3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-18 06:39:02 +00:00

some renaming in nla_solver

Signed-off-by: Lev <levnach@hotmail.com>
This commit is contained in:
Lev 2018-10-08 11:33:02 -07:00 committed by Lev Nachmanson
parent 9654480842
commit 8d02c1ee5d

View file

@ -837,8 +837,8 @@ struct solver::imp {
basic_lemma_for_mon_proportionality_from_product_to_factors(i_mon);
}
class signed_factorization {
svector<lpvar> m_vars; // the m_vars[j] corresponds to a monomial var or just to a var
class factorization {
svector<lpvar> m_vars;
rational m_sign;
std::function<void (expl_set&)> m_explain;
public:
@ -852,10 +852,10 @@ struct solver::imp {
size_t size() const { return m_vars.size(); }
const lpvar* begin() const { return m_vars.begin(); }
const lpvar* end() const { return m_vars.end(); }
signed_factorization(std::function<void (expl_set&)> explain) : m_explain(explain) {}
factorization(std::function<void (expl_set&)> explain) : m_explain(explain) {}
};
std::ostream & print_factorization(const signed_factorization& f, std::ostream& out) const {
std::ostream & print_factorization(const factorization& f, std::ostream& out) const {
for (unsigned k = 0; k < f.size(); k++ ) {
print_var(f[k], out);
if (k < f.size() - 1)
@ -864,43 +864,41 @@ struct solver::imp {
return out << ", sign = " << f.sign();
}
struct binary_factorizations_of_monomial {
struct factorization_factory {
unsigned m_i_mon;
const imp& m_imp;
const imp& m_impf;
const monomial& m_mon;
monomial_coeff m_cmon;
binary_factorizations_of_monomial(unsigned i_mon, const imp& s) :
factorization_factory(unsigned i_mon, const imp& s) :
m_i_mon(i_mon),
m_imp(s),
m_mon(m_imp.m_monomials[i_mon]),
m_cmon(m_imp.canonize_monomial(m_mon)) {
m_impf(s),
m_mon(m_impf.m_monomials[i_mon]),
m_cmon(m_impf.canonize_monomial(m_mon)) {
}
struct const_iterator {
// fields
svector<bool> m_mask;
const binary_factorizations_of_monomial& m_binary_factorizations;
const factorization_factory& m_factorization;
bool m_full_factorization_returned;
//typedefs
typedef const_iterator self_type;
typedef signed_factorization value_type;
typedef const signed_factorization reference;
typedef factorization value_type;
typedef const factorization reference;
typedef int difference_type;
typedef std::forward_iterator_tag iterator_category;
void init_vars_by_the_mask(unsigned_vector & k_vars, unsigned_vector & j_vars) const {
// the last element for m_binary_factorizations.m_rooted_vars goes to k_vars
SASSERT(m_mask.size() + 1 == m_binary_factorizations.m_cmon.vars().size());
k_vars.push_back(m_binary_factorizations.m_cmon.vars().back());
// the last element for m_factorization.m_rooted_vars goes to k_vars
SASSERT(m_mask.size() + 1 == m_factorization.m_cmon.vars().size());
k_vars.push_back(m_factorization.m_cmon.vars().back());
for (unsigned j = 0; j < m_mask.size(); j++) {
if (m_mask[j]) {
k_vars.push_back(m_binary_factorizations.m_cmon[j]);
k_vars.push_back(m_factorization.m_cmon[j]);
} else {
j_vars.push_back(m_binary_factorizations.m_cmon[j]);
j_vars.push_back(m_factorization.m_cmon[j]);
}
}
}
@ -919,7 +917,7 @@ struct solver::imp {
k = k_vars[0];
k_sign = 1;
} else {
if (!m_binary_factorizations.m_imp.find_monomial_of_vars(k_vars, m, k_sign)) {
if (!m_factorization.m_impf.find_monomial_of_vars(k_vars, m, k_sign)) {
