3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-10-31 03:32:28 +00:00
z3/src/smt/theory_finite_set.cpp
Nikolaj Bjorner d0a7b19806 add comments
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2025-10-16 08:53:38 +02:00

332 lines
12 KiB
C++

/*++
Copyright (c) 2025 Microsoft Corporation
Module Name:
theory_finite_set.cpp
Abstract:
Theory solver for finite sets.
Implements axiom schemas for finite set operations.
Author:
GitHub Copilot Agent 2025
Revision History:
--*/
#include "smt/theory_finite_set.h"
#include "smt/smt_context.h"
#include "smt/smt_model_generator.h"
#include "ast/ast_pp.h"
namespace smt {
/**
Constructor.
Set up callback that adds axiom instantiations as clauses.
**/
theory_finite_set::theory_finite_set(context& ctx):
theory(ctx, ctx.get_manager().mk_family_id("finite_set")),
u(m),
m_axioms(m)
{
// Setup the add_clause callback for axioms
std::function<void(expr_ref_vector const &)> add_clause_fn =
[this](expr_ref_vector const& clause) {
this->add_clause(clause);
};
m_axioms.set_add_clause(add_clause_fn);
}
/**
* Boolean atomic formulas for finite sets are one of:
* (set.in x S)
* (set.subset S T)
* When an atomic formula is first created it is to be registered with the solver.
* The internalize_atom method takes care of this.
* Atomic formulas are special cases of terms (of non-Boolean type) so the first
* effect is to register the atom as a term.
* The second effect is to set up tracking and assert axioms.
* Tracking:
* For every occurrence (set.in x_i S_i) we track x_i.
* Axioms:
* We can immediately assert some axioms because they are unit literals:
* - (set.in x set.empty) is false
* - (set.subset S T) <=> (= (set.union S T) T) (or (= (set.intersect S T) S))
* Axioms can be deffered to when the atomic formulas become "relevant" for the theory solver.
*
*/
bool theory_finite_set::internalize_atom(app * atom, bool gate_ctx) {
TRACE(finite_set, tout << "internalize_atom: " << mk_pp(atom, m) << "\n";);
internalize_term(atom);
// Track membership elements (set.in)
expr* elem = nullptr, *set = nullptr;
if (u.is_in(atom, elem, set)) {
auto n = ctx.get_enode(elem);
if (!m_elements.contains(n)) {
m_elements.insert(n);
ctx.push_trail(insert_obj_trail(m_elements, n));
}
}
// Assert immediate axioms
// add_immediate_axioms(atom);
return true;
}
/**
* When terms are registered with the solver , we need to ensure that:
* - All subterms have an associated E-node
* - Boolean terms are registered as boolean variables
* Registering a Boolean variable ensures that the solver will be notified about its truth value.
* - Non-Boolean terms have an associated theory variable
* Registering a theory variable ensures that the solver will be notified about equalities and disequalites.
* The solver can use the theory variable to track auxiliary information about E-nodes.
*/
bool theory_finite_set::internalize_term(app * term) {
TRACE(finite_set, tout << "internalize_term: " << mk_pp(term, m) << "\n";);
// Internalize all arguments first
for (expr* arg : *term)
ctx.internalize(arg, false);
// Create boolean variable for Boolean terms
if (m.is_bool(term) && !ctx.b_internalized(term)) {
bool_var bv = ctx.mk_bool_var(term);
ctx.set_var_theory(bv, get_id());
}
// Create enode for the term if needed
enode* e = nullptr;
if (ctx.e_internalized(term))
e = ctx.get_enode(term);
else
e = ctx.mk_enode(term, false, m.is_bool(term), true);
// Attach theory variable if this is a set
if (!is_attached_to_var(e))
ctx.attach_th_var(e, this, mk_var(e));
return true;
}
void theory_finite_set::new_eq_eh(theory_var v1, theory_var v2) {
TRACE(finite_set, tout << "new_eq_eh: v" << v1 << " = v" << v2 << "\n";);
// When two sets are equal, propagate membership constraints
// This is handled by congruence closure, so no additional work needed here
}
void theory_finite_set::new_diseq_eh(theory_var v1, theory_var v2) {
TRACE(finite_set, tout << "new_diseq_eh: v" << v1 << " != v" << v2 << "\n";);
// Disequalities could trigger extensionality axioms
// For now, we rely on the final_check to handle this
}
/**
* Final check for the finite set theory.
* The Final Check method is called when the solver has assigned truth values to all Boolean variables.
* It is responsible for asserting any remaining axioms and checking for inconsistencies.
*
* It ensures saturation with respect to the theory axioms:
* - Set membership is saturated with respect to set operations.
* For every (set.in x S) where S is a union, assert (or propagate) (set.in x S1) or (set.in x S2)
* - It saturates with respect to extensionality:
* Sets corresponding to shared variables having the same interpretation should also be congruent
*/
final_check_status theory_finite_set::final_check_eh() {
TRACE(finite_set, tout << "final_check_eh\n";);
// walk all parents of elem in congruence table.
// if a parent is of the form elem' in S u T, or similar.
// create clauses for elem in S u T.
