mirror of
https://github.com/Z3Prover/z3
synced 2025-04-16 13:58:45 +00:00
cleanup nla_solver
Signed-off-by: Lev <levnach@hotmail.com>
This commit is contained in:
parent
8d02c1ee5d
commit
ccd978e43b
40
src/util/lp/factorization.h
Normal file
40
src/util/lp/factorization.h
Normal file
|
@ -0,0 +1,40 @@
|
|||
|
||||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
Nikolaj Bjorner (nbjorner)
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
namespace nla {
|
||||
|
||||
class factorization {
|
||||
svector<lpvar> m_vars;
|
||||
rational m_sign;
|
||||
std::function<void (expl_set&)> m_explain;
|
||||
public:
|
||||
void explain(expl_set& s) const { m_explain(s); }
|
||||
bool is_empty() const { return m_vars.empty(); }
|
||||
svector<lpvar> & vars() { return m_vars; }
|
||||
const svector<lpvar> & vars() const { return m_vars; }
|
||||
rational const& sign() const { return m_sign; }
|
||||
rational& sign() { return m_sign; } // the setter
|
||||
unsigned operator[](unsigned k) const { return m_vars[k]; }
|
||||
size_t size() const { return m_vars.size(); }
|
||||
const lpvar* begin() const { return m_vars.begin(); }
|
||||
const lpvar* end() const { return m_vars.end(); }
|
||||
factorization(std::function<void (expl_set&)> explain) : m_explain(explain) {}
|
||||
};
|
||||
}
|
|
@ -22,6 +22,8 @@
|
|||
#include "util/lp/monomial.h"
|
||||
#include "util/lp/lp_utils.h"
|
||||
#include "util/lp/vars_equivalence.h"
|
||||
#include "util/lp/factorization.h"
|
||||
|
||||
namespace nla {
|
||||
|
||||
struct solver::imp {
|
||||
|
@ -837,24 +839,6 @@ struct solver::imp {
|
|||
basic_lemma_for_mon_proportionality_from_product_to_factors(i_mon);
|
||||
}
|
||||
|
||||
class factorization {
|
||||
svector<lpvar> m_vars;
|
||||
rational m_sign;
|
||||
std::function<void (expl_set&)> m_explain;
|
||||
public:
|
||||
void explain(expl_set& s) const { m_explain(s); }
|
||||
bool is_empty() const { return m_vars.empty(); }
|
||||
svector<lpvar> & vars() { return m_vars; }
|
||||
const svector<lpvar> & vars() const { return m_vars; }
|
||||
rational const& sign() const { return m_sign; }
|
||||
rational& sign() { return m_sign; } // the setter
|
||||
unsigned operator[](unsigned k) const { return m_vars[k]; }
|
||||
size_t size() const { return m_vars.size(); }
|
||||
const lpvar* begin() const { return m_vars.begin(); }
|
||||
const lpvar* end() const { return m_vars.end(); }
|
||||
factorization(std::function<void (expl_set&)> explain) : m_explain(explain) {}
|
||||
};
|
||||
|
||||
std::ostream & print_factorization(const factorization& f, std::ostream& out) const {
|
||||
for (unsigned k = 0; k < f.size(); k++ ) {
|
||||
print_var(f[k], out);
|
||||
|
@ -865,8 +849,8 @@ struct solver::imp {
|
|||
}
|
||||
|
||||
struct factorization_factory {
|
||||
unsigned m_i_mon;
|
||||
const imp& m_impf;
|
||||
unsigned m_i_mon;
|
||||
const imp& m_impf;
|
||||
const monomial& m_mon;
|
||||
monomial_coeff m_cmon;
|
||||
|
||||
|
@ -879,9 +863,9 @@ struct solver::imp {
|
|||
|
||||
struct const_iterator {
|
||||
// fields
|
||||
svector<bool> m_mask;
|
||||
const factorization_factory& m_factorization;
|
||||
bool m_full_factorization_returned;
|
||||
svector<bool> m_mask;
|
||||
const factorization_factory& m_ff;
|
||||
bool m_full_factorization_returned;
|
||||
|
||||
//typedefs
|
||||
typedef const_iterator self_type;
|
||||
|
@ -892,13 +876,13 @@ struct solver::imp {
|
|||
|
||||
void init_vars_by_the_mask(unsigned_vector & k_vars, unsigned_vector & j_vars) const {
