mirror of
https://github.com/Z3Prover/z3
synced 2025-07-19 10:52:02 +00:00
add c-cube's recursive function theory
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
commit
c7d0d4e191
23 changed files with 1590 additions and 21 deletions
370
src/smt/theory_recfun.cpp
Normal file
370
src/smt/theory_recfun.cpp
Normal file
|
@ -0,0 +1,370 @@
|
|||
|
||||
#include "util/stats.h"
|
||||
#include "ast/ast_util.h"
|
||||
#include "smt/theory_recfun.h"
|
||||
#include "smt/params/smt_params_helper.hpp"
|
||||
|
||||
#define DEBUG(x) TRACE("recfun", tout << x << '\n';)
|
||||
|
||||
|
||||
namespace smt {
|
||||
|
||||
theory_recfun::theory_recfun(ast_manager & m)
|
||||
: theory(m.mk_family_id("recfun")),
|
||||
m_plugin(*reinterpret_cast<recfun_decl_plugin*>(m.get_plugin(get_family_id()))),
|
||||
m_util(m_plugin.u()),
|
||||
m_trail(*this),
|
||||
m_guards(), m_max_depth(0), m_q_case_expand(), m_q_body_expand(), m_q_clauses()
|
||||
{
|
||||
}
|
||||
|
||||
theory_recfun::~theory_recfun() {
|
||||
reset_queues();
|
||||
for (auto & kv : m_guards) {
|
||||
m().dec_ref(kv.m_key);
|
||||
}
|
||||
m_guards.reset();
|
||||
}
|
||||
|
||||
char const * theory_recfun::get_name() const { return "recfun"; }
|
||||
|
||||
void theory_recfun::setup_params() {
|
||||
// obtain max depth via parameters
|
||||
smt_params_helper p(get_context().get_params());
|
||||
set_max_depth(p.recfun_max_depth());
|
||||
}
|
||||
|
||||
theory* theory_recfun::mk_fresh(context* new_ctx) {
|
||||
return alloc(theory_recfun, new_ctx->get_manager());
|
||||
}
|
||||
|
||||
bool theory_recfun::internalize_atom(app * atom, bool gate_ctx) {
|
||||
context & ctx = get_context();
|
||||
if (! ctx.e_internalized(atom)) {
|
||||
unsigned num_args = atom->get_num_args();
|
||||
for (unsigned i = 0; i < num_args; ++i)
|
||||
ctx.internalize(atom->get_arg(i), false);
|
||||
ctx.mk_enode(atom, false, true, false);
|
||||
}
|
||||
if (! ctx.b_internalized(atom)) {
|
||||
bool_var v = ctx.mk_bool_var(atom);
|
||||
ctx.set_var_theory(v, get_id());
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool theory_recfun::internalize_term(app * term) {
|
||||
context & ctx = get_context();
|
||||
for (expr* e : *term) ctx.internalize(e, false);
|
||||
// the internalization of the arguments may have triggered the internalization of term.
|
||||
if (ctx.e_internalized(term))
|
||||
return true;
|
||||
ctx.mk_enode(term, false, false, true);
|
||||
return true; // the theory doesn't actually map terms to variables
|
||||
}
|
||||
|
||||
void theory_recfun::reset_queues() {
|
||||
m_q_case_expand.reset();
|
||||
m_q_body_expand.reset();
|
||||
m_q_clauses.reset();
|
||||
}
|
||||
|
||||
void theory_recfun::reset_eh() {
|
||||
m_trail.reset();
|
||||
reset_queues();
|
||||
m_stats.reset();
|
||||
theory::reset_eh();
|
||||
}
|
||||
|
||||
/*
|
||||
* when `n` becomes relevant, if it's `f(t1…tn)` with `f` defined,
|
||||
* then case-expand `n`. If it's a macro we can also immediately
|
||||
* body-expand it.