return false;
}
k = m.var();
@ -928,7 +926,7 @@ struct solver::imp {
j = j_vars[0];
j_sign = 1;
} else {
if (!m_binary_factorizations.m_imp.find_monomial_of_vars(j_vars, m, j_sign)) {
if (!m_factorization.m_impf.find_monomial_of_vars(j_vars, m, j_sign)) {
return false;
}
j = m.var();
@ -943,8 +941,8 @@ struct solver::imp {
}
unsigned j, k; rational sign;
if (!get_factors(j, k, sign))
return signed_factorization([](expl_set&){});
return create_binary_signed_factorization(j, k, m_binary_factorizations.m_cmon.coeff() * sign);
return factorization([](expl_set&){});
return create_binary_factorization(j, k, m_factorization.m_cmon.coeff() * sign);
}
void advance_mask() {
@ -967,9 +965,9 @@ struct solver::imp {
self_type operator++() { self_type i = *this; operator++(1); return i; }
self_type operator++(int) { advance_mask(); return *this; }
const_iterator(const svector<bool>& mask, const binary_factorizations_of_monomial & f) :
const_iterator(const svector<bool>& mask, const factorization_factory & f) :
m_mask(mask),
m_binary_factorizations(f) ,
m_factorization(f) ,
m_full_factorization_returned(false)
{}
@ -980,9 +978,9 @@ struct solver::imp {
}
bool operator!=(const self_type &other) const { return !(*this == other); }
signed_factorization create_binary_signed_factorization(lpvar j, lpvar k, rational const& sign) const {
factorization create_binary_factorization(lpvar j, lpvar k, rational const& sign) const {
std::function<void (expl_set&)> explain = [&](expl_set& exp){
const imp & impl = m_binary_factorizations.m_imp;
const imp & impl = m_factorization.m_impf;
unsigned mon_index = 0;
if (impl.m_var_to_its_monomial.find(k, mon_index)) {
impl.add_explanation_of_reducing_to_rooted_monomial(impl.m_monomials[mon_index], exp);
@ -991,20 +989,20 @@ struct solver::imp {
impl.add_explanation_of_reducing_to_rooted_monomial(impl.m_monomials[mon_index], exp);
}
if (m_full_factorization_returned) {
impl.add_explanation_of_reducing_to_rooted_monomial(m_binary_factorizations.m_mon, exp);
impl.add_explanation_of_reducing_to_rooted_monomial(m_factorization.m_mon, exp);
}
};
signed_factorization f(explain);
factorization f(explain);
f.vars().push_back(j);
f.vars().push_back(k);
f.sign() = sign;
return f;
}
signed_factorization create_full_factorization() const {
signed_factorization f([](expl_set&){});
f.vars() = m_binary_factorizations.m_cmon.vars();
f.sign() = m_binary_factorizations.m_cmon.coeff();
factorization create_full_factorization() const {
factorization f([](expl_set&){});
f.vars() = m_factorization.m_cmon.vars();
f.sign() = m_factorization.m_cmon.coeff();
return f;
}
};
@ -1050,7 +1048,7 @@ struct solver::imp {
// We derive a lemma from |x| >= 1 || y = 0 => |xy| >= |y|
// Here f is a factorization of monomial xy ( it can have more factors than 2)
// f[k] plays the role of y, the rest of the factors play the role of x
bool lemma_for_proportional_factors_on_vars_ge(lpvar xy, unsigned k, const signed_factorization& f) {
bool lemma_for_proportional_factors_on_vars_ge(lpvar xy, unsigned k, const factorization& f) {
TRACE("nla_solver",
print_factorization(f, tout << "f=");
print_var(f[k], tout << "y="););
@ -1097,7 +1095,7 @@ struct solver::imp {
}
// we derive a lemma from |x| <= 1 || y = 0 => |xy| <= |y|
bool lemma_for_proportional_factors_on_vars_le(lpvar xy, unsigned k, const signed_factorization & f) {
