mirror of
				https://github.com/Z3Prover/z3
				synced 2025-10-31 03:32:28 +00:00 
			
		
		
		
	add comments
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
		
							parent
							
								
									2bb22c6489
								
							
						
					
					
						commit
						d0a7b19806
					
				
					 1 changed files with 72 additions and 2 deletions
				
			
		|  | @ -25,6 +25,10 @@ Revision History: | |||
| 
 | ||||
| namespace smt { | ||||
| 
 | ||||
|     /**
 | ||||
|     Constructor. | ||||
|     Set up callback that adds axiom instantiations as clauses.  | ||||
|     **/ | ||||
|     theory_finite_set::theory_finite_set(context& ctx): | ||||
|         theory(ctx, ctx.get_manager().mk_family_id("finite_set")), | ||||
|         u(m), | ||||
|  | @ -38,6 +42,24 @@ namespace smt { | |||
|         m_axioms.set_add_clause(add_clause_fn); | ||||
|     } | ||||
| 
 | ||||
|     /**
 | ||||
|     * Boolean atomic formulas for finite sets are one of: | ||||
|     * (set.in x S) | ||||
|     * (set.subset S T) | ||||
|     * When an atomic formula is first created it is to be registered with the solver. | ||||
|     * The internalize_atom method takes care of this. | ||||
|     * Atomic formulas are special cases of terms (of non-Boolean type) so the first  | ||||
|     * effect is to register the atom as a term. | ||||
|     * The second effect is to set up tracking and assert axioms. | ||||
|     * Tracking: | ||||
|     *    For every occurrence (set.in x_i S_i) we track x_i.  | ||||
|     * Axioms: | ||||
|     *    We can immediately assert some axioms because they are unit literals: | ||||
|     *    - (set.in x set.empty) is false | ||||
|     *    - (set.subset S T) <=> (= (set.union S T) T)  (or (= (set.intersect S T) S)) | ||||
|     *    Axioms can be deffered to when the atomic formulas become "relevant" for the theory solver. | ||||
|     *     | ||||
|     */ | ||||
|     bool theory_finite_set::internalize_atom(app * atom, bool gate_ctx) { | ||||
|         TRACE(finite_set, tout << "internalize_atom: " << mk_pp(atom, m) << "\n";); | ||||
| 
 | ||||
|  | @ -52,10 +74,22 @@ namespace smt { | |||
|                 ctx.push_trail(insert_obj_trail(m_elements, n)); | ||||
|             } | ||||
|         } | ||||
| 
 | ||||
|         // Assert immediate axioms
 | ||||
|         // add_immediate_axioms(atom);
 | ||||
|          | ||||
|         return true; | ||||
|     } | ||||
| 
 | ||||
|     /**
 | ||||
|      * When terms are registered with the solver , we need to ensure that: | ||||
|      * - All subterms have an associated E-node | ||||
|      * - Boolean terms are registered as boolean variables | ||||
|      *   Registering a Boolean variable ensures that the solver will be notified about its truth value. | ||||
|      * - Non-Boolean terms have an associated theory variable | ||||
|      *   Registering a theory variable ensures that the solver will be notified about equalities and disequalites. | ||||
|      *   The solver can use the theory variable to track auxiliary information about E-nodes.     | ||||
|     */ | ||||
|     bool theory_finite_set::internalize_term(app * term) { | ||||
|         TRACE(finite_set, tout << "internalize_term: " << mk_pp(term, m) << "\n";); | ||||
|          | ||||
|  | @ -95,6 +129,17 @@ namespace smt { | |||
|         // For now, we rely on the final_check to handle this
 | ||||
|     } | ||||
| 
 | ||||
|     /**
 | ||||
|     * Final check for the finite set theory. | ||||
|      * The Final Check method is called when the solver has assigned truth values to all Boolean variables. | ||||
|      * It is responsible for asserting any remaining axioms and checking for inconsistencies. | ||||
|      *  | ||||
|      * It ensures saturation with respect to the theory axioms: | ||||
|      * - Set membership is saturated with respect to set operations. | ||||