// Saturate membership constraints
expr* elem1 = nullptr, *set1 = nullptr;
for (auto elem : m_elements) {
if (!ctx.is_relevant(elem))
continue;
for (auto p : enode::parents(elem)) {
if (!u.is_in(p->get_expr(), elem1, set1))
continue;
if (elem->get_root() != p->get_arg(0)->get_root())
continue; // elem is then equal to set1 but not elem1. This is a different case.
if (!ctx.is_relevant(p))
continue;
for (auto sib : *p->get_arg(1))
instantiate_axioms(elem->get_expr(), sib->get_expr());
}
}
if (instantiate_false_lemma())
return FC_CONTINUE;
if (instantiate_unit_propagation())
return FC_CONTINUE;
if (instantiate_free_lemma())
return FC_CONTINUE;
// TODO: Extensionality axioms for sets
return FC_DONE;
}
/**
* Instantiate axioms for a given element in a set.
*/
void theory_finite_set::instantiate_axioms(expr* elem, expr* set) {
TRACE(finite_set, tout << "instantiate_axioms: " << mk_pp(elem, m) << " in " << mk_pp(set, m) << "\n";);
struct insert_obj_pair_table : public trail {
obj_pair_hashtable<expr, expr> &table;
expr *a, *b;
insert_obj_pair_table(obj_pair_hashtable<expr, expr> &t, expr *a, expr *b) :
table(t), a(a), b(b) {}
void undo() override {
table.erase({a, b});
}
};
if (m_lemma_exprs.contains({elem, set}))
return;
m_lemma_exprs.insert({elem, set});
ctx.push_trail(insert_obj_pair_table(m_lemma_exprs, elem, set));
// Instantiate appropriate axiom based on set structure
if (u.is_empty(set)) {
m_axioms.in_empty_axiom(elem);
}
else if (u.is_singleton(set)) {
m_axioms.in_singleton_axiom(elem, set);
}
else if (u.is_union(set)) {
m_axioms.in_union_axiom(elem, set);
}
else if (u.is_intersect(set)) {
m_axioms.in_intersect_axiom(elem, set);
}
else if (u.is_difference(set)) {
m_axioms.in_difference_axiom(elem, set);
}
else if (u.is_range(set)) {
m_axioms.in_range_axiom(elem, set);
}
else if (u.is_map(set)) {
m_axioms.in_map_axiom(elem, set);
m_axioms.in_map_image_axiom(elem, set);
}
else if (u.is_select(set)) {
m_axioms.in_select_axiom(elem, set);
}
// Instantiate size axioms for singleton sets
// TODO, such axioms don't belong here
if (u.is_singleton(set)) {
m_axioms.size_singleton_axiom(set);
}
}
void theory_finite_set::add_clause(expr_ref_vector const& clause) {
TRACE(finite_set, tout << "add_clause: " << clause << "\n");
ctx.push_trail(push_back_vector(m_lemmas));
m_lemmas.push_back(clause);
}
theory * theory_finite_set::mk_fresh(context * new_ctx) {
return alloc(theory_finite_set, *new_ctx);
}
void theory_finite_set::display(std::ostream & out) const {
out << "theory_finite_set:\n";
}
void theory_finite_set::init_model(model_generator & mg) {
TRACE(finite_set, tout << "init_model\n";);
// Model generation will use default interpretation for sets
// The model will be constructed based on the membership literals that are true
}
model_value_proc * theory_finite_set::mk_value(enode * n, model_generator & mg) {
TRACE(finite_set, tout << "mk_value: " << mk_pp(n->get_expr(), m) << "\n";);
// For now, return nullptr to use default model construction
// A complete implementation would construct explicit set values
// based on true membership literals
return nullptr;
}
/**
* Lemmas that are currently assinged to false are conflicts.
* They should be asserted as soon as possible.
* Only the first conflict needs to be asserted.
*
*/
bool theory_finite_set::instantiate_false_lemma() {
for (auto const& clause : m_lemmas) {
bool all_false = all_of(clause, [&](expr *e) { return ctx.find_assignment(e) == l_false; });
if (!all_false)
continue;
assert_clause(clause);
return true;
}
return false;
}
/**
* Lemmas that are unit propagating should be asserted as possible and can be asserted in a batch.
* It is possible to assert a unit propagating lemma as a clause.
* A more efficient approach is to add a Theory propagation with the solver.
* A theory propagation gets recorded on the assignment trail and the overhead of undoing it is baked in to backtracking.
* A theory axiom is also removed during backtracking.
*/
bool theory_finite_set::instantiate_unit_propagation() {
bool propagaed = false;
for (auto const &clause : m_lemmas) {
expr *undef = nullptr;
bool is_unit_propagating = true;
for (auto e : clause) {
switch (ctx.find_assignment(e)) {
case l_false: continue;
case l_true: is_unit_propagating = false; break;
case l_undef:
if (undef != nullptr)
is_unit_propagating = false;
undef = e;
break;
}
if (!is_unit_propagating)
break;
}
if (!is_unit_propagating || undef == nullptr)
continue;
assert_clause(clause);
propagated = true;
}
return propagated;
}
/**
* We assume the lemmas in the queue are necessary for completeness.
* So they all have to be enforced through case analysis.
* Lemmas with more than one unassigned literal are asserted here.
* The solver will case split on the unassigned literals to satisfy the lemma.
*/
bool theory_finite_set::instantiate_free_lemma() {
for (auto const& clause : m_lemmas) {
if (any_of(clause, [&](expr *e) { return ctx.find_assignment(e) == l_true; }))
continue;
assert_clause(clause);
return true;
}
return false;
}
void theory_finite_set::assert_clause(expr_ref_vector const &clause) {
literal_vector lclause;
for (auto e : clause)
lclause.push_back(mk_literal(e));
ctx.mk_th_axiom(get_id(), lclause);
}
} // namespace smt