|
||||
*/
|
||||
void theory_recfun::relevant_eh(app * n) {
|
||||
SASSERT(get_context().relevancy());
|
||||
if (u().is_defined(n)) {
|
||||
DEBUG("relevant_eh: (defined) " << mk_pp(n, m()));
|
||||
|
||||
case_expansion e(u(), n);
|
||||
push_case_expand(std::move(e));
|
||||
}
|
||||
}
|
||||
|
||||
void theory_recfun::push_scope_eh() {
|
||||
DEBUG("push_scope");
|
||||
theory::push_scope_eh();
|
||||
m_trail.push_scope();
|
||||
}
|
||||
|
||||
void theory_recfun::pop_scope_eh(unsigned num_scopes) {
|
||||
DEBUG("pop_scope " << num_scopes);
|
||||
m_trail.pop_scope(num_scopes);
|
||||
theory::pop_scope_eh(num_scopes);
|
||||
reset_queues();
|
||||
}
|
||||
|
||||
void theory_recfun::restart_eh() {
|
||||
DEBUG("restart");
|
||||
reset_queues();
|
||||
theory::restart_eh();
|
||||
}
|
||||
|
||||
bool theory_recfun::can_propagate() {
|
||||
return ! (m_q_case_expand.empty() &&
|
||||
m_q_body_expand.empty() &&
|
||||
m_q_clauses.empty());
|
||||
}
|
||||
|
||||
void theory_recfun::propagate() {
|
||||
context & ctx = get_context();
|
||||
|
||||
for (literal_vector & c : m_q_clauses) {
|
||||
DEBUG("add axiom " << pp_lits(ctx, c.size(), c.c_ptr()));
|
||||
ctx.mk_th_axiom(get_id(), c.size(), c.c_ptr());
|
||||
}
|
||||
m_q_clauses.clear();
|
||||
|
||||
for (case_expansion & e : m_q_case_expand) {
|
||||
if (e.m_def->is_fun_macro()) {
|
||||
// body expand immediately
|
||||
assert_macro_axiom(e);
|
||||
}
|
||||
else {
|
||||
// case expand
|
||||
SASSERT(e.m_def->is_fun_defined());
|
||||
assert_case_axioms(e);
|
||||
}
|
||||
}
|
||||
m_q_case_expand.clear();
|
||||
|
||||
for (body_expansion & e : m_q_body_expand) {
|
||||
assert_body_axiom(e);
|
||||
}
|
||||
m_q_body_expand.clear();
|
||||
}
|
||||
|
||||
void theory_recfun::max_depth_conflict() {
|
||||
DEBUG("max-depth conflict");
|
||||
context & ctx = get_context();
|
||||
literal_vector c;
|
||||
// make clause `depth_limit => V_{g : guards} ~ g`
|
||||
{
|
||||
// first literal must be the depth limit one
|
||||
app_ref dlimit = m_util.mk_depth_limit_pred(get_max_depth());
|
||||
ctx.internalize(dlimit, false);
|
||||
c.push_back(~ ctx.get_literal(dlimit));
|
||||
SASSERT(ctx.get_assignment(ctx.get_literal(dlimit)) == l_true);
|
||||
}
|
||||
for (auto& kv : m_guards) {
|
||||
expr * g = & kv.get_key();
|
||||
c.push_back(~ ctx.get_literal(g));
|
||||
}
|
||||
DEBUG("max-depth limit: add clause " << pp_lits(ctx, c.size(), c.c_ptr()));
|
||||
SASSERT(std::all_of(c.begin(), c.end(), [&](literal & l) { return ctx.get_assignment(l) == l_false; })); // conflict
|
||||
|
||||
m_q_clauses.push_back(std::move(c));
|
||||
}
|
||||
|
||||
// if `is_true` and `v = C_f_i(t1…tn)`, then body-expand i-th case of `f(t1…tn)`
|
||||
void theory_recfun::assign_eh(bool_var v, bool is_true) {
|
||||
expr* e = get_context().bool_var2expr(v);
|
||||
if (!is_true) return;
|
||||
if (!is_app(e)) return;
|
||||
app* a = to_app(e);
|
||||
if (u().is_case_pred(a)) {
|
||||
DEBUG("assign_case_pred_true "<< mk_pp(e,m()));
|
||||
// add to set of local assumptions, for depth-limit purpose
|
||||
{
|
||||
m_guards.insert(e, empty());
|
||||
m().inc_ref(e);
|
||||
insert_ref_map<theory_recfun,guard_set,ast_manager,expr*> trail_elt(m(), m_guards, e);
|
||||
m_trail.push(trail_elt);
|
||||
}
|
||||
if (m_guards.size() > get_max_depth()) {
|
||||
// too many body-expansions: depth-limit conflict
|
||||
max_depth_conflict();
|
||||
}
|
||||
else {
|
||||
// body-expand
|
||||
body_expansion b_e(u(), a);
