This commit overhauls the proof format (in development) for the new core.
NOTE: this functionality is work in progress with a long way to go.
It is shielded by the sat.euf option, which is off by default and in pre-release state.
It is too early to fuzz or use it. It is pushed into master to shed light on road-map for certifying inferences of sat.euf.
It retires the ad-hoc extension of DRUP used by the SAT solver.
Instead it relies on SMT with ad-hoc extensions for proof terms.
It adds the following commands (consumed by proof_cmds.cpp):
- assume - for input clauses
- learn - when a clause is learned (or redundant clause is added)
- del - when a clause is deleted.
The commands take a list of expressions of type Bool and the
last argument can optionally be of type Proof.
When the last argument is of type Proof it is provided as a hint
to justify the learned clause.
Proof hints can be checked using a self-contained proof
checker. The sat/smt/euf_proof_checker.h class provides
a plugin dispatcher for checkers.
It is instantiated with a checker for arithmetic lemmas,
so far for Farkas proofs.
Use example:
```
(set-option :sat.euf true)
(set-option :tactic.default_tactic smt)
(set-option :sat.smt.proof f.proof)
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(declare-const u Int)
(assert (< x y))
(assert (< y z))
(assert (< z x))
(check-sat)
```
Run z3 on a file with above content.
Then run z3 on f.proof
```
(verified-smt)
(verified-smt)
(verified-smt)
(verified-farkas)
(verified-smt)
```
Adding new API object to maintain state between calls to parser.
The state is incremental: all declarations of sorts and functions are valid in the next parse. The parser produces an ast-vector of assertions that are parsed in the current calls.
The following is a unit test:
```
from z3 import *
pc = ParserContext()
A = DeclareSort('A')
pc.add_sort(A)
print(pc.from_string("(declare-const x A) (declare-const y A) (assert (= x y))"))
print(pc.from_string("(declare-const z A) (assert (= x z))"))
print(parse_smt2_string("(declare-const x Int) (declare-const y Int) (assert (= x y))"))
s = Solver()
s.from_string("(declare-sort A)")
s.from_string("(declare-const x A)")
s.from_string("(declare-const y A)")
s.from_string("(assert (= x y))")
print(s.assertions())
s.from_string("(declare-const z A)")
print(s.assertions())
s.from_string("(assert (= x z))")
print(s.assertions())
```
It produces results of the form
```
[x == y]
[x == z]
[x == y]
[x == y]
[x == y]
[x == y, x == z]
```
Thus, the set of assertions returned by a parse call is just the set of assertions added.
The solver maintains state between parser calls so that declarations made in a previous call are still available when declaring the constant 'z'.
The same holds for the parser_context_from_string function: function and sort declarations either added externally or declared using SMTLIB2 command line format as strings are valid for later calls.
add API to define forward reference to recursively defined datatype.
The forward reference should be used only when passed to constructor declarations that are used in a datatype definition (Z3_mk_datatypes). The call to Z3_mk_datatypes ensures that the forward reference can be resolved with respect to constructors.