When the inputs are already the same sort, we can skip most of the
coercion logic and just return.
Currently, `_coerce_exprs` is by far the most expensive part of
building up many common Z3 ASTs, so this fast-path is a substantial
speedup for many use-cases.
* Initial plan
* Update Z3_mk_datatype_sort API to accept array of parameters
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
* Update language bindings for parametric datatype sort API
- Python: Updated DatatypeSort() to accept optional params list
- OCaml: Added mk_sort_ref_p/mk_sort_ref_ps for parametric datatypes
- .NET: Added MkDatatypeSortRef() methods with optional params
- Java: Added mkDatatypeSortRef() methods with optional params
- All changes maintain backward compatibility
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
* Fix .NET build error - rename params to parameters
The 'params' keyword is reserved in C#, causing compilation errors.
Renamed parameter from 'params' to 'parameters' in MkDatatypeSortRef methods.
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
* Add unit test for parametric datatypes
Added test_parametric_datatype.cpp to demonstrate polymorphic datatypes.
The test creates two concrete instantiations of a generic pair concept:
- pair_int_real with fields (first:Int, second:Real)
- pair_real_int with fields (first:Real, second:Int)
Then verifies that accessors work correctly and type checking is enforced.
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
* Implement polymorphic type variables support for parametric datatypes
- Modified datatype_decl_plugin to allow type variables as parameters
- Updated mk_datatype_decl to extract type variables from field sorts
- Type variables are collected in order of first appearance
- Revised unit test to use Z3_mk_type_variable for polymorphic datatypes
- Test creates pair datatype with type variables alpha and beta
- Successfully instantiates with concrete types (pair Int Real) and (pair Real Int)
- Verifies accessor types match and equality terms are well-typed
- All tests pass
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
* Add Z3_mk_polymorphic_datatype API and refactor datatype creation
- Added new API Z3_mk_polymorphic_datatype to z3_api.h
- Renamed static mk_datatype_decl to api_datatype_decl in api_datatype.cpp
- Modified api_datatype_decl to accept explicit type parameters
- Updated all callers to use renamed function
- Added test_polymorphic_datatype_api demonstrating new API usage
- Both tests pass successfully
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
* Remove type variable collection logic from constructors
Removed the logic for collecting type variables from field sorts based on constructors.
* Update comments on parameter handling in api_datatype.cpp
Clarify usage of parameters in API documentation.
* Fix OCaml build error - use list instead of array for mk_datatype_sort
Changed mk_sort_ref to pass empty list [] instead of empty array [||].
Changed mk_sort_ref_p to pass params list directly instead of converting to array.
Z3native.mk_datatype_sort expects a list, not an array.
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
* Add polymorphic datatype example to C++ examples
Added polymorphic_datatype_example() demonstrating:
- Creating type variables alpha and beta with Z3_mk_type_variable
- Defining parametric Pair datatype with fields of type alpha and beta
- Instantiating with concrete types (Pair Int Real) and (Pair Real Int)
- Getting constructors and accessors from instantiated datatypes
- Creating constants and expressions using the polymorphic types
- Verifying type correctness with equality (= (first p1) (second p2))
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
---------
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
Co-authored-by: Nikolaj Bjorner <nbjorner@microsoft.com>
Suppose a user propagator encodes axioms using quantifiers and uses E-matching for instantiation. If it wants to implement a custom priority scheme or drop some instances based on internal checks it can register a callback with quantifier instantiation
* Initial plan
* Add proper pyproject.toml metadata for dist-info creation
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
* Clean up setup.py and add comprehensive test for dist-info fix
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
* Fix build errors in setup.py and pyproject.toml
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
* Fix ModuleNotFoundError by removing dynamic version loading from pyproject.toml
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
* Remove hardcoded version from pyproject.toml, use dynamic version from setup.py
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
---------
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
Update setup.py so that we copy LICENSE.TXT to src/api/python before
creating the sdist. Any wheels built from this sdist will now
contain the LICENSE.txt file.
Fixes#7604
Rather than pulling `cmake` from PyPI unconditionally, add it to build
dependencies only if the system `cmake` executable cannot be found.
This eliminates an unnecessary dependency on systems featuring CMake,
and ensures that whenever possible, a downstream patched CMake version
is used that is more compatible with the system in question.
Add API solve_for(vars).
It takes a list of variables and returns a triangular solved form for the variables.
Currently for arithmetic. The solved form is a list with elements of the form (var, term, guard).
Variables solved in the tail of the list do not occur before in the list.
For example it can return a solution [(x, z, True), (y, x + z, True)] because first x was solved to be z,
then y was solved to be x + z which is the same as 2z.
Add congruent_explain that retuns an explanation for congruent terms.
Terms congruent in the final state after calling SimpleSolver().check() can be queried for
an explanation, i.e., a list of literals that collectively entail the equality under congruence closure.
The literals are asserted in the final state of search.
Adjust smt_context cancellation for the smt.qi.max_instantiations parameter.
It gets checked when qi-queue elements are consumed.
Prior it was checked on insertion time, which didn't allow for processing as many
instantations as there were in the queue. Moreover, it would not cancel the solver.
So it would keep adding instantations to the queue when it was full / depleted the
configuration limit.