|
||||
push_body_expand(std::move(b_e));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// replace `vars` by `args` in `e`
|
||||
expr_ref theory_recfun::apply_args(recfun::vars const & vars,
|
||||
ptr_vector<expr> const & args,
|
||||
expr * e) {
|
||||
// check that var order is standard
|
||||
SASSERT(vars.size() == 0 || vars[vars.size()-1]->get_idx() == 0);
|
||||
var_subst subst(m(), true);
|
||||
expr_ref new_body(m());
|
||||
new_body = subst(e, args.size(), args.c_ptr());
|
||||
get_context().get_rewriter()(new_body); // simplify
|
||||
return new_body;
|
||||
}
|
||||
|
||||
app_ref theory_recfun::apply_pred(recfun::case_pred const & p,
|
||||
ptr_vector<expr> const & args){
|
||||
app_ref res(u().mk_case_pred(p, args), m());
|
||||
return res;
|
||||
}
|
||||
|
||||
void theory_recfun::assert_macro_axiom(case_expansion & e) {
|
||||
DEBUG("assert_macro_axiom " << pp_case_expansion(e,m()));
|
||||
SASSERT(e.m_def->is_fun_macro());
|
||||
expr_ref lhs(e.m_lhs, m());
|
||||
context & ctx = get_context();
|
||||
auto & vars = e.m_def->get_vars();
|
||||
// substitute `e.args` into the macro RHS
|
||||
expr_ref rhs(apply_args(vars, e.m_args, e.m_def->get_macro_rhs()), m());
|
||||
DEBUG("macro expansion yields" << mk_pp(rhs,m()));
|
||||
// now build the axiom `lhs = rhs`
|
||||
ctx.internalize(rhs, false);
|
||||
// add unit clause `lhs=rhs`
|
||||
literal l(mk_eq(lhs, rhs, true));
|
||||
ctx.mark_as_relevant(l);
|
||||
literal_vector lits;
|
||||
lits.push_back(l);
|
||||
DEBUG("assert_macro_axiom: " << pp_lits(ctx, lits.size(), lits.c_ptr()));
|
||||
ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr());
|
||||
}
|
||||
|
||||
void theory_recfun::assert_case_axioms(case_expansion & e) {
|
||||
DEBUG("assert_case_axioms "<< pp_case_expansion(e,m())
|
||||
<< " with " << e.m_def->get_cases().size() << " cases");
|
||||
SASSERT(e.m_def->is_fun_defined());
|
||||
context & ctx = get_context();
|
||||
// add case-axioms for all case-paths
|
||||
auto & vars = e.m_def->get_vars();
|
||||
for (recfun::case_def const & c : e.m_def->get_cases()) {
|
||||
// applied predicate to `args`
|
||||
app_ref pred_applied = apply_pred(c.get_pred(), e.m_args);
|
||||
SASSERT(u().owns_app(pred_applied));
|
||||
// substitute arguments in `path`
|
||||
expr_ref_vector path(m());
|
||||
for (auto & g : c.get_guards()) {
|
||||
expr_ref g_applied = apply_args(vars, e.m_args, g);
|
||||
path.push_back(g_applied);
|
||||
}
|
||||
// assert `p(args) <=> And(guards)` (with CNF on the fly)
|
||||
ctx.internalize(pred_applied, false);
|
||||
ctx.mark_as_relevant(ctx.get_bool_var(pred_applied));
|
||||
literal concl = ctx.get_literal(pred_applied);
|
||||
{
|
||||
// assert `guards=>p(args)`
|
||||
literal_vector c;
|
||||
c.push_back(concl);
|
||||
for (expr* g : path) {
|
||||
ctx.internalize(g, false);
|
||||
c.push_back(~ ctx.get_literal(g));
|
||||
}
|
||||
|
||||
//TRACE("recfun", tout << "assert_case_axioms " << pp_case_expansion(e)
|
||||
// << " axiom " << mk_pp(*l) <<"\n";);
|
||||
DEBUG("assert_case_axiom " << pp_lits(get_context(), path.size()+1, c.c_ptr()));
|
||||
get_context().mk_th_axiom(get_id(), path.size()+1, c.c_ptr());
|
||||
}
|
||||
{
|
||||
// assert `p(args) => guards[i]` for each `i`
|
||||
for (expr * _g : path) {
|
||||
SASSERT(ctx.b_internalized(_g));
|
||||
literal g = ctx.get_literal(_g);
|
||||
literal c[2] = {~ concl, g};
|
||||
|
||||
DEBUG("assert_case_axiom " << pp_lits(get_context(), 2, c));
|
||||
