xY(y, lhs(), x) && (false); }
bool verify_Xy_l_XZ(pvar y, pdd const& x, pdd const& z) const { return lhs() == c.var(y) * x && rhs() == z * x; }
// c := Ax ~ Y
bool is_Ax_l_Y(pvar x, pdd& a, pdd& y) const;
bool verify_Ax_l_Y(pvar x, pdd const& a, pdd const& y) const;
// c := Ax + B ~ Y
bool is_AxB_l_Y(pvar x, pdd& a, pdd& b, pdd& y) const {
return lhs().degree(x) == 1 && (set(y, rhs()), lhs().factor(x, 1, a, b), true);
}
bool verify_AxB_l_Y(pvar x, pdd const& a, pdd const& b, pdd const& y) const { return rhs() == y && lhs() == a * c.var(x) + b; }
// c := Y ~ Ax + B
bool is_Y_l_AxB(pvar x, pdd& y, pdd& a, pdd& b) const { return rhs().degree(x) == 1 && (set(y, lhs()), rhs().factor(x, 1, a, b), true); }
bool verify_Y_l_AxB(pvar x, pdd const& y, pdd const& a, pdd& b) const;
// c := Ax + B ~ Y, val(Y) = 0
bool is_AxB_eq_0(pvar x, pdd& a, pdd& b, pdd& y) const;
bool verify_AxB_eq_0(pvar x, pdd const& a, pdd const& b, pdd const& y) const;
// c := Ax + B != Y, val(Y) = 0
bool is_AxB_diseq_0(pvar x, pdd& a, pdd& b, pdd& y) const;
// c := Y*X ~ z*X
bool is_YX_l_zX(pvar z, pdd& x, pdd& y) const { return is_xY(z, rhs(), x) && is_coeffxY(x, lhs(), y); }
bool verify_YX_l_zX(pvar z, pdd const& x, pdd const& y) const;
// c := xY <= xZ
bool is_xY_l_xZ(pvar x, pdd& y, pdd& z) const { return is_xY(x, lhs(), y) && is_xY(x, rhs(), z); }
/**
* Match xy = x * Y
*/
static bool is_xY(pvar x, pdd const& xy, pdd& y) { return xy.degree(x) == 1 && xy.factor(x, 1, y); }
/**
* Rewrite to one of six equivalent forms:
*
* i=0 p <= q (unchanged)
* i=1 p <= p - q - 1
* i=2 q - p <= q
* i=3 q - p <= -p - 1
* i=4 -q - 1 <= -p - 1
* i=5 -q - 1 <= p - q - 1
*/
//inequality rewrite_equiv(int i) const;
//std::ostream& display(std::ostream& out) const;
};
struct bilinear {
rational a, b, c, d;
rational eval(rational const& x, rational const& y) const {
return a*x*y + b*x + c*y + d;
}
bilinear operator-() const {
bilinear r(*this);
r.a = -r.a;
r.b = -r.b;
r.c = -r.c;
r.d = -r.d;
return r;
}
bilinear operator-(bilinear const& other) const {
bilinear r(*this);
r.a -= other.a;
r.b -= other.b;
r.c -= other.c;
r.d -= other.d;
return r;
}
bilinear operator+(rational const& d) const {
bilinear r(*this);
r.d += d;
return r;
}
bilinear operator-(rational const& d) const {
bilinear r(*this);
r.d -= d;
return r;
}
bilinear operator-(int d) const {
bilinear r(*this);
r.d -= d;
return r;
}
};
inline std::ostream& operator<<(std::ostream& out, bilinear const& b) {
return out << b.a << "*x*y + " << b.b << "*x + " << b.c << "*y + " << b.d;
}
}