3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-16 13:58:45 +00:00

cleanup nla_solver

Signed-off-by: Lev <levnach@hotmail.com>
This commit is contained in:
Lev 2018-10-08 13:09:38 -07:00 committed by Lev Nachmanson
parent 8d02c1ee5d
commit ccd978e43b
2 changed files with 61 additions and 37 deletions

View file

@ -0,0 +1,40 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Nikolaj Bjorner (nbjorner)
Lev Nachmanson (levnach)
Revision History:
--*/
namespace nla {
class factorization {
svector<lpvar> m_vars;
rational m_sign;
std::function<void (expl_set&)> m_explain;
public:
void explain(expl_set& s) const { m_explain(s); }
bool is_empty() const { return m_vars.empty(); }
svector<lpvar> & vars() { return m_vars; }
const svector<lpvar> & vars() const { return m_vars; }
rational const& sign() const { return m_sign; }
rational& sign() { return m_sign; } // the setter
unsigned operator[](unsigned k) const { return m_vars[k]; }
size_t size() const { return m_vars.size(); }
const lpvar* begin() const { return m_vars.begin(); }
const lpvar* end() const { return m_vars.end(); }
factorization(std::function<void (expl_set&)> explain) : m_explain(explain) {}
};
}

View file

@ -22,6 +22,8 @@
#include "util/lp/monomial.h"
#include "util/lp/lp_utils.h"
#include "util/lp/vars_equivalence.h"
#include "util/lp/factorization.h"
namespace nla {
struct solver::imp {
@ -837,24 +839,6 @@ struct solver::imp {
basic_lemma_for_mon_proportionality_from_product_to_factors(i_mon);
}
class factorization {
svector<lpvar> m_vars;
rational m_sign;
std::function<void (expl_set&)> m_explain;
public:
void explain(expl_set& s) const { m_explain(s); }
bool is_empty() const { return m_vars.empty(); }
svector<lpvar> & vars() { return m_vars; }
const svector<lpvar> & vars() const { return m_vars; }
rational const& sign() const { return m_sign; }
rational& sign() { return m_sign; } // the setter
unsigned operator[](unsigned k) const { return m_vars[k]; }
size_t size() const { return m_vars.size(); }
const lpvar* begin() const { return m_vars.begin(); }
const lpvar* end() const { return m_vars.end(); }
factorization(std::function<void (expl_set&)> explain) : m_explain(explain) {}
};
std::ostream & print_factorization(const factorization& f, std::ostream& out) const {
for (unsigned k = 0; k < f.size(); k++ ) {
print_var(f[k], out);
@ -865,8 +849,8 @@ struct solver::imp {
}
struct factorization_factory {
unsigned m_i_mon;
const imp& m_impf;
unsigned m_i_mon;
const imp& m_impf;
const monomial& m_mon;
monomial_coeff m_cmon;
@ -879,9 +863,9 @@ struct solver::imp {
struct const_iterator {
// fields
svector<bool> m_mask;
const factorization_factory& m_factorization;
bool m_full_factorization_returned;
svector<bool> m_mask;
const factorization_factory& m_ff;
bool m_full_factorization_returned;
//typedefs
typedef const_iterator self_type;
@ -892,13 +876,13 @@ struct solver::imp {
void init_vars_by_the_mask(unsigned_vector & k_vars, unsigned_vector & j_vars) const {
// the last element for m_factorization.m_rooted_vars goes to k_vars
SASSERT(m_mask.size() + 1 == m_factorization.m_cmon.vars().size());
k_vars.push_back(m_factorization.m_cmon.vars().back());
SASSERT(m_mask.size() + 1 == m_ff.m_cmon.vars().size());
k_vars.push_back(m_ff.m_cmon.vars().back());
for (unsigned j = 0; j < m_mask.size(); j++) {
if (m_mask[j]) {
k_vars.push_back(m_factorization.m_cmon[j]);
k_vars.push_back(m_ff.m_cmon[j]);
} else {
j_vars.push_back(m_factorization.m_cmon[j]);
j_vars.push_back(m_ff.m_cmon[j]);
}
}
}
@ -917,7 +901,7 @@ struct solver::imp {
k = k_vars[0];
k_sign = 1;
} else {
if (!m_factorization.m_impf.find_monomial_of_vars(k_vars, m, k_sign)) {
if (!m_ff.m_impf.find_monomial_of_vars(k_vars, m, k_sign)) {
return false;
}
k = m.var();
@ -926,7 +910,7 @@ struct solver::imp {
j = j_vars[0];
j_sign = 1;
} else {
if (!m_factorization.m_impf.find_monomial_of_vars(j_vars, m, j_sign)) {
if (!m_ff.m_impf.find_monomial_of_vars(j_vars, m, j_sign)) {
return false;
}
j = m.var();
@ -942,7 +926,7 @@ struct solver::imp {
unsigned j, k; rational sign;
if (!get_factors(j, k, sign))
return factorization([](expl_set&){});
return create_binary_factorization(j, k, m_factorization.m_cmon.coeff() * sign);
return create_binary_factorization(j, k, m_ff.m_cmon.coeff() * sign);
}
void advance_mask() {
@ -967,7 +951,7 @@ struct solver::imp {
const_iterator(const svector<bool>& mask, const factorization_factory & f) :
m_mask(mask),
m_factorization(f) ,
m_ff(f) ,
m_full_factorization_returned(false)
{}
@ -979,8 +963,9 @@ struct solver::imp {
bool operator!=(const self_type &other) const { return !(*this == other); }
factorization create_binary_factorization(lpvar j, lpvar k, rational const& sign) const {
// todo : the current explanation is an overkill
std::function<void (expl_set&)> explain = [&](expl_set& exp){
const imp & impl = m_factorization.m_impf;
const imp & impl = m_ff.m_impf;
unsigned mon_index = 0;
if (impl.m_var_to_its_monomial.find(k, mon_index)) {
impl.add_explanation_of_reducing_to_rooted_monomial(impl.m_monomials[mon_index], exp);
@ -988,9 +973,8 @@ struct solver::imp {
if (impl.m_var_to_its_monomial.find(j, mon_index)) {
impl.add_explanation_of_reducing_to_rooted_monomial(impl.m_monomials[mon_index], exp);
}
if (m_full_factorization_returned) {
impl.add_explanation_of_reducing_to_rooted_monomial(m_factorization.m_mon, exp);
}
impl.add_explanation_of_reducing_to_rooted_monomial(m_ff.m_mon, exp);
};
factorization f(explain);
f.vars().push_back(j);
@ -1001,8 +985,8 @@ struct solver::imp {
factorization create_full_factorization() const {
factorization f([](expl_set&){});
f.vars() = m_factorization.m_cmon.vars();
f.sign() = m_factorization.m_cmon.coeff();
f.vars() = m_ff.m_mon.vars();
f.sign() = rational(1);
return f;
}
};