|
||||
// the last element for m_factorization.m_rooted_vars goes to k_vars
|
||||
SASSERT(m_mask.size() + 1 == m_factorization.m_cmon.vars().size());
|
||||
k_vars.push_back(m_factorization.m_cmon.vars().back());
|
||||
SASSERT(m_mask.size() + 1 == m_ff.m_cmon.vars().size());
|
||||
k_vars.push_back(m_ff.m_cmon.vars().back());
|
||||
for (unsigned j = 0; j < m_mask.size(); j++) {
|
||||
if (m_mask[j]) {
|
||||
k_vars.push_back(m_factorization.m_cmon[j]);
|
||||
k_vars.push_back(m_ff.m_cmon[j]);
|
||||
} else {
|
||||
j_vars.push_back(m_factorization.m_cmon[j]);
|
||||
j_vars.push_back(m_ff.m_cmon[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -917,7 +901,7 @@ struct solver::imp {
|
|||
k = k_vars[0];
|
||||
k_sign = 1;
|
||||
} else {
|
||||
if (!m_factorization.m_impf.find_monomial_of_vars(k_vars, m, k_sign)) {
|
||||
if (!m_ff.m_impf.find_monomial_of_vars(k_vars, m, k_sign)) {
|
||||
return false;
|
||||
}
|
||||
k = m.var();
|
||||
|
@ -926,7 +910,7 @@ struct solver::imp {
|
|||
j = j_vars[0];
|
||||
j_sign = 1;
|
||||
} else {
|
||||
if (!m_factorization.m_impf.find_monomial_of_vars(j_vars, m, j_sign)) {
|
||||
if (!m_ff.m_impf.find_monomial_of_vars(j_vars, m, j_sign)) {
|
||||
return false;
|
||||
}
|
||||
j = m.var();
|
||||
|
@ -942,7 +926,7 @@ struct solver::imp {
|
|||
unsigned j, k; rational sign;
|
||||
if (!get_factors(j, k, sign))
|
||||
return factorization([](expl_set&){});
|
||||
return create_binary_factorization(j, k, m_factorization.m_cmon.coeff() * sign);
|
||||
return create_binary_factorization(j, k, m_ff.m_cmon.coeff() * sign);
|
||||
}
|
||||
|
||||
void advance_mask() {
|
||||
|
@ -967,7 +951,7 @@ struct solver::imp {
|
|||
|
||||
const_iterator(const svector<bool>& mask, const factorization_factory & f) :
|
||||
m_mask(mask),
|
||||
m_factorization(f) ,
|
||||
m_ff(f) ,
|
||||
m_full_factorization_returned(false)
|
||||
{}
|
||||
|
||||
|
@ -979,8 +963,9 @@ struct solver::imp {
|
|||
bool operator!=(const self_type &other) const { return !(*this == other); }
|
||||
|
||||
factorization create_binary_factorization(lpvar j, lpvar k, rational const& sign) const {
|
||||
// todo : the current explanation is an overkill
|
||||
std::function<void (expl_set&)> explain = [&](expl_set& exp){
|
||||
const imp & impl = m_factorization.m_impf;
|
||||
const imp & impl = m_ff.m_impf;
|
||||
unsigned mon_index = 0;
|
||||
if (impl.m_var_to_its_monomial.find(k, mon_index)) {
|
||||
impl.add_explanation_of_reducing_to_rooted_monomial(impl.m_monomials[mon_index], exp);
|
||||
|
@ -988,9 +973,8 @@ struct solver::imp {
|
|||
if (impl.m_var_to_its_monomial.find(j, mon_index)) {
|
||||
impl.add_explanation_of_reducing_to_rooted_monomial(impl.m_monomials[mon_index], exp);
|
||||
}
|
||||
if (m_full_factorization_returned) {
|
||||
impl.add_explanation_of_reducing_to_rooted_monomial(m_factorization.m_mon, exp);
|
||||
}
|
||||
|
||||
impl.add_explanation_of_reducing_to_rooted_monomial(m_ff.m_mon, exp);
|
||||
};
|
||||
factorization f(explain);
|
||||
f.vars().push_back(j);
|
||||
|
@ -1001,8 +985,8 @@ struct solver::imp {
|
|||
|
||||
factorization create_full_factorization() const {
|
||||
factorization f([](expl_set&){});
|
||||
f.vars() = m_factorization.m_cmon.vars();
|
||||
f.sign() = m_factorization.m_cmon.coeff();
|
||||
f.vars() = m_ff.m_mon.vars();
|
||||
f.sign() = rational(1);
|
||||
return f;
|
||||
}
|
||||
};
|
||||
|
|
Loading…
Reference in a new issue