bool lemma_for_proportional_factors_on_vars_le(lpvar xy, unsigned k, const factorization & f) {
NOT_IMPLEMENTED_YET();
/*
TRACE("nla_solver",
@ -1141,7 +1139,7 @@ struct solver::imp {
}
// we derive a lemma from |x| >= 1 || |y| = 0 => |xy| >= |y|, or the similar of <=
bool lemma_for_proportional_factors(unsigned i_mon, const signed_factorization& f) {
bool lemma_for_proportional_factors(unsigned i_mon, const factorization& f) {
lpvar var_of_mon = m_monomials[i_mon].var();
TRACE("nla_solver", print_var(var_of_mon, tout); tout << " is factorized as "; print_factorization(f, tout););
for (unsigned k = 0; k < f.size(); k++) {
@ -1153,7 +1151,7 @@ struct solver::imp {
}
// we derive a lemma from |xy| >= |y| => |x| >= 1 || |y| = 0
bool basic_lemma_for_mon_proportionality_from_product_to_factors(unsigned i_mon) {
for (auto factorization : binary_factorizations_of_monomial(i_mon, *this)) {
for (auto factorization : factorization_factory(i_mon, *this)) {
if (factorization.is_empty()) {
TRACE("nla_solver", tout << "empty factorization";);
continue;
@ -1172,7 +1170,7 @@ struct solver::imp {
}
// here we use the fact
// xy = 0 -> x = 0 or y = 0
bool basic_lemma_for_mon_zero_from_monomial_to_factor(lpvar i_mon, const signed_factorization& factorization) {
bool basic_lemma_for_mon_zero_from_monomial_to_factor(lpvar i_mon, const factorization& factorization) {
if (!vvr(i_mon).is_zero() )
return false;
for (lpvar j : factorization) {
@ -1200,24 +1198,24 @@ struct solver::imp {
m_expl->push_justification(ci);
}
bool basic_lemma_for_mon_zero_from_factors_to_monomial(lpvar i_mon, const signed_factorization& factorization) {
bool basic_lemma_for_mon_zero_from_factors_to_monomial(lpvar i_mon, const factorization& factorization) {
NOT_IMPLEMENTED_YET();
return false;
}
bool basic_lemma_for_mon_zero(lpvar i_mon, const signed_factorization& factorization) {
bool basic_lemma_for_mon_zero(lpvar i_mon, const factorization& factorization) {
return
basic_lemma_for_mon_zero_from_monomial_to_factor(i_mon, factorization) ||
basic_lemma_for_mon_zero_from_factors_to_monomial(i_mon, factorization);
}
bool basic_lemma_for_mon_neutral(const signed_factorization& factorization) {
bool basic_lemma_for_mon_neutral(const factorization& factorization) {
NOT_IMPLEMENTED_YET();
return false;
}
bool basic_lemma_for_mon_proportionality(const signed_factorization& factorization) {
bool basic_lemma_for_mon_proportionality(const factorization& factorization) {
NOT_IMPLEMENTED_YET();
return false;
}
@ -1225,7 +1223,7 @@ struct solver::imp {
// use basic multiplication properties to create a lemma
// for the given monomial
bool basic_lemma_for_mon(unsigned i_mon) {
for (auto factorization : binary_factorizations_of_monomial(i_mon, *this)) {
for (auto factorization : factorization_factory(i_mon, *this)) {
if (basic_lemma_for_mon_zero(i_mon, factorization) ||
basic_lemma_for_mon_neutral(factorization) ||
basic_lemma_for_mon_proportionality(factorization))
@ -1381,7 +1379,7 @@ struct solver::imp {
m_expl = & exp;
init_search();
binary_factorizations_of_monomial fc(mon_index, // 0 is the index of "abcde"
factorization_factory fc(mon_index, // 0 is the index of "abcde"
*this);
std::cout << "factorizations = of "; print_var(m_monomials[0].var(), std::cout) << "\n";