The existing comment describes macros as "formulas of the form
`(forall X (= (f X) T[X]))` ... where `T[X]` does not contain `X`". This is
incorrect; of course the macros' definitions are allowed to be in terms of
the macros' arguments. The comment should say "...does not contain `f`" because
macros can't be recursive.
This commit overhauls the proof format (in development) for the new core.
NOTE: this functionality is work in progress with a long way to go.
It is shielded by the sat.euf option, which is off by default and in pre-release state.
It is too early to fuzz or use it. It is pushed into master to shed light on road-map for certifying inferences of sat.euf.
It retires the ad-hoc extension of DRUP used by the SAT solver.
Instead it relies on SMT with ad-hoc extensions for proof terms.
It adds the following commands (consumed by proof_cmds.cpp):
- assume - for input clauses
- learn - when a clause is learned (or redundant clause is added)
- del - when a clause is deleted.
The commands take a list of expressions of type Bool and the
last argument can optionally be of type Proof.
When the last argument is of type Proof it is provided as a hint
to justify the learned clause.
Proof hints can be checked using a self-contained proof
checker. The sat/smt/euf_proof_checker.h class provides
a plugin dispatcher for checkers.
It is instantiated with a checker for arithmetic lemmas,
so far for Farkas proofs.
Use example:
```
(set-option :sat.euf true)
(set-option :tactic.default_tactic smt)
(set-option :sat.smt.proof f.proof)
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(declare-const u Int)
(assert (< x y))
(assert (< y z))
(assert (< z x))
(check-sat)
```
Run z3 on a file with above content.
Then run z3 on f.proof
```
(verified-smt)
(verified-smt)
(verified-smt)
(verified-farkas)
(verified-smt)
```
a recent opened and closed bug report was due to an error of taking bit-wise or between two bit-vectors of different size. The error message was not understood by the user. Adding a little extra generic information to see if it helps.
- add option smt.bv.reduce_size.
- it allows to apply incremental pre-processing of bit-vectors by identifying ranges that are known to be constant.
This rewrite is beneficial, for instance, when bit-vectors are constrained to have many high-level bits set to 0.
This update allows the python bindings for user-propagator to handle functions that are declared to be registered with the user propagator plugin. It fixes a bug in UserPropagateBase.add to allow registering terms dynamically during search.
It also fixes a bug in theory_user_propagate as scopes were not fully pushed when the solver gets the callbacks for new equalities and new disequalities.
It also adds equality and disequality interfaces to the sat/smt solver version (which isn't being exercised in earnest yet)
remove option for uzers (users who are in reality fuzzers) to toggle flat option. The legacy arithmetic solver bakes in assumptions about flat format so it isn't helpful to expose this to fuzzers, I mean uzers.
remaining perf bug is dealing with very large bit-widths. mod 2^n should be computed natively based on n instead of 2^n because we pre-populate an array with all values up to n. Suppose n is 10000, the array has size 10000.
tactic/lia2card shows a huge slowdown because the same replace function is called on thousands of assertions. Each time the cache gets reset with thousands of entries - they are all the same.
So don't reset the cache just because... Instead reset the cache if m_refs grows large.