/*++ Copyright (c) 2021 Microsoft Corporation Module Name: Polysat core saturation Author: Nikolaj Bjorner (nbjorner) 2021-03-19 Jakob Rath 2021-04-6 --*/ #pragma once #include "sat/smt/polysat/constraints.h" namespace polysat { /// Normalized inequality: /// lhs <= rhs, if !is_strict /// lhs < rhs, otherwise class inequality { core& c; constraint_id m_id; pdd m_lhs; pdd m_rhs; signed_constraint m_src; inequality(core& c, constraint_id id, pdd lhs, pdd rhs, signed_constraint src) : c(c), m_id(id), m_lhs(std::move(lhs)), m_rhs(std::move(rhs)), m_src(std::move(src)) {} void set(pdd& dst, pdd const& src) const { dst.reset(src.manager()); dst = src; } // p := coeff*x*y where coeff_x = coeff*x, x a variable bool is_coeffxY(pdd const& x, pdd const& p, pdd& y) const { pdd xy = x.manager().zero(); return x.is_unary() && p.try_div(x.hi().val(), xy) && xy.factor(x.var(), 1, y); } public: static inequality from_ule(core& c, constraint_id id); pdd const& lhs() const { return m_lhs; } pdd const& rhs() const { return m_rhs; } bool is_strict() const { return m_src.is_negative(); } constraint_id id() const { return m_id; } dependency dep() const; signed_constraint as_signed_constraint() const { return m_src; } operator signed_constraint() const { return m_src; } // c := lhs ~ v // where ~ is < or <= bool is_l_v(pvar v) const { return rhs() == c.var(v); } static bool is_l_v(pdd const& v, signed_constraint const& sc); // c := v ~ rhs bool is_g_v(pvar v) const { return lhs() == c.var(v); } static bool is_g_v(pdd const& v, signed_constraint const& sc); // c := x ~ Y bool is_x_l_Y(pvar x, pdd& y) const { return is_g_v(x) && (set(y, rhs()), true); } // c := Y ~ x bool is_Y_l_x(pvar x, pdd& y) const { return is_l_v(x) && (set(y, lhs()), true); } // c := Y ~ Ax bool is_Y_l_Ax(pvar x, pdd& a, pdd& y) const { return is_xY(x, rhs(), a) && (set(y, lhs()), true); } bool verify_Y_l_Ax(pvar x, pdd const& a, pdd const& y) const { return lhs() == y && rhs() == a * c.var(x); } // c := X*y ~ X*Z bool is_Xy_l_XZ(pvar y, pdd& x, pdd& z) const { return is_xY(y, lhs(), x) && (false); } bool verify_Xy_l_XZ(pvar y, pdd const& x, pdd const& z) const { return lhs() == c.var(y) * x && rhs() == z * x; } // c := Ax ~ Y bool is_Ax_l_Y(pvar x, pdd& a, pdd& y) const; bool verify_Ax_l_Y(pvar x, pdd const& a, pdd const& y) const; // c := Ax + B ~ Y bool is_AxB_l_Y(pvar x, pdd& a, pdd& b, pdd& y) const { return lhs().degree(x) == 1 && (set(y, rhs()), lhs().factor(x, 1, a, b), true); } bool verify_AxB_l_Y(pvar x, pdd const& a, pdd const& b, pdd const& y) const { return rhs() == y && lhs() == a * c.var(x) + b; } // c := Y ~ Ax + B bool is_Y_l_AxB(pvar x, pdd& y, pdd& a, pdd& b) const { return rhs().degree(x) == 1 && (set(y, lhs()), rhs().factor(x, 1, a, b), true); } bool verify_Y_l_AxB(pvar x, pdd const& y, pdd const& a, pdd& b) const; // c := Ax + B ~ Y, val(Y) = 0 bool is_AxB_eq_0(pvar x, pdd& a, pdd& b, pdd& y) const; bool verify_AxB_eq_0(pvar x, pdd const& a, pdd const& b, pdd const& y) const; // c := Ax + B != Y, val(Y) = 0 bool is_AxB_diseq_0(pvar x, pdd& a, pdd& b, pdd& y) const; // c := Y*X ~ z*X bool is_YX_l_zX(pvar z, pdd& x, pdd& y) const { return is_xY(z, rhs(), x) && is_coeffxY(x, lhs(), y); } bool verify_YX_l_zX(pvar z, pdd const& x, pdd const& y) const; // c := xY <= xZ bool is_xY_l_xZ(pvar x, pdd& y, pdd& z) const { return is_xY(x, lhs(), y) && is_xY(x, rhs(), z); } /** * Match xy = x * Y */ static bool is_xY(pvar x, pdd const& xy, pdd& y) { return xy.degree(x) == 1 && xy.factor(x, 1, y); } /** * Rewrite to one of six equivalent forms: * * i=0 p <= q (unchanged) * i=1 p <= p - q - 1 * i=2 q - p <= q * i=3 q - p <= -p - 1 * i=4 -q - 1 <= -p - 1 * i=5 -q - 1 <= p - q - 1 */ //inequality rewrite_equiv(int i) const; //std::ostream& display(std::ostream& out) const; }; struct bilinear { rational a, b, c, d; rational eval(rational const& x, rational const& y) const { return a*x*y + b*x + c*y + d; } bilinear operator-() const { bilinear r(*this); r.a = -r.a; r.b = -r.b; r.c = -r.c; r.d = -r.d; return r; } bilinear operator-(bilinear const& other) const { bilinear r(*this); r.a -= other.a; r.b -= other.b; r.c -= other.c; r.d -= other.d; return r; } bilinear operator+(rational const& d) const { bilinear r(*this); r.d += d; return r; } bilinear operator-(rational const& d) const { bilinear r(*this); r.d -= d; return r; } bilinear operator-(int d) const { bilinear r(*this); r.d -= d; return r; } }; inline std::ostream& operator<<(std::ostream& out, bilinear const& b) { return out << b.a << "*x*y + " << b.b << "*x + " << b.c << "*y + " << b.d; } }