3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-15 07:15:26 +00:00
Commit graph

7 commits

Author SHA1 Message Date
Nikolaj Bjorner
35b1d09425 working on ho-matcher 2025-07-08 04:50:43 +02:00
Nikolaj Bjorner
0c5b0c3724 turn on ho-matcher for completion 2025-07-07 14:08:51 +02:00
Nikolaj Bjorner
e1661759db update version to 4.15.2 2025-06-10 15:55:54 -07:00
Nikolaj Bjorner
9d35a8c702 updates to euf-completion to 2025-06-07 15:39:31 -07:00
Nikolaj Bjorner
2897661bb3 register completion with solver 2025-06-06 20:45:54 +02:00
Nikolaj Bjorner
7566f088f9 vtable
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2025-06-06 15:02:34 +02:00
Nikolaj Bjorner
564830ab31 enable conditional euf-completion with (optional) solver
This allows using z3 for limited E-saturation simplification.
The tactic rewrites all assertions using the E-graph induced by the equalities and instantiated equality axioms.
It does allow solving with conditionals, although this is a first inefficient cut.

The following is a sample use case that rewrites to false.
```
(declare-fun prime () Int)
(declare-fun add (Int Int) Int)
(declare-fun mul (Int Int) Int)
(declare-fun ^ (Int Int) Int)
(declare-fun sub (Int Int) Int)
(declare-fun i () Int)
(declare-fun j () Int)
(declare-fun base () Int)
(declare-fun S () (Seq Int))
(declare-fun hash ((Seq Int) Int Int Int Int) Int)
(assert (let ((a!1 (mul (seq.nth S i) (^ base (sub (sub j i) 1)))))
(let ((a!2 (mod (add (hash S base prime (add i 1) j) a!1) prime)))
  (not (= (hash S base prime i j) a!2)))))
(assert (forall ((x Int))
  (! (= (mod (mod x prime) prime) (mod x prime))
     :pattern ((mod (mod x prime) prime)))))
(assert (forall ((x Int) (y Int))
  (! (= (mod (mul x y) prime) (mod (mul (mod x prime) y) prime))
     :pattern ((mod (mul x y) prime))
     :pattern ((mod (mul (mod x prime) y) prime)))))
(assert (forall ((x Int) (y Int))
  (! (= (mod (mul x y) prime) (mod (mul x (mod y prime)) prime))
     :pattern ((mod (mul x y) prime))
     :pattern ((mod (mul x (mod y prime)) prime)))))
(assert (forall ((x Int) (y Int))
  (! (= (mod (add x y) prime) (mod (add x (mod y prime)) prime))
     :pattern ((mod (add x y) prime))
     :pattern ((mod (add x (mod y prime)) prime)))))
(assert (forall ((x Int) (y Int))
  (! (= (mod (add x y) prime) (mod (add (mod x prime) y) prime))
     :pattern ((mod (add x y) prime))
     :pattern ((mod (add (mod x prime) y) prime)))))
(assert (forall ((x Int) (y Int))
  (! (= (mul x (^ x y)) (^ x (add y 1))) :pattern ((mul x (^ x y))))))
(assert (forall ((x Int) (y Int)) (! (= (mul x y) (mul y x)) :pattern ((mul x y)))))
(assert (forall ((x Int) (y Int)) (! (= (add x y) (add y x)) :pattern ((add x y)))))
(assert (forall ((x Int) (y Int)) (! (= (mul x y) (mul y x)) :pattern ((mul x y)))))
(assert (forall ((x Int) (y Int) (z Int))
  (! (= (add x (add y z)) (add (add x y) z))
     :pattern ((add x (add y z)))
     :pattern ((add (add x y) z)))))
(assert (forall ((x Int) (y Int) (z Int))
  (! (= (mul x (mul y z)) (mul (mul x y) z))
     :pattern ((mul x (mul y z)))
     :pattern ((mul (mul x y) z)))))
(assert (forall ((x Int) (y Int) (z Int))
  (! (= (sub (sub x y) z) (sub (sub x z) y)) :pattern ((sub (sub x y) z)))))
(assert (forall ((x Int) (y Int) (z Int))
  (! (= (mul x (add y z)) (add (mul x y) (mul x z)))
     :pattern ((mul x (add y z))))))
(assert (forall ((x Int)) (! (= (sub (add x 1) 1) x) :pattern ((add x 1)))))
(assert (forall ((x Int)) (! (= (add (sub x 1) 1) x) :pattern ((sub x 1)))))
(assert (let ((a!1 (^ base (sub (sub (sub j 1) i) 1))))
(let ((a!2 (mod (add (hash S base prime (add i 1) (sub j 1))
                     (mul (seq.nth S i) a!1))
                prime)))
  (= (hash S base prime i (sub j 1)) a!2))))
(assert (let ((a!1 (add (seq.nth S (- j 1)) (mul base (hash S base prime i (sub j 1))))))
  (= (hash S base prime i j) (mod a!1 prime))))
(assert (let ((a!1 (add (seq.nth S (- j 1))
                (mul base (hash S base prime (add i 1) (sub j 1))))))
  (= (hash S base prime (add i 1) j) (mod a!1 prime))))
(apply euf-completion)
```

To use conditional rewriting you can
```
(assert (not (= 0 prime)))
```
and update axioms using modulus with prime to be of the form:
```
(=> (not (= 0 prime)) <original-body of quantifier>)
```
2025-06-06 11:42:31 +02:00