The algorithms implemented in the engine are described in the following papers
Anvesh Komuravelli, Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan:
Compositional Verification of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD 2015: 89-96
Nikolaj Bjørner, Arie Gurfinkel:
Property Directed Polyhedral Abstraction. VMCAI 2015: 263-281
Anvesh Komuravelli, Arie Gurfinkel, Sagar Chaki:
SMT-Based Model Checking for Recursive Programs. CAV 2014: 17-34
Previously CMake was not aware of which headers files the generation
of `mem_initializer.cpp` depended on. Consequently this could result
in broken incremental builds if
* Existing headers that declare memory initializers/finalizers change.
* New headers are added that declare memory initializers/finalizer.
Now the `z3_add_component()` CMake function has been modifed so that
it now takes an optional `MEMORY_INIT_FINALIZER_HEADERS` argument
which allows the headers that declare memory initializers/finalizers
to be explicitly listed.
With this information CMake will now regenerate `mem_initializer.cpp`
correctly.
This required the `mk_mem_initializer_cpp_internal()` function to be
changed to take a list of header files rather than a list of component
source directories. The two consumers (CMake and Python/Makefile build
systems) of this function have been modified to work with this change.
This partially fixes#1030.
Previously CMake was not aware of which headers files the generation
of `gparams_register_modules.cpp` depended on. Consequently this could result
in broken incremental builds if
* Existing headers that declared module description/parameters change.
* New headers are added that declare module description/parameters.
* `.pyg` files that generate header files that declare module
description/parameters change
Now the `z3_add_component()` CMake function has been modifed so that
* All header files that are generated from `.pyg` files are added as
dependencies and are scanned from module description/parameter
declarations. This implicit dependency of `gparams_register_modules.cpp`
depending on other generated header files seems unnecessary complex. We
should revisit this design decision once the Python/Makefile build
system is deprecated.
* The function now takes an optional `EXTRA_REGISTER_MODULE_HEADERS`
argument which allows the headers that declare module
description/paramters to be explicitly listed.
With this information CMake will now regenerate `gparams_register_modules.cpp`
correctly.
This required the `mk_gparams_register_modules_internal()` function to be
changed to take a list of header files rather than a list of component
source directories. The two consumers (CMake and Python/Makefile build
systems) of this function have been modified to work with this change.
This partially fixes#1030.
Previously CMake was not aware of which headers files the generation
of `install_tactic.cpp` depended on. Consequently this could result
in broken incremental builds if
* Existing headers that declared tactics/probes changed.
* New tactics/probes were added to new header files.
Now the `z3_add_component()` CMake function has been modifed to take an
optional `TACTIC_HEADERS` argument which allows the headers that declare
tactics/probes to be explicitly listed. The necessary component
declarations have been modified to declare their tactic/probe header
files.
With this information CMake will now regenerate `install_tactic.cpp`
correctly.
This required the `mk_install_tactic_cpp_internal()` function to be
changed to take a list of header files rather than a list of component
source directories. The two consumers (CMake and Python/Makefile build
systems) of this function have been modified to work with this change.
This partially fixes#1030.