get_context().mk_th_axiom(get_id(), 2, c);
|
||||
}
|
||||
}
|
||||
|
||||
// also body-expand paths that do not depend on any defined fun
|
||||
if (c.is_immediate()) {
|
||||
body_expansion be(c, e.m_args);
|
||||
assert_body_axiom(be);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void theory_recfun::assert_body_axiom(body_expansion & e) {
|
||||
DEBUG("assert_body_axioms "<< pp_body_expansion(e,m()));
|
||||
context & ctx = get_context();
|
||||
recfun::def & d = *e.m_cdef->get_def();
|
||||
auto & vars = d.get_vars();
|
||||
auto & args = e.m_args;
|
||||
// check that var order is standard
|
||||
SASSERT(vars.size() == 0 || vars[vars.size()-1]->get_idx() == 0);
|
||||
expr_ref lhs(u().mk_fun_defined(d, args), m());
|
||||
// substitute `e.args` into the RHS of this particular case
|
||||
expr_ref rhs = apply_args(vars, args, e.m_cdef->get_rhs());
|
||||
// substitute `e.args` into the guard of this particular case, to make
|
||||
// the `condition` part of the clause `conds => lhs=rhs`
|
||||
expr_ref_vector guards(m());
|
||||
for (auto & g : e.m_cdef->get_guards()) {
|
||||
expr_ref new_guard = apply_args(vars, args, g);
|
||||
guards.push_back(new_guard);
|
||||
}
|
||||
// now build the axiom `conds => lhs = rhs`
|
||||
ctx.internalize(rhs, false);
|
||||
for (auto& g : guards) ctx.internalize(g, false);
|
||||
|
||||
// add unit clause `conds => lhs=rhs`
|
||||
literal_vector clause;
|
||||
for (auto& g : guards) {
|
||||
ctx.internalize(g, false);
|
||||
literal l = ~ ctx.get_literal(g);
|
||||
ctx.mark_as_relevant(l);
|
||||
clause.push_back(l);
|
||||
}
|
||||
literal l(mk_eq(lhs, rhs, true));
|
||||
ctx.mark_as_relevant(l);
|
||||
clause.push_back(l);
|
||||
DEBUG("assert_body_axiom " << pp_lits(ctx, clause.size(), clause.c_ptr()));
|
||||
ctx.mk_th_axiom(get_id(), clause.size(), clause.c_ptr());
|
||||
}
|
||||
|
||||
final_check_status theory_recfun::final_check_eh() {
|
||||
return FC_DONE;
|
||||
}
|
||||
|
||||
void theory_recfun::add_theory_assumptions(expr_ref_vector & assumptions) {
|
||||
app_ref dlimit = m_util.mk_depth_limit_pred(get_max_depth());
|
||||
DEBUG("add_theory_assumption " << mk_pp(dlimit.get(), m()));
|
||||
assumptions.push_back(dlimit);
|
||||
}
|
||||
|
||||
|
||||
// if `dlimit` occurs in unsat core, return "unknown"
|
||||
lbool theory_recfun::validate_unsat_core(expr_ref_vector & unsat_core) {
|
||||
for (auto & e : unsat_core) {
|
||||
if (is_app(e) && m_util.is_depth_limit(to_app(e)))
|
||||
return l_undef;
|
||||
}
|
||||
return l_false;
|
||||
}
|
||||
|
||||
void theory_recfun::display(std::ostream & out) const {
|
||||
out << "recfun{}";
|
||||
}
|
||||
|
||||
void theory_recfun::collect_statistics(::statistics & st) const {
|
||||
st.update("recfun macro expansion", m_stats.m_macro_expansions);
|
||||
st.update("recfun case expansion", m_stats.m_case_expansions);
|
||||
st.update("recfun body expansion", m_stats.m_body_expansions);
|
||||
}
|
||||
|
||||
#ifdef Z3DEBUG
|
||||
std::ostream& operator<<(std::ostream & out, theory_recfun::pp_case_expansion const & e) {
|
||||
return out << "case_exp(" << mk_pp(e.e.m_lhs, e.m) << ")";
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream & out, theory_recfun::pp_body_expansion const & e) {
|
||||
out << "body_exp(" << e.e.m_cdef->get_name();
|
||||
for (auto* t : e.e.m_args) {
|
||||
out << " " << mk_pp(t,e.m);
|
||||
}
|
||||
return out << ")";
|
||||
}
|
||||
#endif
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue