This commit overhauls the proof format (in development) for the new core.
NOTE: this functionality is work in progress with a long way to go.
It is shielded by the sat.euf option, which is off by default and in pre-release state.
It is too early to fuzz or use it. It is pushed into master to shed light on road-map for certifying inferences of sat.euf.
It retires the ad-hoc extension of DRUP used by the SAT solver.
Instead it relies on SMT with ad-hoc extensions for proof terms.
It adds the following commands (consumed by proof_cmds.cpp):
- assume - for input clauses
- learn - when a clause is learned (or redundant clause is added)
- del - when a clause is deleted.
The commands take a list of expressions of type Bool and the
last argument can optionally be of type Proof.
When the last argument is of type Proof it is provided as a hint
to justify the learned clause.
Proof hints can be checked using a self-contained proof
checker. The sat/smt/euf_proof_checker.h class provides
a plugin dispatcher for checkers.
It is instantiated with a checker for arithmetic lemmas,
so far for Farkas proofs.
Use example:
```
(set-option :sat.euf true)
(set-option :tactic.default_tactic smt)
(set-option :sat.smt.proof f.proof)
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(declare-const u Int)
(assert (< x y))
(assert (< y z))
(assert (< z x))
(check-sat)
```
Run z3 on a file with above content.
Then run z3 on f.proof
```
(verified-smt)
(verified-smt)
(verified-smt)
(verified-farkas)
(verified-smt)
```
this update addresses some perf regressions introduced when handling axioms for bv2int and a memory smash regression when decoupling bv-ackerman from in-processing. It adds a filter based on bv_eq_axioms for disabling ackerman reductions on disequalities.
previous scheme has Ackmerman module instrument main solver to backjump and simplify when reaching a threshold.
This destroys overall performance: simplification does many more things than invoking Ackerman axioms.
Having a dependency between simplification (in-processing) and depleting a priority queue of auxiliary axioms therefore hurts overall performance. It has to be decoupled. The current approach is now to empty the axiom queue on occasion.
It is still not ideal - it should be coupled with the search level - axioms don't survive higher levels where redundant clauses get garbage collected as they don't have a chance of being used.
This update allows the python bindings for user-propagator to handle functions that are declared to be registered with the user propagator plugin. It fixes a bug in UserPropagateBase.add to allow registering terms dynamically during search.
It also fixes a bug in theory_user_propagate as scopes were not fully pushed when the solver gets the callbacks for new equalities and new disequalities.
It also adds equality and disequality interfaces to the sat/smt solver version (which isn't being exercised in earnest yet)
this update integrates inferences to smt.arith.solver=6 related to grobner basis computation and handling of div/mod axioms to reconcile performance with smt.arith.solver=2.
The default of smt.arth.nl.grobner_subs_fixed is changed to 1 to make comparison with solver=2 more direct.
The selection of cluster equalities for solver=6 was reconciled with how it is done for solver=2.
An argument to a recursive function would escape the scope of the function application when the recursive function definitions are unfolded. Therefore, such argument occurrences need not be considered for extensional equality / equality sharing.
This filter is mostly relevant for recursive functions that take a lambda expression as argument. Lambda expressions / arrays that occur in shared occurrences are checked for extensionality.
By not deleting justifications in base level unit literals it is possible for drup-trim to inspect the trail for dependencies - which clauses were used to derive a literal.
add API to define forward reference to recursively defined datatype.
The forward reference should be used only when passed to constructor declarations that are used in a datatype definition (Z3_mk_datatypes). The call to Z3_mk_datatypes ensures that the forward reference can be resolved with respect to constructors.