|      *    For every (set.in x S) where S is a union, assert (or propagate) (set.in x S1) or (set.in x S2) | ||||
|      * - It saturates with respect to extensionality: | ||||
|      *   Sets corresponding to shared variables having the same interpretation should also be congruent | ||||
|     */ | ||||
|     final_check_status theory_finite_set::final_check_eh() { | ||||
|         TRACE(finite_set, tout << "final_check_eh\n";); | ||||
| 
 | ||||
|  | @ -102,6 +147,7 @@ namespace smt { | |||
|         // if a parent is of the form elem' in S u T, or similar.
 | ||||
|         // create clauses for elem in S u T.
 | ||||
| 
 | ||||
|         // Saturate membership constraints
 | ||||
|         expr* elem1 = nullptr, *set1 = nullptr; | ||||
|         for (auto elem : m_elements) { | ||||
|             if (!ctx.is_relevant(elem)) | ||||
|  | @ -124,9 +170,13 @@ namespace smt { | |||
|         if (instantiate_free_lemma()) | ||||
|             return FC_CONTINUE; | ||||
|          | ||||
|         // TODO: Extensionality axioms for sets
 | ||||
|         return FC_DONE; | ||||
|     } | ||||
| 
 | ||||
|     /**
 | ||||
|     * Instantiate axioms for a given element in a set. | ||||
|     */ | ||||
|     void theory_finite_set::instantiate_axioms(expr* elem, expr* set) { | ||||
|         TRACE(finite_set, tout << "instantiate_axioms: " << mk_pp(elem, m) << " in " << mk_pp(set, m) << "\n";); | ||||
|          | ||||
|  | @ -206,6 +256,12 @@ namespace smt { | |||
|         return nullptr; | ||||
|     } | ||||
| 
 | ||||
|     /**
 | ||||
|     * Lemmas that are currently assinged to false are conflicts.  | ||||
|     * They should be asserted as soon as possible. | ||||
|     * Only the first conflict needs to be asserted. | ||||
|     *  | ||||
|     */ | ||||
|     bool theory_finite_set::instantiate_false_lemma() { | ||||
|         for (auto const& clause : m_lemmas) { | ||||
|             bool all_false = all_of(clause, [&](expr *e) { return ctx.find_assignment(e) == l_false; }); | ||||
|  | @ -217,7 +273,15 @@ namespace smt { | |||
|         return false; | ||||
|     } | ||||
| 
 | ||||
|     /**
 | ||||
|      * Lemmas that are unit propagating should be asserted as possible and can be asserted in a batch. | ||||
|      * It is possible to assert a unit propagating lemma as a clause. | ||||
|      * A more efficient approach is to add a Theory propagation with the solver. | ||||
|      * A theory propagation gets recorded on the assignment trail and the overhead of undoing it is baked in to backtracking. | ||||
|      * A theory axiom is also removed during backtracking. | ||||
|     */ | ||||
|     bool theory_finite_set::instantiate_unit_propagation() { | ||||
|         bool propagaed = false; | ||||
|         for (auto const &clause : m_lemmas) { | ||||
|             expr *undef = nullptr; | ||||
|             bool is_unit_propagating = true; | ||||
|  | @ -237,11 +301,17 @@ namespace smt { | |||
|             if (!is_unit_propagating || undef == nullptr) | ||||
|                 continue;       | ||||
|             assert_clause(clause); | ||||
|             return true; | ||||
|             propagated = true; | ||||
|         } | ||||
|         return false; | ||||
|         return propagated; | ||||
|     } | ||||
| 
 | ||||
|     /**
 | ||||
|      * We assume the lemmas in the queue are necessary for completeness. | ||||
|      * So they all have to be enforced through case analysis. | ||||
|      * Lemmas with more than one unassigned literal are asserted here. | ||||
|      * The solver will case split on the unassigned literals to satisfy the lemma. | ||||
|     */ | ||||
|     bool theory_finite_set::instantiate_free_lemma() { | ||||
|         for (auto const& clause : m_lemmas) { | ||||
|             if (any_of(clause, [&](expr *e) { return ctx.find_assignment(e) == l_true; })) | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue