3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2018-10-14 15:16:22 -07:00
commit e9d615e309
204 changed files with 4620 additions and 2435 deletions

View file

@ -240,7 +240,7 @@ if ("${CMAKE_SYSTEM_NAME}" STREQUAL "Linux")
list(APPEND Z3_COMPONENT_CXX_DEFINES "-D_USE_THREAD_LOCAL")
endif()
elseif ("${CMAKE_SYSTEM_NAME}" STREQUAL "Darwin")
# Does OSX really not need any special flags?
# Does macOS really not need any special flags?
message(STATUS "Platform: Darwin")
elseif ("${CMAKE_SYSTEM_NAME}" MATCHES "FreeBSD")
message(STATUS "Platform: FreeBSD")
@ -380,9 +380,17 @@ endif()
################################################################################
# FIXME: Support ARM "-mfpu=vfp -mfloat-abi=hard"
if (("${TARGET_ARCHITECTURE}" STREQUAL "x86_64") OR ("${TARGET_ARCHITECTURE}" STREQUAL "i686"))
if (("${CMAKE_CXX_COMPILER_ID}" MATCHES "GNU") OR ("${CMAKE_CXX_COMPILER_ID}" MATCHES "Clang"))
if (("${CMAKE_CXX_COMPILER_ID}" MATCHES "GNU") OR ("${CMAKE_CXX_COMPILER_ID}" MATCHES "Clang") OR ("${CMAKE_CXX_COMPILER_ID}" MATCHES "Intel"))
if ("${CMAKE_CXX_COMPILER_ID}" MATCHES "Intel")
# Intel's compiler requires linking with libiomp5
list(APPEND Z3_DEPENDENT_LIBS "iomp5")
endif()
set(SSE_FLAGS "-mfpmath=sse" "-msse" "-msse2")
# FIXME: Remove "x.." when CMP0054 is set to NEW
elseif ("${CMAKE_CXX_COMPILER_ID}" MATCHES "Intel")
set(SSE_FLAGS "-mfpmath=sse" "-msse" "-msse2")
# Intel's compiler requires linking with libiomp5
list(APPEND Z3_DEPENDENT_LIBS "iomp5")
elseif ("x${CMAKE_CXX_COMPILER_ID}" STREQUAL "xMSVC")
set(SSE_FLAGS "/arch:SSE2")
else()

View file

@ -12,8 +12,8 @@ See the [release notes](RELEASE_NOTES) for notes on various stable releases of Z
## Build status
| Windows x64 | Windows x86 | Windows x64 | Ubuntu x64 | Debian x64 | OSX | TravisCI |
| ----------- | ----------- | ----------- | ---------- | ---------- | --- | -------- |
| Windows x64 | Windows x86 | Windows x64 | Ubuntu x64 | Debian x64 | macOS | TravisCI |
| ----------- | ----------- | ----------- | ---------- | ---------- | ----- | -------- |
[![win64-badge](https://z3build.visualstudio.com/_apis/public/build/definitions/2e0aa542-a22c-4b1a-8dcd-3ebae8e12db4/4/badge)](https://z3build.visualstudio.com/Z3Build/_build/index?definitionId=4) | [![win32-badge](https://cz3.visualstudio.com/_apis/public/build/definitions/bf14bcc7-ebd4-4240-812c-5972fa59e0ad/4/badge)](https://cz3.visualstudio.com/Z3/_build/index?definitionId=4) | [![win64-badge](https://cz3.visualstudio.com/_apis/public/build/definitions/bf14bcc7-ebd4-4240-812c-5972fa59e0ad/7/badge)](https://cz3.visualstudio.com/Z3/_build/index?definitionId=7) | [![ubuntu-x64-badge](https://cz3.visualstudio.com/_apis/public/build/definitions/bf14bcc7-ebd4-4240-812c-5972fa59e0ad/3/badge)](https://cz3.visualstudio.com/Z3/_build/index?definitionId=3) | [![debian-badge](https://cz3.visualstudio.com/_apis/public/build/definitions/bf14bcc7-ebd4-4240-812c-5972fa59e0ad/5/badge)](https://cz3.visualstudio.com/Z3/_build/index?definitionId=5) | [![osx-badge](https://cz3.visualstudio.com/_apis/public/build/definitions/bf14bcc7-ebd4-4240-812c-5972fa59e0ad/2/badge)](https://cz3.visualstudio.com/Z3/_build/index?definitionId=2) | [![Build Status](https://travis-ci.org/Z3Prover/z3.svg?branch=master)](https://travis-ci.org/Z3Prover/z3)
[1]: #building-z3-on-windows-using-visual-studio-command-prompt
@ -75,7 +75,7 @@ A 32 bit build should work similarly (but is untested); the same is true for 32/
By default, it will install z3 executable at ``PREFIX/bin``, libraries at
``PREFIX/lib``, and include files at ``PREFIX/include``, where ``PREFIX``
installation prefix if inferred by the ``mk_make.py`` script. It is usually
``/usr`` for most Linux distros, and ``/usr/local`` for FreeBSD and OSX. Use
``/usr`` for most Linux distros, and ``/usr/local`` for FreeBSD and macOS. Use
the ``--prefix=`` command line option to change the install prefix. For example:
```bash

View file

@ -21,7 +21,7 @@ Version 4.8.0
extracting models from apply_result have been replaced.
- An optional mode handles xor constraints using a custom xor propagator.
It is off by default and its value not demonstrated.
- The SAT solver includes new inprocessing technques that are available during simplification.
- The SAT solver includes new inprocessing techniques that are available during simplification.
It performs asymmetric tautology elimination by default, and one can turn on more powerful inprocessing techniques
(known as ACCE, ABCE, CCE). Asymmetric branching also uses features introduced in Lingeling by exploiting binary implication graphs.
Use sat.acce=true to enable the full repertoire of inprocessing methods. By default, clauses that are "eliminated" by acce are tagged
@ -318,7 +318,7 @@ First source code release (October 2, 2012)
- Added support for numbers in scientific notation at Z3_ast Z3_mk_numeral(__in Z3_context c, __in Z3_string numeral, __in Z3_sort ty).
- New builtin symbols in the arithmetic theory: pi, euler, sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh. The first two are constants, and the others are unary functions. These symbols are not available if the a SMT 2.0 logic is specified (e.g., QF_LRA, QF_NRA, QF_LIA, etc) because these symbols are not defined in these logics. That is, the new symbols are only available if the logic is not specified.
- New builtin symbols in the arithmetic theory: pi, euler, sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh. The first two are constants, and the others are unary functions. These symbols are not available if a SMT 2.0 logic is specified (e.g., QF_LRA, QF_NRA, QF_LIA, etc) because these symbols are not defined in these logics. That is, the new symbols are only available if the logic is not specified.
Version 4.1
===========

View file

@ -5,6 +5,6 @@ in the build directory.
This command will create the executable cpp_example.
On Windows, you can just execute it.
On OSX and Linux, you must install z3 first using
On macOS and Linux, you must install z3 first using
sudo make install
OR update LD_LIBRARY_PATH (Linux) or DYLD_LIBRARY_PATH (OSX) with the build directory. You need that to be able to find the Z3 shared library.
OR update LD_LIBRARY_PATH (Linux) or DYLD_LIBRARY_PATH (macOS) with the build directory. You need that to be able to find the Z3 shared library.

View file

@ -5,7 +5,7 @@ in the build directory.
This command will create the executable c_example.
On Windows, you can just execute it.
On OSX and Linux, you must install z3 first using
On macOS and Linux, you must install z3 first using
sudo make install
OR update LD_LIBRARY_PATH (Linux) or DYLD_LIBRARY_PATH (OSX) with the build directory. You need that to be able to find the Z3 shared library.
OR update LD_LIBRARY_PATH (Linux) or DYLD_LIBRARY_PATH (macOS) with the build directory. You need that to be able to find the Z3 shared library.

View file

@ -10,5 +10,5 @@ which can be run on Windows via
On Linux and FreeBSD, we must use
LD_LIBRARY_PATH=. java -cp com.microsoft.z3.jar:. JavaExample
On OSX, the corresponding option is DYLD_LIBRARY_PATH:
On macOS, the corresponding option is DYLD_LIBRARY_PATH:
DYLD_LIBRARY_PATH=. java -cp com.microsoft.z3.jar:. JavaExample

View file

@ -5,8 +5,8 @@ in the build directory.
This command will create the executable maxsat.
On Windows, you can just execute it.
On OSX and Linux, you must install z3 first using
On macOS and Linux, you must install z3 first using
sudo make install
OR update LD_LIBRARY_PATH (Linux) or DYLD_LIBRARY_PATH (OSX) with the build directory. You need that to be able to find the Z3 shared library.
OR update LD_LIBRARY_PATH (Linux) or DYLD_LIBRARY_PATH (macOS) with the build directory. You need that to be able to find the Z3 shared library.
This directory contains a test file (ex.smt) that can be used as input for the maxsat test application.

View file

@ -20,4 +20,4 @@ ocamlfind ocamlopt -o ml_example -package Z3 -linkpkg ml_example.ml
Note that the resulting binaries depend on the shared z3 library
(libz3.dll/.so/.dylb), which needs to be in the PATH (Windows), LD_LIBRARY_PATH
(Linux), or DYLD_LIBRARY_PATH (OSX).
(Linux), or DYLD_LIBRARY_PATH (macOS).

View file

@ -65,8 +65,7 @@ let model_converter_test ( ctx : context ) =
| None -> raise (TestFailedException "")
| Some (m) ->
Printf.printf "Solver says: %s\n" (string_of_status q) ;
Printf.printf "Model: \n%s\n" (Model.to_string m) ;
Printf.printf "Converted Model: \n%s\n" (Model.to_string (convert_model ar 0 m))
Printf.printf "Model: \n%s\n" (Model.to_string m)
)
(**
@ -330,12 +329,14 @@ let _ =
let ss = (Symbol.mk_string ctx "mySymbol") in
let bs = (Boolean.mk_sort ctx) in
let ints = (Integer.mk_sort ctx) in
let rs = (Real.mk_sort ctx) in
let rs = (Real.mk_sort ctx) in
let v = (Arithmetic.Integer.mk_numeral_i ctx 8000000000) in
Printf.printf "int symbol: %s\n" (Symbol.to_string is);
Printf.printf "string symbol: %s\n" (Symbol.to_string ss);
Printf.printf "bool sort: %s\n" (Sort.to_string bs);
Printf.printf "int sort: %s\n" (Sort.to_string ints);
Printf.printf "real sort: %s\n" (Sort.to_string rs);
Printf.printf "integer: %s\n" (Expr.to_string v);
basic_tests ctx ;
quantifier_example1 ctx ;
fpa_example ctx ;

View file

@ -0,0 +1,50 @@
(declare-rel Goal (Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool))
(declare-rel Invariant (Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool))
(declare-var A Bool)
(declare-var B Bool)
(declare-var C Bool)
(declare-var D Bool)
(declare-var E Bool)
(declare-var F Bool)
(declare-var G Bool)
(declare-var H Bool)
(declare-var I Bool)
(declare-var J Bool)
(declare-var K Bool)
(declare-var L Bool)
(declare-var M Bool)
(declare-var N Bool)
(declare-var O Bool)
(declare-var P Bool)
(declare-var Q Bool)
(declare-var R Bool)
(declare-var S Bool)
(declare-var T Bool)
(declare-var U Bool)
(declare-var V Bool)
(declare-var W Bool)
(declare-var X Bool)
(rule (=> (not (or L K J I H G F E D C B A)) (Invariant L K J I H G F E D C B A)))
(rule (let ((a!1 (and (Invariant X W V U T S R Q P O N M)
(=> (not (and true)) (not F))
(=> (not (and true)) (not E))
(=> (not (and W)) (not D))
(=> (not (and W)) (not C))
(=> (not (and U)) (not B))
(=> (not (and U)) (not A))
(= L (xor F X))
(= K (xor E W))
(= J (xor D V))
(= I (xor C U))
(= H (xor B T))
(= G (xor A S))
(=> D (not E))
(=> C (not E))
(=> B (not C))
(=> A (not C))
((_ at-most 5) L K J I H G))))
(=> a!1 (Invariant L K J I H G F E D C B A))))
(rule (=> (and (Invariant L K J I H G F E D C B A) L (not K) J (not I) H G)
(Goal L K J I H G F E D C B A)))
(query Goal)

View file

@ -0,0 +1,44 @@
(declare-rel Invariant (Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool))
(declare-rel Goal (Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool))
(declare-var A Bool)
(declare-var B Bool)
(declare-var C Bool)
(declare-var D Bool)
(declare-var E Bool)
(declare-var F Bool)
(declare-var G Bool)
(declare-var H Bool)
(declare-var I Bool)
(declare-var J Bool)
(declare-var K Bool)
(declare-var L Bool)
(declare-var M Bool)
(declare-var N Bool)
(declare-var O Bool)
(declare-var P Bool)
(declare-var Q Bool)
(declare-var R Bool)
(declare-var S Bool)
(declare-var T Bool)
(rule (=> (not (or J I H G F E D C B A)) (Invariant J I H G F E D C B A)))
(rule (let ((a!1 (and (Invariant T S R Q P O N M L K)
(=> (not (and true)) (not E))
(=> (not (and T)) (not D))
(=> (not (and S)) (not C))
(=> (not (and R)) (not B))
(=> (not (and Q)) (not A))
(= J (xor E T))
(= I (xor D S))
(= H (xor C R))
(= G (xor B Q))
(= F (xor A P))
(=> D (not E))
(=> C (not D))
(=> B (not C))
(=> A (not B))
((_ at-most 3) J I H G F))))
(=> a!1 (Invariant J I H G F E D C B A))))
(rule (=> (and (Invariant J I H G F E D C B A) (not J) (not I) (not H) (not G) F)
(Goal J I H G F E D C B A)))
(query Goal)

View file

@ -20,7 +20,7 @@
# export PYTHONPATH=MYZ3/bin/python
# python example.py
# Running this example on OSX:
# Running this example on macOS:
# export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:MYZ3/bin
# export PYTHONPATH=MYZ3/bin/python
# python example.py

438
examples/python/mini_ic3.py Normal file
View file

@ -0,0 +1,438 @@
from z3 import *
import heapq
# Simplistic (and fragile) converter from
# a class of Horn clauses corresponding to
# a transition system into a transition system
# representation as <init, trans, goal>
# It assumes it is given three Horn clauses
# of the form:
# init(x) => Invariant(x)
# Invariant(x) and trans(x,x') => Invariant(x')
# Invariant(x) and goal(x) => Goal(x)
# where Invariant and Goal are uninterpreted predicates
class Horn2Transitions:
def __init__(self):
self.trans = True
self.init = True
self.goal = True
self.index = 0
def parse(self, file):
fp = Fixedpoint()
goals = fp.parse_file(file)
for r in fp.get_rules():
if not is_quantifier(r):
continue
b = r.body()
if not is_implies(b):
continue
f = b.arg(0)
g = b.arg(1)
if self.is_goal(f, g):
continue
if self.is_transition(f, g):
continue
if self.is_init(f, g):
continue
def is_pred(self, p, name):
return is_app(p) and p.decl().name() == name
def is_goal(self, body, head):
if not self.is_pred(head, "Goal"):
return False
pred, inv = self.is_body(body)
if pred is None:
return False
self.goal = self.subst_vars("x", inv, pred)
return True
def is_body(self, body):
if not is_and(body):
return None, None
fmls = [f for f in body.children() if self.is_inv(f) is None]
inv = None
for f in body.children():
if self.is_inv(f) is not None:
inv = f;
break
return And(fmls), inv
def is_inv(self, f):
if self.is_pred(f, "Invariant"):
return f
return None
def is_transition(self, body, head):
pred, inv0 = self.is_body(body)
if pred is None:
return False
inv1 = self.is_inv(head)
if inv1 is None:
return False
pred = self.subst_vars("x", inv0, pred)
self.xs = self.vars
pred = self.subst_vars("xn", inv1, pred)
self.xns = self.vars
self.trans = pred
return True
def is_init(self, body, head):
for f in body.children():
if self.is_inv(f) is not None:
return False
inv = self.is_inv(head)
if inv is None:
return False
self.init = self.subst_vars("x", inv, body)
return True
def subst_vars(self, prefix, inv, fml):
subst = self.mk_subst(prefix, inv)
self.vars = [ v for (k,v) in subst ]
return substitute(fml, subst)
def mk_subst(self, prefix, inv):
self.index = 0
return [(f, self.mk_bool(prefix)) for f in inv.children()]
def mk_bool(self, prefix):
self.index += 1
return Bool("%s%d" % (prefix, self.index))
# Produce a finite domain solver.
# The theory QF_FD covers bit-vector formulas
# and pseudo-Boolean constraints.
# By default cardinality and pseudo-Boolean
# constraints are converted to clauses. To override
# this default for cardinality constraints
# we set sat.cardinality.solver to True
def fd_solver():
s = SolverFor("QF_FD")
s.set("sat.cardinality.solver", True)
return s
# negate, avoid double negation
def negate(f):
if is_not(f):
return f.arg(0)
else:
return Not(f)
def cube2clause(cube):
return Or([negate(f) for f in cube])
class State:
def __init__(self, s):
self.R = set([])
self.solver = s
def add(self, clause):
if clause not in self.R:
self.R |= { clause }
self.solver.add(clause)
class Goal:
def __init__(self, cube, parent, level):
self.level = level
self.cube = cube
self.parent = parent
def is_seq(f):
return isinstance(f, list) or isinstance(f, tuple) or isinstance(f, AstVector)
# Check if the initial state is bad
def check_disjoint(a, b):
s = fd_solver()
s.add(a)
s.add(b)
return unsat == s.check()
# Remove clauses that are subsumed
def prune(R):
removed = set([])
s = fd_solver()
for f1 in R:
s.push()
for f2 in R:
if f2 not in removed:
s.add(Not(f2) if f1.eq(f2) else f2)
if s.check() == unsat:
removed |= { f1 }
s.pop()
return R - removed
class MiniIC3:
def __init__(self, init, trans, goal, x0, xn):
self.x0 = x0
self.xn = xn
self.init = init
self.bad = goal
self.trans = trans
self.min_cube_solver = fd_solver()
self.min_cube_solver.add(Not(trans))
self.goals = []
s = State(fd_solver())
s.add(init)
s.solver.add(trans)
self.states = [s]
self.s_bad = fd_solver()
self.s_good = fd_solver()
self.s_bad.add(self.bad)
self.s_good.add(Not(self.bad))
def next(self, f):
if is_seq(f):
return [self.next(f1) for f1 in f]
return substitute(f, zip(self.x0, self.xn))
def prev(self, f):
if is_seq(f):
return [self.prev(f1) for f1 in f]
return substitute(f, zip(self.xn, self.x0))
def add_solver(self):
s = fd_solver()
s.add(self.trans)
self.states += [State(s)]
def R(self, i):
return And(self.states[i].R)
# Check if there are two states next to each other that have the same clauses.
def is_valid(self):
i = 1
while i + 1 < len(self.states):
if not (self.states[i].R - self.states[i+1].R):
return And(prune(self.states[i].R))
i += 1
return None
def value2literal(self, m, x):
value = m.eval(x)
if is_true(value):
return x
if is_false(value):
return Not(x)
return None
def values2literals(self, m, xs):
p = [self.value2literal(m, x) for x in xs]
return [x for x in p if x is not None]
def project0(self, m):
return self.values2literals(m, self.x0)
def projectN(self, m):
return self.values2literals(m, self.xn)
# Determine if there is a cube for the current state
# that is potentially reachable.
def unfold(self):
core = []
self.s_bad.push()
R = self.R(len(self.states)-1)
self.s_bad.add(R)
is_sat = self.s_bad.check()
if is_sat == sat:
m = self.s_bad.model()
props = self.project0(m)
self.s_good.push()
self.s_good.add(R)
is_sat2 = self.s_good.check(props)
assert is_sat2 == unsat
core = self.s_good.unsat_core()
self.s_good.pop()
self.s_bad.pop()
return is_sat, core
# Block a cube by asserting the clause corresponding to its negation
def block_cube(self, i, cube):
self.assert_clause(i, cube2clause(cube))
# Add a clause to levels 0 until i
def assert_clause(self, i, clause):
for j in range(i + 1):
self.states[j].add(clause)
# minimize cube that is core of Dual solver.
# this assumes that props & cube => Trans
def minimize_cube(self, cube, lits):
is_sat = self.min_cube_solver.check(lits + [c for c in cube])
assert is_sat == unsat
core = self.min_cube_solver.unsat_core()
assert core
return [c for c in core if c in set(cube)]
# push a goal on a heap
def push_heap(self, goal):
heapq.heappush(self.goals, (goal.level, goal))
# A state s0 and level f0 such that
# not(s0) is f0-1 inductive
def ic3_blocked(self, s0, f0):
self.push_heap(Goal(self.next(s0), None, f0))
while self.goals:
f, g = heapq.heappop(self.goals)
sys.stdout.write("%d." % f)
sys.stdout.flush()
# Not(g.cube) is f-1 invariant
if f == 0:
print("")
return g
cube, f, is_sat = self.is_inductive(f, g.cube)
if is_sat == unsat:
self.block_cube(f, self.prev(cube))
if f < f0:
self.push_heap(Goal(g.cube, g.parent, f + 1))
elif is_sat == sat:
self.push_heap(Goal(cube, g, f - 1))
self.push_heap(g)
else:
return is_sat
print("")
return None
# Rudimentary generalization:
# If the cube is already unsat with respect to transition relation
# extract a core (not necessarily minimal)
# otherwise, just return the cube.
def generalize(self, cube, f):
s = self.states[f - 1].solver
if unsat == s.check(cube):
return s.unsat_core(), f
return cube, f
# Check if the negation of cube is inductive at level f
def is_inductive(self, f, cube):
s = self.states[f - 1].solver
s.push()
s.add(self.prev(Not(And(cube))))
is_sat = s.check(cube)
if is_sat == sat:
m = s.model()
s.pop()
if is_sat == sat:
cube = self.next(self.minimize_cube(self.project0(m), self.projectN(m)))
elif is_sat == unsat:
cube, f = self.generalize(cube, f)
return cube, f, is_sat
def run(self):
if not check_disjoint(self.init, self.bad):
return "goal is reached in initial state"
level = 0
while True:
inv = self.is_valid()
if inv is not None:
return inv
is_sat, cube = self.unfold()
if is_sat == unsat:
level += 1
print("Unfold %d" % level)
sys.stdout.flush()
self.add_solver()
elif is_sat == sat:
cex = self.ic3_blocked(cube, level)
if cex is not None:
return cex
else:
return is_sat
def test(file):
h2t = Horn2Transitions()
h2t.parse(file)
mp = MiniIC3(h2t.init, h2t.trans, h2t.goal, h2t.xs, h2t.xns)
result = mp.run()
if isinstance(result, Goal):
g = result
print("Trace")
while g:
print(g.level, g.cube)
g = g.parent
return
if isinstance(result, ExprRef):
print("Invariant:\n%s " % result)
return
print(result)
test("data/horn1.smt2")
test("data/horn2.smt2")
"""
# TBD: Quip variant of IC3
must = True
may = False
class QGoal:
def __init__(self, cube, parent, level, must):
self.level = level
self.cube = cube
self.parent = parent
self.must = must
class Quip(MiniIC3):
# prev & tras -> r', such that r' intersects with cube
def add_reachable(self, prev, cube):
s = fd_solver()
s.add(self.trans)
s.add(prev)
s.add(Or(cube))
is_sat = s.check()
assert is_sat == sat
m = s.model();
result = self.values2literals(m, cube)
assert result
self.reachable.add(result)
# A state s0 and level f0 such that
# not(s0) is f0-1 inductive
def quip_blocked(self, s0, f0):
self.push_heap(QGoal(self.next(s0), None, f0, must))
while self.goals:
f, g = heapq.heappop(self.goals)
sys.stdout.write("%d." % f)
sys.stdout.flush()
if f == 0:
if g.must:
print("")
return g
self.add_reachable(self.init, p.parent.cube)
continue
# TBD
return None
def run(self):
if not check_disjoint(self.init, self.bad):
return "goal is reached in initial state"
level = 0
while True:
inv = self.is_valid()
if inv is not None:
return inv
is_sat, cube = self.unfold()
if is_sat == unsat:
level += 1
print("Unfold %d" % level)
sys.stdout.flush()
self.add_solver()
elif is_sat == sat:
cex = self.quipie_blocked(cube, level)
if cex is not None:
return cex
else:
return is_sat
"""

View file

@ -5,9 +5,9 @@ in the build directory.
This command will create the executable tptp.
On Windows, you can just execute it.
On OSX and Linux, you must install z3 first using
On macOS and Linux, you must install z3 first using
sudo make install
OR update LD_LIBRARY_PATH (Linux) or DYLD_LIBRARY_PATH (OSX)
OR update LD_LIBRARY_PATH (Linux) or DYLD_LIBRARY_PATH (macOS)
with the build directory. You need that to be able to
find the Z3 shared library.

View file

@ -0,0 +1,22 @@
<?xml version="1.0" encoding="utf-8"?>
<package xmlns="http://schemas.microsoft.com/packaging/2010/07/nuspec.xsd">
<metadata>
<id>Microsoft.Z3.x64</id>
<version>$(releaseVersion)</version>
<copyright>© Microsoft Corporation. All rights reserved.</copyright>
<authors>Microsoft</authors>
<owners>Microsoft,Z3Prover</owners>
<iconUrl>$(iconUrlFromReleaseCommit)</iconUrl>
<projectUrl>https://github.com/Z3Prover/z3</projectUrl>
<licenseUrl>$(licenseUrlFromReleaseCommit)</licenseUrl>
<repository
type="git"
url="https://github.com/Z3Prover/z3.git"
branch="master"
commit="$(releaseCommitHash)"
/>
<requireLicenseAcceptance>true</requireLicenseAcceptance>
<description>Z3 is a constraint/SMT solver and theorem prover from Microsoft Research.</description>
<tags>smt constraint solver theorem prover</tags>
</metadata>
</package>

View file

@ -0,0 +1,10 @@
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
<None Include="$(MSBuildThisFileDirectory)libz3.dll">
<Visible>false</Visible>
<Link>libz3.dll</Link>
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
</None>
</ItemGroup>
</Project>

View file

@ -0,0 +1,36 @@
# Z3 NuGet packaging
## Creation
1. After tagging a commit for release, sign Microsoft.Z3.dll and libz3.dll (both x86 and x64 versions) with Microsoft's Authenticode certificate
2. Test the signed DLLs with the `Get-AuthenticodeSignature` PowerShell commandlet
3. Create the following directory structure for the x64 package (for x86, substitute the "x64" strings for "x86" and use x86 DLLs):
```
+-- Microsoft.Z3.x64
| +-- Microsoft.Z3.x64.nuspec
| +-- lib
| +-- net40
| +-- Microsoft.Z3.dll
| +-- build
| +-- Microsoft.Z3.x64.targets
| +-- libz3.dll
```
4. Open the nuspec file and fill in the appropriate macro values (note that for all URLs, preserve link integrity by linking to a specific commit):
* $(releaseVersion) - the Z3 version being released in this package
* $(iconUrlFromReleaseCommit) - URL for the Z3 icon file
* $(licenseUrlFromReleaseCommit) - URL for the Z3 repo license
* $(releaseCommitHash) - hash of the release commit
5. Run `nuget pack Microsoft.Z3.x64\Microsoft.Z3.x64.nuspec`
6. Test the resulting nupkg file (described below) then submit the package for signing before uploading to NuGet.org
## Testing
1. Create a directory on your machine at C:\nuget-test-source
2. Put the Microsoft.Z3.x64.nupkg file in the directory
3. Open Visual Studio 2017, create a new C# project, then right click the project and click "Manage NuGet packages"
4. Add a new package source - your C:\nuget-test-source directory
5. Find the Microsoft.Z3.x64 package, ensuring in preview window that icon is present and all fields correct
6. Install the Microsoft.Z3.x64 package, ensuring you are asked to accept the license
7. Build your project. Check the output directory to ensure both Microsoft.Z3.dll and libz3.dll are present
8. Import Microsoft.Z3 to your project then add a simple line of code like `using (var ctx = new Context()) { }`; build then run your project to ensure the assemblies load properly

BIN
package/icon.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

View file

@ -10,7 +10,7 @@ from mk_util import *
# Z3 Project definition
def init_project_def():
set_version(4, 8, 0, 0)
add_lib('util', [])
add_lib('util', [], includes2install = ['z3_version.h'])
add_lib('polynomial', ['util'], 'math/polynomial')
add_lib('sat', ['util'])
add_lib('nlsat', ['polynomial', 'sat'])

View file

@ -396,7 +396,7 @@ def check_java():
libdirs = m.group(1).split(',')
for libdir in libdirs:
q = os.path.dirname(libdir)
if cdirs.count(q) == 0:
if cdirs.count(q) == 0 and len(q) > 0:
cdirs.append(q)
t.close()
@ -1668,9 +1668,6 @@ class DotNetDLLComponent(Component):
'/noconfig',
'/nostdlib+',
'/reference:mscorlib.dll',
# Under mono this isn't neccessary as mono will search the system
# library paths for libz3.so
'/linkresource:{}.dll'.format(get_component(Z3_DLL_COMPONENT).dll_name),
]
)
@ -2805,8 +2802,8 @@ def get_full_version_string(major, minor, build, revision):
# Update files with the version number
def mk_version_dot_h(major, minor, build, revision):
c = get_component(UTIL_COMPONENT)
version_template = os.path.join(c.src_dir, 'version.h.in')
version_header_output = os.path.join(c.src_dir, 'version.h')
version_template = os.path.join(c.src_dir, 'z3_version.h.in')
version_header_output = os.path.join(c.src_dir, 'z3_version.h')
# Note the substitution names are what is used by the CMake
# builds system. If you change these you should change them
# in the CMake build too

View file

@ -166,6 +166,8 @@ foreach (header ${libz3_public_headers})
set_property(TARGET libz3 APPEND PROPERTY
PUBLIC_HEADER "${CMAKE_SOURCE_DIR}/src/api/${header}")
endforeach()
set_property(TARGET libz3 APPEND PROPERTY
PUBLIC_HEADER "${CMAKE_CURRENT_BINARY_DIR}/util/z3_version.h")
install(TARGETS libz3
EXPORT Z3_EXPORTED_TARGETS

View file

@ -468,7 +468,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_get_decl_symbol_parameter(c, d, idx);
RESET_ERROR_CODE();
CHECK_VALID_AST(d, 0);
CHECK_VALID_AST(d, nullptr);
if (idx >= to_func_decl(d)->get_num_parameters()) {
SET_ERROR_CODE(Z3_IOB, nullptr);
return nullptr;
@ -486,7 +486,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_get_decl_sort_parameter(c, d, idx);
RESET_ERROR_CODE();
CHECK_VALID_AST(d, 0);
CHECK_VALID_AST(d, nullptr);
if (idx >= to_func_decl(d)->get_num_parameters()) {
SET_ERROR_CODE(Z3_IOB, nullptr);
RETURN_Z3(nullptr);
@ -504,7 +504,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_get_decl_ast_parameter(c, d, idx);
RESET_ERROR_CODE();
CHECK_VALID_AST(d, 0);
CHECK_VALID_AST(d, nullptr);
if (idx >= to_func_decl(d)->get_num_parameters()) {
SET_ERROR_CODE(Z3_IOB, nullptr);
RETURN_Z3(nullptr);
@ -522,7 +522,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_get_decl_func_decl_parameter(c, d, idx);
RESET_ERROR_CODE();
CHECK_VALID_AST(d, 0);
CHECK_VALID_AST(d, nullptr);
if (idx >= to_func_decl(d)->get_num_parameters()) {
SET_ERROR_CODE(Z3_IOB, nullptr);
RETURN_Z3(nullptr);
@ -596,7 +596,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_get_domain(c, d, i);
RESET_ERROR_CODE();
CHECK_VALID_AST(d, 0);
CHECK_VALID_AST(d, nullptr);
if (i >= to_func_decl(d)->get_arity()) {
SET_ERROR_CODE(Z3_IOB, nullptr);
RETURN_Z3(nullptr);

View file

@ -19,7 +19,7 @@ Revision History:
--*/
#include<typeinfo>
#include "api/api_context.h"
#include "util/version.h"
#include "util/z3_version.h"
#include "ast/ast_pp.h"
#include "ast/ast_ll_pp.h"
#include "api/api_log_macros.h"

View file

@ -379,10 +379,8 @@ extern "C" {
for (unsigned i = 0; i < coll.m_rules.size(); ++i) {
to_fixedpoint_ref(d)->add_rule(coll.m_rules[i].get(), coll.m_names[i]);
}
ptr_vector<expr>::const_iterator it = ctx.begin_assertions();
ptr_vector<expr>::const_iterator end = ctx.end_assertions();
for (; it != end; ++it) {
to_fixedpoint_ref(d)->ctx().assert_expr(*it);
for (expr * e : ctx.assertions()) {
to_fixedpoint_ref(d)->ctx().assert_expr(e);
}
return of_ast_vector(v);
@ -717,5 +715,4 @@ extern "C" {
Z3_CATCH_RETURN(nullptr);
}
};

View file

@ -1,113 +0,0 @@
/*++
Copyright (c) 2017 Arie Gurfinkel
Module Name:
api_datalog_spacer.inc
Abstract:
Spacer-specific datalog API
Author:
Arie Gurfinkel (arie)
Notes:
this file is included at the bottom of api_datalog.cpp
--*/
Z3_lbool Z3_API Z3_fixedpoint_query_from_lvl (Z3_context c, Z3_fixedpoint d, Z3_ast q, unsigned lvl) {
Z3_TRY;
LOG_Z3_fixedpoint_query_from_lvl (c, d, q, lvl);
RESET_ERROR_CODE();
lbool r = l_undef;
unsigned timeout = to_fixedpoint(d)->m_params.get_uint("timeout", mk_c(c)->get_timeout());
unsigned rlimit = to_fixedpoint(d)->m_params.get_uint("rlimit", mk_c(c)->get_rlimit());
{
scoped_rlimit _rlimit(mk_c(c)->m().limit(), rlimit);
cancel_eh<reslimit> eh(mk_c(c)->m().limit());
api::context::set_interruptable si(*(mk_c(c)), eh);
scoped_timer timer(timeout, &eh);
try {
r = to_fixedpoint_ref(d)->ctx().query_from_lvl (to_expr(q), lvl);
}
catch (z3_exception& ex) {
mk_c(c)->handle_exception(ex);
r = l_undef;
}
to_fixedpoint_ref(d)->ctx().cleanup();
}
return of_lbool(r);
Z3_CATCH_RETURN(Z3_L_UNDEF);
}
Z3_ast Z3_API Z3_fixedpoint_get_ground_sat_answer(Z3_context c, Z3_fixedpoint d) {
Z3_TRY;
LOG_Z3_fixedpoint_get_ground_sat_answer(c, d);
RESET_ERROR_CODE();
expr* e = to_fixedpoint_ref(d)->ctx().get_ground_sat_answer();
mk_c(c)->save_ast_trail(e);
RETURN_Z3(of_expr(e));
Z3_CATCH_RETURN(nullptr);
}
Z3_ast_vector Z3_API Z3_fixedpoint_get_rules_along_trace(
Z3_context c,
Z3_fixedpoint d)
{
Z3_TRY;
LOG_Z3_fixedpoint_get_rules_along_trace(c, d);
ast_manager& m = mk_c(c)->m();
Z3_ast_vector_ref* v = alloc(Z3_ast_vector_ref, *mk_c(c), m);
mk_c(c)->save_object(v);
expr_ref_vector rules(m);
svector<symbol> names;
to_fixedpoint_ref(d)->ctx().get_rules_along_trace_as_formulas(rules, names);
for (unsigned i = 0; i < rules.size(); ++i) {
v->m_ast_vector.push_back(rules[i].get());
}
RETURN_Z3(of_ast_vector(v));
Z3_CATCH_RETURN(nullptr);
}
Z3_symbol Z3_API Z3_fixedpoint_get_rule_names_along_trace(
Z3_context c,
Z3_fixedpoint d)
{
Z3_TRY;
LOG_Z3_fixedpoint_get_rule_names_along_trace(c, d);
ast_manager& m = mk_c(c)->m();
Z3_ast_vector_ref* v = alloc(Z3_ast_vector_ref, *mk_c(c), m);
mk_c(c)->save_object(v);
expr_ref_vector rules(m);
svector<symbol> names;
std::stringstream ss;
to_fixedpoint_ref(d)->ctx().get_rules_along_trace_as_formulas(rules, names);
for (unsigned i = 0; i < names.size(); ++i) {
ss << ";" << names[i].str();
}
RETURN_Z3(of_symbol(symbol(ss.str().substr(1).c_str())));
Z3_CATCH_RETURN(nullptr);
}
void Z3_API Z3_fixedpoint_add_invariant(Z3_context c, Z3_fixedpoint d, Z3_func_decl pred, Z3_ast property) {
Z3_TRY;
LOG_Z3_fixedpoint_add_invariant(c, d, pred, property);
RESET_ERROR_CODE();
to_fixedpoint_ref(d)->ctx ().add_invariant(to_func_decl(pred), to_expr(property));
Z3_CATCH;
}
Z3_ast Z3_API Z3_fixedpoint_get_reachable(Z3_context c, Z3_fixedpoint d, Z3_func_decl pred) {
Z3_TRY;
LOG_Z3_fixedpoint_get_reachable(c, d, pred);
RESET_ERROR_CODE();
expr_ref r = to_fixedpoint_ref(d)->ctx().get_reachable(to_func_decl(pred));
mk_c(c)->save_ast_trail(r);
RETURN_Z3(of_expr(r.get()));
Z3_CATCH_RETURN(nullptr);
}

View file

@ -163,7 +163,7 @@ extern "C" {
if (to_goal_ref(g)->mc())
(*to_goal_ref(g)->mc())(m_ref->m_model);
RETURN_Z3(of_model(m_ref));
Z3_CATCH_RETURN(0);
Z3_CATCH_RETURN(nullptr);
}
Z3_goal Z3_API Z3_goal_translate(Z3_context c, Z3_goal g, Z3_context target) {

View file

@ -19,7 +19,7 @@ Revision History:
#include "api/z3.h"
#include "api/api_log_macros.h"
#include "util/util.h"
#include "util/version.h"
#include "util/z3_version.h"
std::ostream * g_z3_log = nullptr;
bool g_z3_log_enabled = false;

View file

@ -124,10 +124,16 @@ extern "C" {
}
Z3_lbool Z3_API Z3_optimize_check(Z3_context c, Z3_optimize o) {
Z3_lbool Z3_API Z3_optimize_check(Z3_context c, Z3_optimize o, unsigned num_assumptions, Z3_ast const assumptions[]) {
Z3_TRY;
LOG_Z3_optimize_check(c, o);
LOG_Z3_optimize_check(c, o, num_assumptions, assumptions);
RESET_ERROR_CODE();
for (unsigned i = 0; i < num_assumptions; i++) {
if (!is_expr(to_ast(assumptions[i]))) {
SET_ERROR_CODE(Z3_INVALID_ARG, "assumption is not an expression");
return Z3_L_UNDEF;
}
}
lbool r = l_undef;
cancel_eh<reslimit> eh(mk_c(c)->m().limit());
unsigned timeout = to_optimize_ptr(o)->get_params().get_uint("timeout", mk_c(c)->get_timeout());
@ -137,7 +143,9 @@ extern "C" {
scoped_timer timer(timeout, &eh);
scoped_rlimit _rlimit(mk_c(c)->m().limit(), rlimit);
try {
r = to_optimize_ptr(o)->optimize();
expr_ref_vector asms(mk_c(c)->m());
asms.append(num_assumptions, to_exprs(assumptions));
r = to_optimize_ptr(o)->optimize(asms);
}
catch (z3_exception& ex) {
if (!mk_c(c)->m().canceled()) {
@ -157,6 +165,22 @@ extern "C" {
Z3_CATCH_RETURN(Z3_L_UNDEF);
}
Z3_ast_vector Z3_API Z3_optimize_get_unsat_core(Z3_context c, Z3_optimize o) {
Z3_TRY;
LOG_Z3_optimize_get_unsat_core(c, o);
RESET_ERROR_CODE();
expr_ref_vector core(mk_c(c)->m());
to_optimize_ptr(o)->get_unsat_core(core);
Z3_ast_vector_ref * v = alloc(Z3_ast_vector_ref, *mk_c(c), mk_c(c)->m());
mk_c(c)->save_object(v);
for (expr* e : core) {
v->m_ast_vector.push_back(e);
}
RETURN_Z3(of_ast_vector(v));
Z3_CATCH_RETURN(nullptr);
}
Z3_string Z3_API Z3_optimize_get_reason_unknown(Z3_context c, Z3_optimize o) {
Z3_TRY;
LOG_Z3_optimize_to_string(c, o);
@ -330,10 +354,8 @@ extern "C" {
return;
}
ptr_vector<expr>::const_iterator it = ctx->begin_assertions();
ptr_vector<expr>::const_iterator end = ctx->end_assertions();
for (; it != end; ++it) {
to_optimize_ptr(opt)->add_hard_constraint(*it);
for (expr * e : ctx->assertions()) {
to_optimize_ptr(opt)->add_hard_constraint(e);
}
}

View file

@ -71,10 +71,8 @@ extern "C" {
SET_ERROR_CODE(Z3_PARSER_ERROR, errstrm.str().c_str());
return of_ast_vector(v);
}
ptr_vector<expr>::const_iterator it = ctx->begin_assertions();
ptr_vector<expr>::const_iterator end = ctx->end_assertions();
for (; it != end; ++it) {
v->m_ast_vector.push_back(*it);
for (expr * e : ctx->assertions()) {
v->m_ast_vector.push_back(e);
}
return of_ast_vector(v);
Z3_CATCH_RETURN(nullptr);

View file

@ -1,5 +1,5 @@
/*++
Copyright (c) 2018 Microsoft Corporation
Copyright (c) Microsoft Corporation, Arie Gurfinkel 2017
Module Name:
@ -70,39 +70,39 @@ extern "C"
}
Z3_ast Z3_API Z3_qe_model_project_skolem (Z3_context c,
Z3_model m,
Z3_model mdl,
unsigned num_bounds,
Z3_app const bound[],
Z3_ast body,
Z3_ast_map map)
{
Z3_TRY;
LOG_Z3_qe_model_project_skolem (c, m, num_bounds, bound, body, map);
LOG_Z3_qe_model_project_skolem (c, mdl, num_bounds, bound, body, map);
RESET_ERROR_CODE();
ast_manager& man = mk_c(c)->m ();
app_ref_vector vars(man);
ast_manager& m = mk_c(c)->m();
app_ref_vector vars(m);
if (!to_apps(num_bounds, bound, vars)) {
RETURN_Z3(nullptr);
}
expr_ref result (mk_c(c)->m ());
expr_ref result (m);
result = to_expr (body);
model_ref model (to_model_ref (m));
expr_map emap (man);
model_ref model (to_model_ref (mdl));
expr_map emap (m);
spacer::qe_project (mk_c(c)->m (), vars, result, model, emap);
mk_c(c)->save_ast_trail (result.get ());
spacer::qe_project(m, vars, result, model, emap);
mk_c(c)->save_ast_trail(result);
obj_map<ast, ast*> &map_z3 = to_ast_map_ref(map);
for (expr_map::iterator it = emap.begin(), end = emap.end(); it != end; ++it){
man.inc_ref(&(it->get_key()));
man.inc_ref(it->get_value());
map_z3.insert(&(it->get_key()), it->get_value());
for (auto& kv : emap) {
m.inc_ref(kv.m_key);
m.inc_ref(kv.m_value);
map_z3.insert(kv.m_key, kv.m_value);
}
return of_expr (result.get ());
return of_expr (result);
Z3_CATCH_RETURN(nullptr);
}
@ -124,9 +124,9 @@ extern "C"
expr_ref result (mk_c(c)->m ());
result = mk_and (lits);
mk_c(c)->save_ast_trail (result.get ());
mk_c(c)->save_ast_trail (result);
return of_expr (result.get ());
return of_expr (result);
Z3_CATCH_RETURN(nullptr);
}
@ -138,8 +138,8 @@ extern "C"
ast_ref_vector &vVars = to_ast_vector_ref (vars);
app_ref_vector vApps (mk_c(c)->m());
for (unsigned i = 0; i < vVars.size (); ++i) {
app *a = to_app (vVars.get (i));
for (ast* v : vVars) {
app * a = to_app(v);
if (a->get_kind () != AST_APP) {
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr);
RETURN_Z3(nullptr);
@ -162,7 +162,7 @@ extern "C"
}
}
mk_c(c)->save_ast_trail (result.get ());
mk_c(c)->save_ast_trail (result);
return of_expr (result);
Z3_CATCH_RETURN(nullptr);
}

View file

@ -155,7 +155,7 @@ extern "C" {
expr_ref result(mk_c(c)->m());
if (num_decls == 0) {
SET_ERROR_CODE(Z3_INVALID_USAGE, nullptr);
RETURN_Z3(0);
RETURN_Z3(nullptr);
}
sort* const* ts = reinterpret_cast<sort * const*>(types);
@ -166,7 +166,7 @@ extern "C" {
result = mk_c(c)->m().mk_lambda(names.size(), ts, names.c_ptr(), to_expr(body));
mk_c(c)->save_ast_trail(result.get());
return of_ast(result.get());
Z3_CATCH_RETURN(0);
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_mk_lambda_const(Z3_context c,
@ -178,7 +178,7 @@ extern "C" {
RESET_ERROR_CODE();
if (num_decls == 0) {
SET_ERROR_CODE(Z3_INVALID_USAGE, nullptr);
RETURN_Z3(0);
RETURN_Z3(nullptr);
}
svector<symbol> _names;
@ -196,7 +196,7 @@ extern "C" {
result = mk_c(c)->m().mk_lambda(_vars.size(), _vars.c_ptr(), _names.c_ptr(), result);
mk_c(c)->save_ast_trail(result.get());
return of_ast(result.get());
Z3_CATCH_RETURN(0);
Z3_CATCH_RETURN(nullptr);
}

View file

@ -157,10 +157,8 @@ extern "C" {
bool initialized = to_solver(s)->m_solver.get() != nullptr;
if (!initialized)
init_solver(c, s);
ptr_vector<expr>::const_iterator it = ctx->begin_assertions();
ptr_vector<expr>::const_iterator end = ctx->end_assertions();
for (; it != end; ++it) {
to_solver_ref(s)->assert_expr(*it);
for (expr * e : ctx->assertions()) {
to_solver_ref(s)->assert_expr(e);
}
to_solver_ref(s)->set_model_converter(ctx->get_model_converter());
}
@ -179,6 +177,7 @@ extern "C" {
LOG_Z3_solver_from_file(c, s, file_name);
char const* ext = get_extension(file_name);
std::ifstream is(file_name);
init_solver(c, s);
if (!is) {
SET_ERROR_CODE(Z3_FILE_ACCESS_ERROR, nullptr);
}
@ -368,7 +367,22 @@ extern "C" {
v->m_ast_vector.push_back(f);
}
RETURN_Z3(of_ast_vector(v));
Z3_CATCH_RETURN(0);
Z3_CATCH_RETURN(nullptr);
}
Z3_ast_vector Z3_API Z3_solver_get_non_units(Z3_context c, Z3_solver s) {
Z3_TRY;
LOG_Z3_solver_get_non_units(c, s);
RESET_ERROR_CODE();
init_solver(c, s);
Z3_ast_vector_ref * v = alloc(Z3_ast_vector_ref, *mk_c(c), mk_c(c)->m());
mk_c(c)->save_object(v);
expr_ref_vector fmls = to_solver_ref(s)->get_non_units(mk_c(c)->m());
for (expr* f : fmls) {
v->m_ast_vector.push_back(f);
}
RETURN_Z3(of_ast_vector(v));
Z3_CATCH_RETURN(nullptr);
}
static Z3_lbool _solver_check(Z3_context c, Z3_solver s, unsigned num_assumptions, Z3_ast const assumptions[]) {
@ -615,7 +629,7 @@ extern "C" {
}
catch (z3_exception & ex) {
mk_c(c)->handle_exception(ex);
return 0;
return nullptr;
}
}
Z3_ast_vector_ref * v = alloc(Z3_ast_vector_ref, *mk_c(c), mk_c(c)->m());
@ -628,7 +642,7 @@ extern "C" {
to_ast_vector_ref(vs).push_back(a);
}
RETURN_Z3(of_ast_vector(v));
Z3_CATCH_RETURN(0);
Z3_CATCH_RETURN(nullptr);
}

View file

@ -127,6 +127,14 @@ namespace z3 {
unsat, sat, unknown
};
enum rounding_mode {
RNA,
RNE,
RTP,
RTN,
RTZ
};
inline check_result to_check_result(Z3_lbool l) {
if (l == Z3_L_TRUE) return sat;
else if (l == Z3_L_FALSE) return unsat;
@ -137,12 +145,17 @@ namespace z3 {
/**
\brief A Context manages all other Z3 objects, global configuration options, etc.
*/
class context {
private:
bool m_enable_exceptions;
rounding_mode m_rounding_mode;
Z3_context m_ctx;
void init(config & c) {
m_ctx = Z3_mk_context_rc(c);
m_enable_exceptions = true;
m_rounding_mode = RNA;
Z3_set_error_handler(m_ctx, 0);
Z3_set_ast_print_mode(m_ctx, Z3_PRINT_SMTLIB2_COMPLIANT);
}
@ -171,7 +184,7 @@ namespace z3 {
}
/**
\brief The C++ API uses by defaults exceptions on errors.
\brief The C++ API uses by defaults exceptions on errors.
For applications that don't work well with exceptions (there should be only few)
you have the ability to turn off exceptions. The tradeoffs are that applications
have to be very careful about using check_error() after calls that may result in an
@ -247,6 +260,26 @@ namespace z3 {
*/
sort array_sort(sort d, sort r);
sort array_sort(sort_vector const& d, sort r);
/**
\brief Return a floating point sort.
\c ebits is a number of exponent bits,
\c sbits is a number of significand bits,
\pre where ebits must be larger than 1 and sbits must be larger than 2.
*/
sort fpa_sort(unsigned ebits, unsigned sbits);
/**
\brief Return a FloatingPoint sort with given precision bitwidth (16, 32, 64 or 128).
*/
template<size_t precision>
sort fpa_sort();
/**
\brief Return a RoundingMode sort.
*/
sort fpa_rounding_mode();
/**
\breif Sets RoundingMode of FloatingPoints.
*/
void set_rounding_mode(rounding_mode rm);
/**
\brief Return an enumeration sort: enum_names[0], ..., enum_names[n-1].
\c cs and \c ts are output parameters. The method stores in \c cs the constants corresponding to the enumerated elements,
@ -284,6 +317,10 @@ namespace z3 {
expr int_const(char const * name);
expr real_const(char const * name);
expr bv_const(char const * name, unsigned sz);
expr fpa_const(char const * name, unsigned ebits, unsigned sbits);
template<size_t precision>
expr fpa_const(char const * name);
expr bool_val(bool b);
@ -307,6 +344,9 @@ namespace z3 {
expr bv_val(char const * n, unsigned sz);
expr bv_val(unsigned n, bool const* bits);
expr fpa_val(double n);
expr fpa_val(float n);
expr string_val(char const* s);
expr string_val(std::string const& s);
@ -465,6 +505,7 @@ namespace z3 {
public:
sort(context & c):ast(c) {}
sort(context & c, Z3_sort s):ast(c, reinterpret_cast<Z3_ast>(s)) {}
sort(context & c, Z3_ast a):ast(c, a) {}
sort(sort const & s):ast(s) {}
operator Z3_sort() const { return reinterpret_cast<Z3_sort>(m_ast); }
/**
@ -523,6 +564,10 @@ namespace z3 {
\brief Return true if this sort is a Finite domain sort.
*/
bool is_finite_domain() const { return sort_kind() == Z3_FINITE_DOMAIN_SORT; }
/**
\brief Return true if this sort is a Floating point sort.
*/
bool is_fpa() const { return sort_kind() == Z3_FLOATING_POINT_SORT; }
/**
\brief Return the size of this Bit-vector sort.
@ -531,6 +576,9 @@ namespace z3 {
*/
unsigned bv_size() const { assert(is_bv()); unsigned r = Z3_get_bv_sort_size(ctx(), *this); check_error(); return r; }
unsigned fpa_ebits() const { assert(is_fpa()); unsigned r = Z3_fpa_get_ebits(ctx(), *this); check_error(); return r; }
unsigned fpa_sbits() const { assert(is_fpa()); unsigned r = Z3_fpa_get_sbits(ctx(), *this); check_error(); return r; }
/**
\brief Return the domain of this Array sort.
@ -634,7 +682,7 @@ namespace z3 {
\brief Return true if this is a regular expression.
*/
bool is_re() const { return get_sort().is_re(); }
/**
\brief Return true if this is a Finite-domain expression.
@ -644,6 +692,10 @@ namespace z3 {
*/
bool is_finite_domain() const { return get_sort().is_finite_domain(); }
/**
\brief Return true if this is a FloatingPoint expression. .
*/
bool is_fpa() const { return get_sort().is_fpa(); }
/**
\brief Return true if this expression is a numeral.
@ -696,29 +748,29 @@ namespace z3 {
\brief Return true if this expression is well sorted (aka type correct).
*/
bool is_well_sorted() const { bool r = Z3_is_well_sorted(ctx(), m_ast) != 0; check_error(); return r; }
/**
\brief Return string representation of numeral or algebraic number
This method assumes the expression is numeral or algebraic
\pre is_numeral() || is_algebraic()
*/
std::string get_decimal_string(int precision) const {
assert(is_numeral() || is_algebraic());
return std::string(Z3_get_numeral_decimal_string(ctx(), m_ast, precision));
}
/**
\brief Return int value of numeral, throw if result cannot fit in
machine int
It only makes sense to use this function if the caller can ensure that
the result is an integer or if exceptions are enabled.
the result is an integer or if exceptions are enabled.
If exceptions are disabled, then use the is_numeral_i function.
\pre is_numeral()
*/
int get_numeral_int() const {
int get_numeral_int() const {
int result = 0;
if (!is_numeral_i(result)) {
assert(ctx().enable_exceptions());
@ -727,13 +779,13 @@ namespace z3 {
}
return result;
}
/**
\brief Return uint value of numeral, throw if result cannot fit in
machine uint
It only makes sense to use this function if the caller can ensure that
the result is an integer or if exceptions are enabled.
the result is an integer or if exceptions are enabled.
If exceptions are disabled, then use the is_numeral_u function.
\pre is_numeral()
*/
@ -747,11 +799,11 @@ namespace z3 {
}
return result;
}
/**
\brief Return \c int64_t value of numeral, throw if result cannot fit in
\c int64_t.
\pre is_numeral()
*/
int64_t get_numeral_int64() const {
@ -764,11 +816,11 @@ namespace z3 {
}
return result;
}
/**
\brief Return \c uint64_t value of numeral, throw if result cannot fit in
\c uint64_t.
\pre is_numeral()
*/
uint64_t get_numeral_uint64() const {
@ -786,7 +838,7 @@ namespace z3 {
return Z3_get_bool_value(ctx(), m_ast);
}
expr numerator() const {
expr numerator() const {
assert(is_numeral());
Z3_ast r = Z3_get_numerator(ctx(), m_ast);
check_error();
@ -794,7 +846,7 @@ namespace z3 {
}
expr denominator() const {
expr denominator() const {
assert(is_numeral());
Z3_ast r = Z3_get_denominator(ctx(), m_ast);
check_error();
@ -803,6 +855,17 @@ namespace z3 {
operator Z3_app() const { assert(is_app()); return reinterpret_cast<Z3_app>(m_ast); }
/**
\brief Return a RoundingMode sort.
*/
sort fpa_rounding_mode() {
assert(is_fpa());
Z3_sort s = ctx().fpa_rounding_mode();
check_error();
return sort(ctx(), s);
}
/**
\brief Return the declaration associated with this application.
This method assumes the expression is an application.
@ -905,7 +968,7 @@ namespace z3 {
bool is_implies() const { return is_app() && Z3_OP_IMPLIES == decl().decl_kind(); }
bool is_eq() const { return is_app() && Z3_OP_EQ == decl().decl_kind(); }
bool is_ite() const { return is_app() && Z3_OP_ITE == decl().decl_kind(); }
friend expr distinct(expr_vector const& args);
friend expr concat(expr const& a, expr const& b);
friend expr concat(expr_vector const& args);
@ -992,23 +1055,34 @@ namespace z3 {
friend expr nor(expr const& a, expr const& b);
friend expr xnor(expr const& a, expr const& b);
friend expr min(expr const& a, expr const& b);
friend expr max(expr const& a, expr const& b);
expr rotate_left(unsigned i) { Z3_ast r = Z3_mk_rotate_left(ctx(), i, *this); ctx().check_error(); return expr(ctx(), r); }
expr rotate_right(unsigned i) { Z3_ast r = Z3_mk_rotate_right(ctx(), i, *this); ctx().check_error(); return expr(ctx(), r); }
expr repeat(unsigned i) { Z3_ast r = Z3_mk_repeat(ctx(), i, *this); ctx().check_error(); return expr(ctx(), r); }
friend expr abs(expr const & a);
friend expr sqrt(expr const & a, expr const & rm);
friend expr operator~(expr const & a);
expr extract(unsigned hi, unsigned lo) const { Z3_ast r = Z3_mk_extract(ctx(), hi, lo, *this); ctx().check_error(); return expr(ctx(), r); }
expr extract(unsigned hi, unsigned lo) const { Z3_ast r = Z3_mk_extract(ctx(), hi, lo, *this); ctx().check_error(); return expr(ctx(), r); }
unsigned lo() const { assert (is_app() && Z3_get_decl_num_parameters(ctx(), decl()) == 2); return static_cast<unsigned>(Z3_get_decl_int_parameter(ctx(), decl(), 1)); }
unsigned hi() const { assert (is_app() && Z3_get_decl_num_parameters(ctx(), decl()) == 2); return static_cast<unsigned>(Z3_get_decl_int_parameter(ctx(), decl(), 0)); }
/**
\brief FloatingPoint fused multiply-add.
*/
friend expr fma(expr const& a, expr const& b, expr const& c);
/**
\brief sequence and regular expression operations.
+ is overloaded as sequence concatenation and regular expression union.
concat is overloaded to handle sequences and regular expressions
*/
expr extract(expr const& offset, expr const& length) const {
expr extract(expr const& offset, expr const& length) const {
check_context(*this, offset); check_context(offset, length);
Z3_ast r = Z3_mk_seq_extract(ctx(), *this, offset, length); check_error(); return expr(ctx(), r);
Z3_ast r = Z3_mk_seq_extract(ctx(), *this, offset, length); check_error(); return expr(ctx(), r);
}
expr replace(expr const& src, expr const& dst) const {
check_context(*this, src); check_context(src, dst);
@ -1049,19 +1123,19 @@ namespace z3 {
return expr(ctx(), r);
}
friend expr range(expr const& lo, expr const& hi);
friend expr range(expr const& lo, expr const& hi);
/**
\brief create a looping regular expression.
*/
expr loop(unsigned lo) {
Z3_ast r = Z3_mk_re_loop(ctx(), m_ast, lo, 0);
check_error();
return expr(ctx(), r);
Z3_ast r = Z3_mk_re_loop(ctx(), m_ast, lo, 0);
check_error();
return expr(ctx(), r);
}
expr loop(unsigned lo, unsigned hi) {
Z3_ast r = Z3_mk_re_loop(ctx(), m_ast, lo, hi);
check_error();
return expr(ctx(), r);
Z3_ast r = Z3_mk_re_loop(ctx(), m_ast, lo, hi);
check_error();
return expr(ctx(), r);
}
@ -1094,7 +1168,7 @@ namespace z3 {
inline expr implies(expr const & a, expr const & b) {
assert(a.is_bool() && b.is_bool());
assert(a.is_bool() && b.is_bool());
_Z3_MK_BIN_(a, b, Z3_mk_implies);
}
inline expr implies(expr const & a, bool b) { return implies(a, a.ctx().bool_val(b)); }
@ -1109,7 +1183,13 @@ namespace z3 {
inline expr mod(expr const & a, int b) { return mod(a, a.ctx().num_val(b, a.get_sort())); }
inline expr mod(int a, expr const & b) { return mod(b.ctx().num_val(a, b.get_sort()), b); }
inline expr rem(expr const& a, expr const& b) { _Z3_MK_BIN_(a, b, Z3_mk_rem); }
inline expr rem(expr const& a, expr const& b) {
if (a.is_fpa() && b.is_fpa()) {
_Z3_MK_BIN_(a, b, Z3_mk_fpa_rem);
} else {
_Z3_MK_BIN_(a, b, Z3_mk_rem);
}
}
inline expr rem(expr const & a, int b) { return rem(a, a.ctx().num_val(b, a.get_sort())); }
inline expr rem(int a, expr const & b) { return rem(b.ctx().num_val(a, b.get_sort()), b); }
@ -1158,8 +1238,8 @@ namespace z3 {
a.check_error();
return expr(a.ctx(), r);
}
inline expr operator==(expr const & a, int b) { assert(a.is_arith() || a.is_bv()); return a == a.ctx().num_val(b, a.get_sort()); }
inline expr operator==(int a, expr const & b) { assert(b.is_arith() || b.is_bv()); return b.ctx().num_val(a, b.get_sort()) == b; }
inline expr operator==(expr const & a, int b) { assert(a.is_arith() || a.is_bv() || a.is_fpa()); return a == a.ctx().num_val(b, a.get_sort()); }
inline expr operator==(int a, expr const & b) { assert(b.is_arith() || b.is_bv() || b.is_fpa()); return b.ctx().num_val(a, b.get_sort()) == b; }
inline expr operator!=(expr const & a, expr const & b) {
check_context(a, b);
@ -1168,8 +1248,8 @@ namespace z3 {
a.check_error();
return expr(a.ctx(), r);
}
inline expr operator!=(expr const & a, int b) { assert(a.is_arith() || a.is_bv()); return a != a.ctx().num_val(b, a.get_sort()); }
inline expr operator!=(int a, expr const & b) { assert(b.is_arith() || b.is_bv()); return b.ctx().num_val(a, b.get_sort()) != b; }
inline expr operator!=(expr const & a, int b) { assert(a.is_arith() || a.is_bv() || a.is_fpa()); return a != a.ctx().num_val(b, a.get_sort()); }
inline expr operator!=(int a, expr const & b) { assert(b.is_arith() || b.is_bv() || b.is_fpa()); return b.ctx().num_val(a, b.get_sort()) != b; }
inline expr operator+(expr const & a, expr const & b) {
check_context(a, b);
@ -1188,6 +1268,9 @@ namespace z3 {
Z3_ast _args[2] = { a, b };
r = Z3_mk_re_union(a.ctx(), 2, _args);
}
else if (a.is_fpa() && b.is_fpa()) {
r = Z3_mk_fpa_add(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
}
else {
// operator is not supported by given arguments.
assert(false);
@ -1208,6 +1291,9 @@ namespace z3 {
else if (a.is_bv() && b.is_bv()) {
r = Z3_mk_bvmul(a.ctx(), a, b);
}
else if (a.is_fpa() && b.is_fpa()) {
r = Z3_mk_fpa_mul(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
}
else {
// operator is not supported by given arguments.
assert(false);
@ -1245,6 +1331,9 @@ namespace z3 {
else if (a.is_bv() && b.is_bv()) {
r = Z3_mk_bvsdiv(a.ctx(), a, b);
}
else if (a.is_fpa() && b.is_fpa()) {
r = Z3_mk_fpa_div(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
}
else {
// operator is not supported by given arguments.
assert(false);
@ -1263,6 +1352,9 @@ namespace z3 {
else if (a.is_bv()) {
r = Z3_mk_bvneg(a.ctx(), a);
}
else if (a.is_fpa()) {
r = Z3_mk_fpa_neg(a.ctx(), a);
}
else {
// operator is not supported by given arguments.
assert(false);
@ -1281,6 +1373,9 @@ namespace z3 {
else if (a.is_bv() && b.is_bv()) {
r = Z3_mk_bvsub(a.ctx(), a, b);
}
else if (a.is_fpa() && b.is_fpa()) {
r = Z3_mk_fpa_sub(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
}
else {
// operator is not supported by given arguments.
assert(false);
@ -1300,6 +1395,9 @@ namespace z3 {
else if (a.is_bv() && b.is_bv()) {
r = Z3_mk_bvsle(a.ctx(), a, b);
}
else if (a.is_fpa() && b.is_fpa()) {
r = Z3_mk_fpa_leq(a.ctx(), a, b);
}
else {
// operator is not supported by given arguments.
assert(false);
@ -1322,6 +1420,9 @@ namespace z3 {
else if (a.is_bv() && b.is_bv()) {
r = Z3_mk_bvslt(a.ctx(), a, b);
}
else if (a.is_fpa() && b.is_fpa()) {
r = Z3_mk_fpa_lt(a.ctx(), a, b);
}
else {
// operator is not supported by given arguments.
assert(false);
@ -1341,6 +1442,9 @@ namespace z3 {
else if (a.is_bv() && b.is_bv()) {
r = Z3_mk_bvsgt(a.ctx(), a, b);
}
else if (a.is_fpa() && b.is_fpa()) {
r = Z3_mk_fpa_gt(a.ctx(), a, b);
}
else {
// operator is not supported by given arguments.
assert(false);
@ -1366,17 +1470,30 @@ namespace z3 {
inline expr nand(expr const& a, expr const& b) { check_context(a, b); Z3_ast r = Z3_mk_bvnand(a.ctx(), a, b); return expr(a.ctx(), r); }
inline expr nor(expr const& a, expr const& b) { check_context(a, b); Z3_ast r = Z3_mk_bvnor(a.ctx(), a, b); return expr(a.ctx(), r); }
inline expr xnor(expr const& a, expr const& b) { check_context(a, b); Z3_ast r = Z3_mk_bvxnor(a.ctx(), a, b); return expr(a.ctx(), r); }
inline expr min(expr const& a, expr const& b) { check_context(a, b); Z3_ast r = Z3_mk_fpa_min(a.ctx(), a, b); return expr(a.ctx(), r); }
inline expr max(expr const& a, expr const& b) { check_context(a, b); Z3_ast r = Z3_mk_fpa_max(a.ctx(), a, b); return expr(a.ctx(), r); }
inline expr abs(expr const & a) { Z3_ast r = Z3_mk_fpa_abs(a.ctx(), a); return expr(a.ctx(), r); }
inline expr sqrt(expr const & a, expr const& rm) {
check_context(a, rm);
assert(a.is_fpa());
Z3_ast r = Z3_mk_fpa_sqrt(a.ctx(), rm, a);
return expr(a.ctx(), r);
}
inline expr operator~(expr const & a) { Z3_ast r = Z3_mk_bvnot(a.ctx(), a); return expr(a.ctx(), r); }
inline expr fma(expr const& a, expr const& b, expr const& c, expr const& rm) {
check_context(a, b); check_context(a, c); check_context(a, rm);
assert(a.is_fpa() && b.is_fpa() && c.is_fpa());
Z3_ast r = Z3_mk_fpa_fma(a.ctx(), rm, a, b, c);
a.check_error();
return expr(a.ctx(), r);
}
/**
\brief Create the if-then-else expression <tt>ite(c, t, e)</tt>
\pre c.is_bool()
*/
inline expr ite(expr const & c, expr const & t, expr const & e) {
check_context(c, t); check_context(c, e);
assert(c.is_bool());
@ -1453,45 +1570,45 @@ namespace z3 {
inline expr smod(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvsmod(a.ctx(), a, b)); }
inline expr smod(expr const & a, int b) { return smod(a, a.ctx().num_val(b, a.get_sort())); }
inline expr smod(int a, expr const & b) { return smod(b.ctx().num_val(a, b.get_sort()), b); }
/**
\brief unsigned reminder operator for bitvectors
*/
inline expr urem(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvurem(a.ctx(), a, b)); }
inline expr urem(expr const & a, int b) { return urem(a, a.ctx().num_val(b, a.get_sort())); }
inline expr urem(int a, expr const & b) { return urem(b.ctx().num_val(a, b.get_sort()), b); }
/**
\brief shift left operator for bitvectors
*/
inline expr shl(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvshl(a.ctx(), a, b)); }
inline expr shl(expr const & a, int b) { return shl(a, a.ctx().num_val(b, a.get_sort())); }
inline expr shl(int a, expr const & b) { return shl(b.ctx().num_val(a, b.get_sort()), b); }
/**
\brief logic shift right operator for bitvectors
*/
inline expr lshr(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvlshr(a.ctx(), a, b)); }
inline expr lshr(expr const & a, int b) { return lshr(a, a.ctx().num_val(b, a.get_sort())); }
inline expr lshr(int a, expr const & b) { return lshr(b.ctx().num_val(a, b.get_sort()), b); }
/**
\brief arithmetic shift right operator for bitvectors
*/
inline expr ashr(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvashr(a.ctx(), a, b)); }
inline expr ashr(expr const & a, int b) { return ashr(a, a.ctx().num_val(b, a.get_sort())); }
inline expr ashr(int a, expr const & b) { return ashr(b.ctx().num_val(a, b.get_sort()), b); }
/**
\brief Extend the given bit-vector with zeros to the (unsigned) equivalent bitvector of size m+i, where m is the size of the given bit-vector.
*/
inline expr zext(expr const & a, unsigned i) { return to_expr(a.ctx(), Z3_mk_zero_ext(a.ctx(), i, a)); }
/**
\brief Sign-extend of the given bit-vector to the (signed) equivalent bitvector of size m+i, where m is the size of the given bit-vector.
*/
inline expr sext(expr const & a, unsigned i) { return to_expr(a.ctx(), Z3_mk_sign_ext(a.ctx(), i, a)); }
template<typename T> class cast_ast;
template<> class cast_ast<ast> {
@ -1563,7 +1680,7 @@ namespace z3 {
unsigned m_index;
public:
iterator(ast_vector_tpl const* v, unsigned i): m_vector(v), m_index(i) {}
iterator(iterator& other): m_vector(other.m_vector), m_index(other.m_index) {}
iterator(iterator& other): m_vector(other.m_vector), m_index(other.m_index) {}
iterator operator=(iterator const& other) { m_vector = other.m_vector; m_index = other.m_index; return *this; }
bool operator==(iterator const& other) {
@ -1773,7 +1890,7 @@ namespace z3 {
return expr(ctx, r);
}
inline expr mk_or(expr_vector const& args) {
inline expr mk_or(expr_vector const& args) {
array<Z3_ast> _args(args);
Z3_ast r = Z3_mk_or(args.ctx(), _args.size(), _args.ptr());
args.check_error();
@ -1852,7 +1969,7 @@ namespace z3 {
model(context & c):object(c) { init(Z3_mk_model(c)); }
model(context & c, Z3_model m):object(c) { init(m); }
model(model const & s):object(s) { init(s.m_model); }
model(model& src, context& dst, translate) : object(dst) { init(Z3_model_translate(src.ctx(), src, dst)); }
model(model& src, context& dst, translate) : object(dst) { init(Z3_model_translate(src.ctx(), src, dst)); }
~model() { Z3_model_dec_ref(ctx(), m_model); }
operator Z3_model() const { return m_model; }
model & operator=(model const & s) {
@ -1884,7 +2001,7 @@ namespace z3 {
}
// returns interpretation of constant declaration c.
// If c is not assigned any value in the model it returns
// If c is not assigned any value in the model it returns
// an expression with a null ast reference.
expr get_const_interp(func_decl c) const {
check_context(*this, c);
@ -1898,7 +2015,7 @@ namespace z3 {
check_error();
return func_interp(ctx(), r);
}
// returns true iff the model contains an interpretation
// for function f.
bool has_interp(func_decl f) const {
@ -1945,7 +2062,7 @@ namespace z3 {
bool is_uint(unsigned i) const { Z3_bool r = Z3_stats_is_uint(ctx(), m_stats, i); check_error(); return r != 0; }
bool is_double(unsigned i) const { Z3_bool r = Z3_stats_is_double(ctx(), m_stats, i); check_error(); return r != 0; }
unsigned uint_value(unsigned i) const { unsigned r = Z3_stats_get_uint_value(ctx(), m_stats, i); check_error(); return r; }
double double_value(unsigned i) const { double r = Z3_stats_get_double_value(ctx(), m_stats, i); check_error(); return r; }
double double_value(unsigned i) const { double r = Z3_stats_get_double_value(ctx(), m_stats, i); check_error(); return r; }
friend std::ostream & operator<<(std::ostream & out, stats const & s);
};
inline std::ostream & operator<<(std::ostream & out, stats const & s) { out << Z3_stats_to_string(s.ctx(), s); return out; }
@ -2001,7 +2118,7 @@ namespace z3 {
void add(expr const & e, char const * p) {
add(e, ctx().bool_const(p));
}
// fails for some compilers:
// fails for some compilers:
// void add(expr_vector const& v) { check_context(*this, v); for (expr e : v) add(e); }
void from_file(char const* file) { Z3_solver_from_file(ctx(), m_solver, file); ctx().check_parser_error(); }
void from_string(char const* s) { Z3_solver_from_string(ctx(), m_solver, s); ctx().check_parser_error(); }
@ -2038,6 +2155,8 @@ namespace z3 {
stats statistics() const { Z3_stats r = Z3_solver_get_statistics(ctx(), m_solver); check_error(); return stats(ctx(), r); }
expr_vector unsat_core() const { Z3_ast_vector r = Z3_solver_get_unsat_core(ctx(), m_solver); check_error(); return expr_vector(ctx(), r); }
expr_vector assertions() const { Z3_ast_vector r = Z3_solver_get_assertions(ctx(), m_solver); check_error(); return expr_vector(ctx(), r); }
expr_vector non_units() const { Z3_ast_vector r = Z3_solver_get_non_units(ctx(), m_solver); check_error(); return expr_vector(ctx(), r); }
expr_vector units() const { Z3_ast_vector r = Z3_solver_get_units(ctx(), m_solver); check_error(); return expr_vector(ctx(), r); }
expr proof() const { Z3_ast r = Z3_solver_get_proof(ctx(), m_solver); check_error(); return expr(ctx(), r); }
friend std::ostream & operator<<(std::ostream & out, solver const & s);
@ -2064,11 +2183,11 @@ namespace z3 {
param_descrs get_param_descrs() { return param_descrs(ctx(), Z3_solver_get_param_descrs(ctx(), m_solver)); }
expr_vector cube(expr_vector& vars, unsigned cutoff) {
Z3_ast_vector r = Z3_solver_cube(ctx(), m_solver, vars, cutoff);
check_error();
return expr_vector(ctx(), r);
}
expr_vector cube(expr_vector& vars, unsigned cutoff) {
Z3_ast_vector r = Z3_solver_cube(ctx(), m_solver, vars, cutoff);
check_error();
return expr_vector(ctx(), r);
}
class cube_iterator {
solver& m_solver;
@ -2116,7 +2235,7 @@ namespace z3 {
cube_iterator operator++(int) { assert(false); return *this; }
expr_vector const * operator->() const { return &(operator*()); }
expr_vector const& operator*() const { return m_cube; }
bool operator==(cube_iterator const& other) {
return other.m_end == m_end;
};
@ -2405,7 +2524,7 @@ namespace z3 {
class optimize : public object {
Z3_optimize m_opt;
public:
class handle {
unsigned m_h;
@ -2453,8 +2572,20 @@ namespace z3 {
void pop() {
Z3_optimize_pop(ctx(), m_opt);
}
check_result check() { Z3_lbool r = Z3_optimize_check(ctx(), m_opt); check_error(); return to_check_result(r); }
check_result check() { Z3_lbool r = Z3_optimize_check(ctx(), m_opt, 0, 0); check_error(); return to_check_result(r); }
check_result check(expr_vector const& asms) {
unsigned n = asms.size();
array<Z3_ast> _asms(n);
for (unsigned i = 0; i < n; i++) {
check_context(*this, asms[i]);
_asms[i] = asms[i];
}
Z3_lbool r = Z3_optimize_check(ctx(), m_opt, n, _asms.ptr());
check_error();
return to_check_result(r);
}
model get_model() const { Z3_model m = Z3_optimize_get_model(ctx(), m_opt); check_error(); return model(ctx(), m); }
expr_vector unsat_core() const { Z3_ast_vector r = Z3_optimize_get_unsat_core(ctx(), m_opt); check_error(); return expr_vector(ctx(), r); }
void set(params const & p) { Z3_optimize_set_params(ctx(), m_opt, p); check_error(); }
expr lower(handle const& h) {
Z3_ast r = Z3_optimize_get_lower(ctx(), m_opt, h.h());
@ -2481,25 +2612,25 @@ namespace z3 {
public:
fixedpoint(context& c):object(c) { m_fp = Z3_mk_fixedpoint(c); Z3_fixedpoint_inc_ref(c, m_fp); }
~fixedpoint() { Z3_fixedpoint_dec_ref(ctx(), m_fp); }
operator Z3_fixedpoint() const { return m_fp; }
operator Z3_fixedpoint() const { return m_fp; }
void from_string(char const* s) { Z3_fixedpoint_from_string(ctx(), m_fp, s); check_error(); }
void from_file(char const* s) { Z3_fixedpoint_from_file(ctx(), m_fp, s); check_error(); }
void add_rule(expr& rule, symbol const& name) { Z3_fixedpoint_add_rule(ctx(), m_fp, rule, name); check_error(); }
void add_fact(func_decl& f, unsigned * args) { Z3_fixedpoint_add_fact(ctx(), m_fp, f, f.arity(), args); check_error(); }
check_result query(expr& q) { Z3_lbool r = Z3_fixedpoint_query(ctx(), m_fp, q); check_error(); return to_check_result(r); }
check_result query(func_decl_vector& relations) {
check_result query(func_decl_vector& relations) {
array<Z3_func_decl> rs(relations);
Z3_lbool r = Z3_fixedpoint_query_relations(ctx(), m_fp, rs.size(), rs.ptr());
check_error();
return to_check_result(r);
Z3_lbool r = Z3_fixedpoint_query_relations(ctx(), m_fp, rs.size(), rs.ptr());
check_error();
return to_check_result(r);
}
expr get_answer() { Z3_ast r = Z3_fixedpoint_get_answer(ctx(), m_fp); check_error(); return expr(ctx(), r); }
std::string reason_unknown() { return Z3_fixedpoint_get_reason_unknown(ctx(), m_fp); }
void update_rule(expr& rule, symbol const& name) { Z3_fixedpoint_update_rule(ctx(), m_fp, rule, name); check_error(); }
unsigned get_num_levels(func_decl& p) { unsigned r = Z3_fixedpoint_get_num_levels(ctx(), m_fp, p); check_error(); return r; }
expr get_cover_delta(int level, func_decl& p) {
Z3_ast r = Z3_fixedpoint_get_cover_delta(ctx(), m_fp, level, p);
check_error();
expr get_cover_delta(int level, func_decl& p) {
Z3_ast r = Z3_fixedpoint_get_cover_delta(ctx(), m_fp, level, p);
check_error();
return expr(ctx(), r);
}
void add_cover(int level, func_decl& p, expr& property) { Z3_fixedpoint_add_cover(ctx(), m_fp, level, p, property); check_error(); }
@ -2513,7 +2644,7 @@ namespace z3 {
std::string to_string() { return Z3_fixedpoint_to_string(ctx(), m_fp, 0, 0); }
std::string to_string(expr_vector const& queries) {
array<Z3_ast> qs(queries);
return Z3_fixedpoint_to_string(ctx(), m_fp, qs.size(), qs.ptr());
return Z3_fixedpoint_to_string(ctx(), m_fp, qs.size(), qs.ptr());
}
void push() { Z3_fixedpoint_push(ctx(), m_fp); check_error(); }
void pop() { Z3_fixedpoint_pop(ctx(), m_fp); check_error(); }
@ -2548,11 +2679,37 @@ namespace z3 {
inline sort context::string_sort() { Z3_sort s = Z3_mk_string_sort(m_ctx); check_error(); return sort(*this, s); }
inline sort context::seq_sort(sort& s) { Z3_sort r = Z3_mk_seq_sort(m_ctx, s); check_error(); return sort(*this, r); }
inline sort context::re_sort(sort& s) { Z3_sort r = Z3_mk_re_sort(m_ctx, s); check_error(); return sort(*this, r); }
inline sort context::fpa_sort(unsigned ebits, unsigned sbits) { Z3_sort s = Z3_mk_fpa_sort(m_ctx, ebits, sbits); check_error(); return sort(*this, s); }
template<>
inline sort context::fpa_sort<16>() { return fpa_sort(5, 11); }
template<>
inline sort context::fpa_sort<32>() { return fpa_sort(8, 24); }
template<>
inline sort context::fpa_sort<64>() { return fpa_sort(11, 53); }
template<>
inline sort context::fpa_sort<128>() { return fpa_sort(15, 113); }
inline sort context::fpa_rounding_mode() {
switch (m_rounding_mode) {
case RNA: return sort(*this, Z3_mk_fpa_rna(m_ctx));
case RNE: return sort(*this, Z3_mk_fpa_rne(m_ctx));
case RTP: return sort(*this, Z3_mk_fpa_rtp(m_ctx));
case RTN: return sort(*this, Z3_mk_fpa_rtn(m_ctx));
case RTZ: return sort(*this, Z3_mk_fpa_rtz(m_ctx));
default: return sort(*this);
}
}
inline void context::set_rounding_mode(rounding_mode rm) { m_rounding_mode = rm; }
inline sort context::array_sort(sort d, sort r) { Z3_sort s = Z3_mk_array_sort(m_ctx, d, r); check_error(); return sort(*this, s); }
inline sort context::array_sort(sort_vector const& d, sort r) {
array<Z3_sort> dom(d);
Z3_sort s = Z3_mk_array_sort_n(m_ctx, dom.size(), dom.ptr(), r); check_error(); return sort(*this, s);
Z3_sort s = Z3_mk_array_sort_n(m_ctx, dom.size(), dom.ptr(), r); check_error(); return sort(*this, s);
}
inline sort context::enumeration_sort(char const * name, unsigned n, char const * const * enum_names, func_decl_vector & cs, func_decl_vector & ts) {
array<Z3_symbol> _enum_names(n);
@ -2667,6 +2824,10 @@ namespace z3 {
inline expr context::int_const(char const * name) { return constant(name, int_sort()); }
inline expr context::real_const(char const * name) { return constant(name, real_sort()); }
inline expr context::bv_const(char const * name, unsigned sz) { return constant(name, bv_sort(sz)); }
inline expr context::fpa_const(char const * name, unsigned ebits, unsigned sbits) { return constant(name, fpa_sort(ebits, sbits)); }
template<size_t precision>
inline expr context::fpa_const(char const * name) { return constant(name, fpa_sort<precision>()); }
inline expr context::bool_val(bool b) { return b ? expr(*this, Z3_mk_true(m_ctx)) : expr(*this, Z3_mk_false(m_ctx)); }
@ -2688,12 +2849,15 @@ namespace z3 {
inline expr context::bv_val(int64_t n, unsigned sz) { sort s = bv_sort(sz); Z3_ast r = Z3_mk_int64(m_ctx, n, s); check_error(); return expr(*this, r); }
inline expr context::bv_val(uint64_t n, unsigned sz) { sort s = bv_sort(sz); Z3_ast r = Z3_mk_unsigned_int64(m_ctx, n, s); check_error(); return expr(*this, r); }
inline expr context::bv_val(char const * n, unsigned sz) { sort s = bv_sort(sz); Z3_ast r = Z3_mk_numeral(m_ctx, n, s); check_error(); return expr(*this, r); }
inline expr context::bv_val(unsigned n, bool const* bits) {
inline expr context::bv_val(unsigned n, bool const* bits) {
array<Z3_bool> _bits(n);
for (unsigned i = 0; i < n; ++i) _bits[i] = bits[i] ? 1 : 0;
Z3_ast r = Z3_mk_bv_numeral(m_ctx, n, _bits.ptr()); check_error(); return expr(*this, r);
Z3_ast r = Z3_mk_bv_numeral(m_ctx, n, _bits.ptr()); check_error(); return expr(*this, r);
}
inline expr context::fpa_val(double n) { sort s = fpa_sort<64>(); Z3_ast r = Z3_mk_fpa_numeral_double(m_ctx, n, s); check_error(); return expr(*this, r); }
inline expr context::fpa_val(float n) { sort s = fpa_sort<32>(); Z3_ast r = Z3_mk_fpa_numeral_float(m_ctx, n, s); check_error(); return expr(*this, r); }
inline expr context::string_val(char const* s) { Z3_ast r = Z3_mk_string(m_ctx, s); check_error(); return expr(*this, r); }
inline expr context::string_val(std::string const& s) { Z3_ast r = Z3_mk_string(m_ctx, s.c_str()); check_error(); return expr(*this, r); }
@ -2817,8 +2981,8 @@ namespace z3 {
a.check_error();
return expr(a.ctx(), r);
}
inline expr select(expr const & a, int i) {
return select(a, a.ctx().num_val(i, a.get_sort().array_domain()));
inline expr select(expr const & a, int i) {
return select(a, a.ctx().num_val(i, a.get_sort().array_domain()));
}
inline expr select(expr const & a, expr_vector const & i) {
check_context(a, i);
@ -2848,10 +3012,10 @@ namespace z3 {
return expr(a.ctx(), r);
}
inline expr as_array(func_decl & f) {
Z3_ast r = Z3_mk_as_array(f.ctx(), f);
f.check_error();
return expr(f.ctx(), r);
inline expr as_array(func_decl & f) {
Z3_ast r = Z3_mk_as_array(f.ctx(), f);
f.check_error();
return expr(f.ctx(), r);
}
#define MK_EXPR1(_fn, _arg) \
@ -2883,21 +3047,21 @@ namespace z3 {
inline expr set_del(expr const& s, expr const& e) {
MK_EXPR2(Z3_mk_set_del, s, e);
}
}
inline expr set_union(expr const& a, expr const& b) {
check_context(a, b);
check_context(a, b);
Z3_ast es[2] = { a, b };
Z3_ast r = Z3_mk_set_union(a.ctx(), 2, es);
a.check_error();
a.check_error();
return expr(a.ctx(), r);
}
inline expr set_intersect(expr const& a, expr const& b) {
check_context(a, b);
check_context(a, b);
Z3_ast es[2] = { a, b };
Z3_ast r = Z3_mk_set_intersect(a.ctx(), 2, es);
a.check_error();
a.check_error();
return expr(a.ctx(), r);
}
@ -2981,10 +3145,10 @@ namespace z3 {
MK_EXPR1(Z3_mk_re_complement, a);
}
inline expr range(expr const& lo, expr const& hi) {
check_context(lo, hi);
Z3_ast r = Z3_mk_re_range(lo.ctx(), lo, hi);
lo.check_error();
return expr(lo.ctx(), r);
check_context(lo, hi);
Z3_ast r = Z3_mk_re_range(lo.ctx(), lo, hi);
lo.check_error();
return expr(lo.ctx(), r);
}
@ -2995,7 +3159,7 @@ namespace z3 {
Z3_ast_vector r = Z3_parse_smtlib2_string(*this, s, 0, 0, 0, 0, 0, 0);
check_error();
return expr_vector(*this, r);
}
inline expr_vector context::parse_file(char const* s) {
Z3_ast_vector r = Z3_parse_smtlib2_file(*this, s, 0, 0, 0, 0, 0, 0);

View file

@ -147,11 +147,6 @@ if (DOTNET_TOOLCHAIN_IS_WINDOWS)
"/nostdlib+"
"/reference:mscorlib.dll"
)
# FIXME: This flag only works when the working directory of csc.exe is
# the directory containing the ``libz3`` target. I can't get this to work
# correctly with multi-configuration generators (i.e. Visual Studio) so
# just don't set the flag for now.
#list(APPEND CSC_FLAGS "/linkresource:$<TARGET_FILE_NAME:libz3>")
elseif (DOTNET_TOOLCHAIN_IS_MONO)
# We need to give the assembly a strong name so that it can be installed
# into the GAC.

View file

@ -183,9 +183,9 @@ namespace Microsoft.Z3
/// don't use strict inequalities) meets the objectives.
/// </summary>
///
public Status Check()
public Status Check(params Expr[] assumptions)
{
Z3_lbool r = (Z3_lbool)Native.Z3_optimize_check(Context.nCtx, NativeObject);
Z3_lbool r = (Z3_lbool)Native.Z3_optimize_check(Context.nCtx, NativeObject, (uint)assumptions.Length, AST.ArrayToNative(assumptions));
switch (r)
{
case Z3_lbool.Z3_L_TRUE:
@ -236,6 +236,25 @@ namespace Microsoft.Z3
}
}
/// <summary>
/// The unsat core of the last <c>Check</c>.
/// </summary>
/// <remarks>
/// The unsat core is a subset of <c>assumptions</c>
/// The result is empty if <c>Check</c> was not invoked before,
/// if its results was not <c>UNSATISFIABLE</c>, or if core production is disabled.
/// </remarks>
public BoolExpr[] UnsatCore
{
get
{
Contract.Ensures(Contract.Result<Expr[]>() != null);
ASTVector core = new ASTVector(Context, Native.Z3_optimize_get_unsat_core(Context.nCtx, NativeObject));
return core.ToBoolExprArray();
}
}
/// <summary>
/// Declare an arithmetical maximization objective.
/// Return a handle to the objective. The handle is used as

View file

@ -1976,6 +1976,22 @@ public class Context implements AutoCloseable {
{
return (SeqExpr) Expr.create(this, Native.mkString(nCtx(), s));
}
/**
* Convert an integer expression to a string.
*/
public SeqExpr intToString(Expr e)
{
return (SeqExpr) Expr.create(this, Native.mkIntToStr(nCtx(), e.getNativeObject()));
}
/**
* Convert an integer expression to a string.
*/
public IntExpr stringToInt(Expr e)
{
return (IntExpr) Expr.create(this, Native.mkStrToInt(nCtx(), e.getNativeObject()));
}
/**
* Concatenate sequences.

View file

@ -161,9 +161,23 @@ public class Optimize extends Z3Object {
* Produce a model that (when the objectives are bounded and
* don't use strict inequalities) meets the objectives.
**/
public Status Check()
public Status Check(Expr... assumptions)
{
Z3_lbool r = Z3_lbool.fromInt(Native.optimizeCheck(getContext().nCtx(), getNativeObject()));
Z3_lbool r;
if (assumptions == null) {
r = Z3_lbool.fromInt(
Native.optimizeCheck(
getContext().nCtx(),
getNativeObject(), 0, null));
}
else {
r = Z3_lbool.fromInt(
Native.optimizeCheck(
getContext().nCtx(),
getNativeObject(),
assumptions.length,
AST.arrayToNative(assumptions)));
}
switch (r) {
case Z3_L_TRUE:
return Status.SATISFIABLE;
@ -209,6 +223,21 @@ public class Optimize extends Z3Object {
}
}
/**
* The unsat core of the last {@code Check}.
* Remarks: The unsat core
* is a subset of {@code Assumptions} The result is empty if
* {@code Check} was not invoked before, if its results was not
* {@code UNSATISFIABLE}, or if core production is disabled.
*
* @throws Z3Exception
**/
public BoolExpr[] getUnsatCore()
{
ASTVector core = new ASTVector(getContext(), Native.optimizeGetUnsatCore(getContext().nCtx(), getNativeObject()));
return core.ToBoolExprArray();
}
/**
* Declare an arithmetical maximization objective.
* Return a handle to the objective. The handle is used as

View file

@ -43,6 +43,14 @@ let mk_list f n =
in
mk_list' 0 []
let check_int32 v = v = Int32.to_int (Int32.of_int v)
let mk_int_expr ctx v ty =
if not (check_int32 v) then
Z3native.mk_numeral ctx (string_of_int v) ty
else
Z3native.mk_int ctx v ty
let mk_context (settings:(string * string) list) =
let cfg = Z3native.mk_config () in
let f e = Z3native.set_param_value cfg (fst e) (snd e) in
@ -531,7 +539,7 @@ end = struct
let mk_fresh_const (ctx:context) (prefix:string) (range:Sort.sort) = Z3native.mk_fresh_const ctx prefix range
let mk_app (ctx:context) (f:FuncDecl.func_decl) (args:expr list) = expr_of_func_app ctx f args
let mk_numeral_string (ctx:context) (v:string) (ty:Sort.sort) = Z3native.mk_numeral ctx v ty
let mk_numeral_int (ctx:context) (v:int) (ty:Sort.sort) = Z3native.mk_int ctx v ty
let mk_numeral_int (ctx:context) (v:int) (ty:Sort.sort) = mk_int_expr ctx v ty
let equal (a:expr) (b:expr) = AST.equal a b
let compare (a:expr) (b:expr) = AST.compare a b
end
@ -1036,7 +1044,7 @@ struct
let mk_mod = Z3native.mk_mod
let mk_rem = Z3native.mk_rem
let mk_numeral_s (ctx:context) (v:string) = Z3native.mk_numeral ctx v (mk_sort ctx)
let mk_numeral_i (ctx:context) (v:int) = Z3native.mk_int ctx v (mk_sort ctx)
let mk_numeral_i (ctx:context) (v:int) = mk_int_expr ctx v (mk_sort ctx)
let mk_int2real = Z3native.mk_int2real
let mk_int2bv = Z3native.mk_int2bv
end
@ -1061,11 +1069,13 @@ struct
let mk_numeral_nd (ctx:context) (num:int) (den:int) =
if den = 0 then
raise (Error "Denominator is zero")
else if not (check_int32 num) || not (check_int32 den) then
raise (Error "numerals don't fit in 32 bits")
else
Z3native.mk_real ctx num den
let mk_numeral_s (ctx:context) (v:string) = Z3native.mk_numeral ctx v (mk_sort ctx)
let mk_numeral_i (ctx:context) (v:int) = Z3native.mk_int ctx v (mk_sort ctx)
let mk_numeral_i (ctx:context) (v:int) = mk_int_expr ctx v (mk_sort ctx)
let mk_is_integer = Z3native.mk_is_int
let mk_real2int = Z3native.mk_real2int
@ -1155,11 +1165,6 @@ struct
let is_bv_xor3 (x:expr) = (AST.is_app x) && (FuncDecl.get_decl_kind (Expr.get_func_decl x) = OP_XOR3)
let get_size (x:Sort.sort) = Z3native.get_bv_sort_size (Sort.gc x) x
let get_int (x:expr) =
match Z3native.get_numeral_int (Expr.gc x) x with
| true, v -> v
| false, _ -> raise (Error "Conversion failed.")
let numeral_to_string (x:expr) = Z3native.get_numeral_string (Expr.gc x) x
let mk_const (ctx:context) (name:Symbol.symbol) (size:int) =
Expr.mk_const ctx name (mk_sort ctx size)
@ -1810,8 +1815,10 @@ struct
| _ -> UNKNOWN
let get_model x =
let q = Z3native.solver_get_model (gc x) x in
if Z3native.is_null_model q then None else Some q
try
let q = Z3native.solver_get_model (gc x) x in
if Z3native.is_null_model q then None else Some q
with | _ -> None
let get_proof x =
let q = Z3native.solver_get_proof (gc x) x in
@ -1940,15 +1947,17 @@ struct
let minimize (x:optimize) (e:Expr.expr) = mk_handle x (Z3native.optimize_minimize (gc x) x e)
let check (x:optimize) =
let r = lbool_of_int (Z3native.optimize_check (gc x) x) in
let r = lbool_of_int (Z3native.optimize_check (gc x) x) 0 [] in
match r with
| L_TRUE -> Solver.SATISFIABLE
| L_FALSE -> Solver.UNSATISFIABLE
| _ -> Solver.UNKNOWN
let get_model (x:optimize) =
let q = Z3native.optimize_get_model (gc x) x in
if Z3native.is_null_model q then None else Some q
try
let q = Z3native.optimize_get_model (gc x) x in
if Z3native.is_null_model q then None else Some q
with | _ -> None
let get_lower (x:handle) = Z3native.optimize_get_lower (gc x.opt) x.opt x.h
let get_upper (x:handle) = Z3native.optimize_get_upper (gc x.opt) x.opt x.h

View file

@ -1152,9 +1152,6 @@ sig
(** Create a new integer sort. *)
val mk_sort : context -> Sort.sort
(** Retrieve the int value. *)
val get_int : Expr.expr -> int
(** Get a big_int from an integer numeral *)
val get_big_int : Expr.expr -> Big_int.big_int
@ -1543,9 +1540,6 @@ sig
(** The size of a bit-vector sort. *)
val get_size : Sort.sort -> int
(** Retrieve the int value. *)
val get_int : Expr.expr -> int
(** Returns a string representation of a numeral. *)
val numeral_to_string : Expr.expr -> string
@ -3413,10 +3407,10 @@ sig
(** Parse the given string using the SMT-LIB2 parser.
@return A conjunction of assertions in the scope (up to push/pop) at the end of the string. *)
val parse_smtlib2_string : context -> string -> Symbol.symbol list -> Sort.sort list -> Symbol.symbol list -> FuncDecl.func_decl list -> Expr.expr
val parse_smtlib2_string : context -> string -> Symbol.symbol list -> Sort.sort list -> Symbol.symbol list -> FuncDecl.func_decl list -> AST.ASTVector.ast_vector
(** Parse the given file using the SMT-LIB2 parser. *)
val parse_smtlib2_file : context -> string -> Symbol.symbol list -> Sort.sort list -> Symbol.symbol list -> FuncDecl.func_decl list -> Expr.expr
val parse_smtlib2_file : context -> string -> Symbol.symbol list -> Sort.sort list -> Symbol.symbol list -> FuncDecl.func_decl list -> AST.ASTVector.ast_vector
end

View file

@ -12,8 +12,8 @@ If you are using a 64-bit Python interpreter, you should use
msbuild /p:configuration=external /p:platform=x64
On Linux and OSX, you must install Z3Py, before trying example.py.
To install Z3Py on Linux and OSX, you should execute the following
On Linux and macOS, you must install Z3Py, before trying example.py.
To install Z3Py on Linux and macOS, you should execute the following
command in the Z3 root directory
sudo make install-z3py

View file

@ -73,7 +73,7 @@ def _build_z3():
if subprocess.call(['nmake'], env=build_env,
cwd=BUILD_DIR) != 0:
raise LibError("Unable to build Z3.")
else: # linux and osx
else: # linux and macOS
if subprocess.call(['make', '-j', str(multiprocessing.cpu_count())],
env=build_env, cwd=BUILD_DIR) != 0:
raise LibError("Unable to build Z3.")

View file

@ -1258,6 +1258,11 @@ def Consts(names, sort):
names = names.split(" ")
return [Const(name, sort) for name in names]
def FreshConst(sort, prefix='c'):
"""Create a fresh constant of a specified sort"""
ctx = _get_ctx(sort.ctx)
return _to_expr_ref(Z3_mk_fresh_const(ctx.ref(), prefix, sort.ast), ctx)
def Var(idx, s):
"""Create a Z3 free variable. Free variables are used to create quantified formulas.
@ -1744,7 +1749,9 @@ class QuantifierRef(BoolRef):
return Z3_get_ast_id(self.ctx_ref(), self.as_ast())
def sort(self):
"""Return the Boolean sort."""
"""Return the Boolean sort or sort of Lambda."""
if self.is_lambda():
return _sort(self.ctx, self.as_ast())
return BoolSort(self.ctx)
def is_forall(self):
@ -2176,6 +2183,8 @@ class ArithRef(ExprRef):
>>> (x * y).sort()
Real
"""
if isinstance(other, BoolRef):
return If(other, self, 0)
a, b = _coerce_exprs(self, other)
return ArithRef(_mk_bin(Z3_mk_mul, a, b), self.ctx)
@ -4278,7 +4287,7 @@ def get_map_func(a):
_z3_assert(is_map(a), "Z3 array map expression expected.")
return FuncDeclRef(Z3_to_func_decl(a.ctx_ref(), Z3_get_decl_ast_parameter(a.ctx_ref(), a.decl().ast, 0)), a.ctx)
def ArraySort(d, r):
def ArraySort(*sig):
"""Return the Z3 array sort with the given domain and range sorts.
>>> A = ArraySort(IntSort(), BoolSort())
@ -4292,12 +4301,23 @@ def ArraySort(d, r):
>>> AA
Array(Int, Array(Int, Bool))
"""
sig = _get_args(sig)
if __debug__:
_z3_assert(is_sort(d), "Z3 sort expected")
_z3_assert(is_sort(r), "Z3 sort expected")
_z3_assert(d.ctx == r.ctx, "Context mismatch")
_z3_assert(len(sig) > 1, "At least two arguments expected")
arity = len(sig) - 1
r = sig[arity]
d = sig[0]
if __debug__:
for s in sig:
_z3_assert(is_sort(s), "Z3 sort expected")
_z3_assert(s.ctx == r.ctx, "Context mismatch")
ctx = d.ctx
return ArraySortRef(Z3_mk_array_sort(ctx.ref(), d.ast, r.ast), ctx)
if len(sig) == 2:
return ArraySortRef(Z3_mk_array_sort(ctx.ref(), d.ast, r.ast), ctx)
dom = (Sort * arity)()
for i in range(arity):
dom[i] = sig[i].ast
return ArraySortRef(Z3_mk_array_sort_n(ctx.ref(), arity, dom, r.ast), ctx)
def Array(name, dom, rng):
"""Return an array constant named `name` with the given domain and range sorts.
@ -6603,7 +6623,12 @@ class Solver(Z3PPObject):
_handle_parse_error(e, self.ctx)
def cube(self, vars = None):
"""Get set of cubes"""
"""Get set of cubes
The method takes an optional set of variables that restrict which
variables may be used as a starting point for cubing.
If vars is not None, then the first case split is based on a variable in
this set.
"""
self.cube_vs = AstVector(None, self.ctx)
if vars is not None:
for v in vars:
@ -6619,19 +6644,15 @@ class Solver(Z3PPObject):
return
def cube_vars(self):
"""Access the set of variables that were touched by the most recently generated cube.
This set of variables can be used as a starting point for additional cubes.
The idea is that variables that appear in clauses that are reduced by the most recent
cube are likely more useful to cube on."""
return self.cube_vs
def proof(self):
"""Return a proof for the last `check()`. Proof construction must be enabled."""
return _to_expr_ref(Z3_solver_get_proof(self.ctx.ref(), self.solver), self.ctx)
def from_file(self, filename):
"""Parse assertions from a file"""
Z3_solver_from_file(self.ctx.ref(), self.solver, filename)
def from_string(self, s):
"""Parse assertions from a string"""
Z3_solver_from_string(self.ctx.ref(), self.solver, s)
def assertions(self):
"""Return an AST vector containing all added constraints.
@ -6652,6 +6673,11 @@ class Solver(Z3PPObject):
"""
return AstVector(Z3_solver_get_units(self.ctx.ref(), self.solver), self.ctx)
def non_units(self):
"""Return an AST vector containing all atomic formulas in solver state that are not units.
"""
return AstVector(Z3_solver_get_non_units(self.ctx.ref(), self.solver), self.ctx)
def statistics(self):
"""Return statistics for the last `check()`.
@ -7285,10 +7311,15 @@ class Optimize(Z3PPObject):
"""restore to previously created backtracking point"""
Z3_optimize_pop(self.ctx.ref(), self.optimize)
def check(self):
def check(self, *assumptions):
"""Check satisfiability while optimizing objective functions."""
return CheckSatResult(Z3_optimize_check(self.ctx.ref(), self.optimize))
assumptions = _get_args(assumptions)
num = len(assumptions)
_assumptions = (Ast * num)()
for i in range(num):
_assumptions[i] = assumptions[i].as_ast()
return CheckSatResult(Z3_optimize_check(self.ctx.ref(), self.optimize, num, _assumptions))
def reason_unknown(self):
"""Return a string that describes why the last `check()` returned `unknown`."""
return Z3_optimize_get_reason_unknown(self.ctx.ref(), self.optimize)
@ -7300,6 +7331,9 @@ class Optimize(Z3PPObject):
except Z3Exception:
raise Z3Exception("model is not available")
def unsat_core(self):
return AstVector(Z3_optimize_get_unsat_core(self.ctx.ref(), self.optimize), self.ctx)
def lower(self, obj):
if not isinstance(obj, OptimizeObjective):
raise Z3Exception("Expecting objective handle returned by maximize/minimize")
@ -8040,7 +8074,7 @@ def substitute(t, *m):
"""
if isinstance(m, tuple):
m1 = _get_args(m)
if isinstance(m1, list):
if isinstance(m1, list) and all(isinstance(p, tuple) for p in m1):
m = m1
if __debug__:
_z3_assert(is_expr(t), "Z3 expression expected")

View file

@ -6121,6 +6121,14 @@ extern "C" {
*/
Z3_ast_vector Z3_API Z3_solver_get_units(Z3_context c, Z3_solver s);
/**
\brief Return the set of non units in the solver state.
def_API('Z3_solver_get_non_units', AST_VECTOR, (_in(CONTEXT), _in(SOLVER)))
*/
Z3_ast_vector Z3_API Z3_solver_get_non_units(Z3_context c, Z3_solver s);
/**
\brief Check whether the assertions in a given solver are consistent or not.

View file

@ -117,10 +117,12 @@ extern "C" {
\brief Check consistency and produce optimal values.
\param c - context
\param o - optimization context
\param num_assumptions - number of additional assumptions
\param assumptions - the additional assumptions
def_API('Z3_optimize_check', INT, (_in(CONTEXT), _in(OPTIMIZE)))
def_API('Z3_optimize_check', INT, (_in(CONTEXT), _in(OPTIMIZE), _in(UINT), _in_array(2, AST)))
*/
Z3_lbool Z3_API Z3_optimize_check(Z3_context c, Z3_optimize o);
Z3_lbool Z3_API Z3_optimize_check(Z3_context c, Z3_optimize o, unsigned num_assumptions, Z3_ast const assumptions[]);
/**
@ -143,6 +145,14 @@ extern "C" {
*/
Z3_model Z3_API Z3_optimize_get_model(Z3_context c, Z3_optimize o);
/**
\brief Retrieve the unsat core for the last #Z3_optimize_chec
The unsat core is a subset of the assumptions \c a.
def_API('Z3_optimize_get_unsat_core', AST_VECTOR, (_in(CONTEXT), _in(OPTIMIZE)))
*/
Z3_ast_vector Z3_API Z3_optimize_get_unsat_core(Z3_context c, Z3_optimize o);
/**
\brief Set parameters on optimization context.

View file

@ -21,6 +21,7 @@ Revision History:
#include "math/polynomial/algebraic_numbers.h"
#include "util/id_gen.h"
#include "ast/ast_smt2_pp.h"
#include "util/gparams.h"
struct arith_decl_plugin::algebraic_numbers_wrapper {
unsynch_mpq_manager m_qmanager;
@ -487,7 +488,7 @@ func_decl * arith_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters
if (arity != 1 || domain[0] != m_int_decl || num_parameters != 1 || !parameters[0].is_int()) {
m_manager->raise_exception("invalid divides application. Expects integer parameter and one argument of sort integer");
}
return m_manager->mk_func_decl(symbol("divides"), 1, &m_int_decl, m_manager->mk_bool_sort(),
return m_manager->mk_func_decl(symbol("divisible"), 1, &m_int_decl, m_manager->mk_bool_sort(),
func_decl_info(m_family_id, k, num_parameters, parameters));
}
@ -512,7 +513,7 @@ func_decl * arith_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters
if (num_args != 1 || m_manager->get_sort(args[0]) != m_int_decl || num_parameters != 1 || !parameters[0].is_int()) {
m_manager->raise_exception("invalid divides application. Expects integer parameter and one argument of sort integer");
}
return m_manager->mk_func_decl(symbol("divides"), 1, &m_int_decl, m_manager->mk_bool_sort(),
return m_manager->mk_func_decl(symbol("divisible"), 1, &m_int_decl, m_manager->mk_bool_sort(),
func_decl_info(m_family_id, k, num_parameters, parameters));
}
if (m_manager->int_real_coercions() && use_coercion(k)) {
@ -549,8 +550,9 @@ void arith_decl_plugin::get_op_names(svector<builtin_name>& op_names, symbol con
op_names.push_back(builtin_name("*",OP_MUL));
op_names.push_back(builtin_name("/",OP_DIV));
op_names.push_back(builtin_name("div",OP_IDIV));
// clashes with user-defined functions
// op_names.push_back(builtin_name("divides",OP_IDIVIDES));
if (gparams::get_value("smtlib2_compliant") == "true") {
op_names.push_back(builtin_name("divisible",OP_IDIVIDES));
}
op_names.push_back(builtin_name("rem",OP_REM));
op_names.push_back(builtin_name("mod",OP_MOD));
op_names.push_back(builtin_name("to_real",OP_TO_REAL));

View file

@ -424,7 +424,7 @@ sort * get_sort(expr const * n) {
return to_quantifier(n)->get_sort();
default:
UNREACHABLE();
return 0;
return nullptr;
}
}
@ -1656,6 +1656,12 @@ bool ast_manager::are_distinct(expr* a, expr* b) const {
return false;
}
func_decl* ast_manager::get_rec_fun_decl(quantifier* q) const {
SASSERT(is_rec_fun_def(q));
return to_app(to_app(q->get_pattern(0))->get_arg(0))->get_decl();
}
void ast_manager::register_plugin(family_id id, decl_plugin * plugin) {
SASSERT(m_plugins.get(id, 0) == 0);
m_plugins.setx(id, plugin, 0);

View file

@ -1632,6 +1632,7 @@ public:
bool is_rec_fun_def(quantifier* q) const { return q->get_qid() == m_rec_fun; }
bool is_lambda_def(quantifier* q) const { return q->get_qid() == m_lambda_def; }
func_decl* get_rec_fun_decl(quantifier* q) const;
symbol const& rec_fun_qid() const { return m_rec_fun; }

View file

@ -117,7 +117,7 @@ bool smt_renaming::all_is_legal(char const* s) {
}
smt_renaming::smt_renaming() {
for (unsigned i = 0; i < ARRAYSIZE(m_predef_names); ++i) {
for (unsigned i = 0; i < Z3_ARRAYSIZE(m_predef_names); ++i) {
symbol s(m_predef_names[i]);
m_translate.insert(s, sym_b(s, false));
m_rev_translate.insert(s, s);

View file

@ -152,21 +152,13 @@ namespace format_ns {
format * mk_int(ast_manager & m, int i) {
char buffer[128];
#ifdef _WINDOWS
sprintf_s(buffer, ARRAYSIZE(buffer), "%d", i);
#else
sprintf(buffer, "%d", i);
#endif
SPRINTF_D(buffer, i);
return mk_string(m, buffer);
}
format * mk_unsigned(ast_manager & m, unsigned u) {
char buffer[128];
#ifdef _WINDOWS
sprintf_s(buffer, ARRAYSIZE(buffer), "%u", u);
#else
sprintf(buffer, "%u", u);
#endif
SPRINTF_U(buffer, u);
return mk_string(m, buffer);
}

View file

@ -21,6 +21,8 @@ Notes:
#include "ast/ast_smt2_pp.h"
#include "ast/well_sorted.h"
#include "ast/rewriter/th_rewriter.h"
#include "ast/used_vars.h"
#include "ast/rewriter/var_subst.h"
#include "ast/fpa/fpa2bv_converter.h"
#include "ast/rewriter/fpa_rewriter.h"
@ -230,6 +232,42 @@ void fpa2bv_converter::mk_var(unsigned base_inx, sort * srt, expr_ref & result)
result = m_util.mk_fp(sgn, e, s);
}
expr_ref fpa2bv_converter::extra_quantify(expr * e)
{
used_vars uv;
unsigned nv;
ptr_buffer<sort> new_decl_sorts;
sbuffer<symbol> new_decl_names;
expr_ref_buffer subst_map(m);
uv(e);
nv = uv.get_num_vars();
subst_map.resize(uv.get_max_found_var_idx_plus_1());
if (nv == 0)
return expr_ref(e, m);
for (unsigned i = 0; i < nv; i++)
{
if (uv.contains(i)) {
TRACE("fpa2bv", tout << "uv[" << i << "] = " << mk_ismt2_pp(uv.get(i), m) << std::endl; );
sort * s = uv.get(i);
var * v = m.mk_var(i, s);
new_decl_sorts.push_back(s);
new_decl_names.push_back(symbol(i));
subst_map.set(i, v);
}
}
expr_ref res(m);
var_subst vsubst(m);
res = vsubst.operator()(e, nv, subst_map.c_ptr());
TRACE("fpa2bv", tout << "subst'd = " << mk_ismt2_pp(res, m) << std::endl; );
res = m.mk_forall(nv, new_decl_sorts.c_ptr(), new_decl_names.c_ptr(), res);
return res;
}
void fpa2bv_converter::mk_uf(func_decl * f, unsigned num, expr * const * args, expr_ref & result)
{
TRACE("fpa2bv", tout << "UF: " << mk_ismt2_pp(f, m) << std::endl; );
@ -252,7 +290,7 @@ void fpa2bv_converter::mk_uf(func_decl * f, unsigned num, expr * const * args, e
m_bv_util.mk_extract(sbits+ebits-2, sbits-1, bv_app),
m_bv_util.mk_extract(sbits-2, 0, bv_app));
new_eq = m.mk_eq(fapp, flt_app);
m_extra_assertions.push_back(new_eq);
m_extra_assertions.push_back(extra_quantify(new_eq));
result = flt_app;
}
else if (m_util.is_rm(rng)) {
@ -263,7 +301,7 @@ void fpa2bv_converter::mk_uf(func_decl * f, unsigned num, expr * const * args, e
bv_app = m.mk_app(bv_f, num, args);
flt_app = m_util.mk_bv2rm(bv_app);
new_eq = m.mk_eq(fapp, flt_app);
m_extra_assertions.push_back(new_eq);
m_extra_assertions.push_back(extra_quantify(new_eq));
result = flt_app;
}
else

View file

@ -220,6 +220,8 @@ private:
func_decl * mk_bv_uf(func_decl * f, sort * const * domain, sort * range);
expr_ref nan_wrap(expr * n);
expr_ref extra_quantify(expr * e);
};
#endif

View file

@ -215,6 +215,12 @@ bool fpa2bv_rewriter_cfg::reduce_quantifier(quantifier * old_q,
new_decl_names.push_back(symbol(name_buffer.c_str()));
new_decl_sorts.push_back(m_conv.bu().mk_sort(sbits+ebits));
}
else if (m_conv.is_rm(s)) {
name_buffer.reset();
name_buffer << n << ".bv";
new_decl_names.push_back(symbol(name_buffer.c_str()));
new_decl_sorts.push_back(m_conv.bu().mk_sort(3));
}
else {
new_decl_sorts.push_back(s);
new_decl_names.push_back(n);
@ -248,6 +254,11 @@ bool fpa2bv_rewriter_cfg::reduce_var(var * t, expr_ref & result, proof_ref & res
m_conv.bu().mk_extract(ebits - 1, 0, new_var),
m_conv.bu().mk_extract(sbits+ebits-2, ebits, new_var));
}
else if (m_conv.is_rm(s)) {
expr_ref new_var(m());
new_var = m().mk_var(t->get_idx(), m_conv.bu().mk_sort(3));
new_exp = m_conv.fu().mk_bv2rm(new_var);
}
else
new_exp = m().mk_var(t->get_idx(), s);

View file

@ -221,7 +221,7 @@ void defined_names::impl::mk_definition(expr * e, app * n, sort_ref_buffer & var
args.push_back(m.mk_var(q->get_num_decls() - i - 1, q->get_decl_sort(i)));
}
array_util autil(m);
func_decl * f = 0;
func_decl * f = nullptr;
if (autil.is_as_array(n2, f)) {
n3 = m.mk_app(f, args.size()-1, args.c_ptr() + 1);
}

View file

@ -127,7 +127,7 @@ class name_nested_formulas : public name_exprs_core {
ast_manager & m;
expr * m_root;
pred(ast_manager & m):m(m), m_root(0) {}
pred(ast_manager & m):m(m), m_root(nullptr) {}
bool operator()(expr * t) override {
TRACE("name_exprs", tout << "name_nested_formulas::pred:\n" << mk_ismt2_pp(t, m) << "\n";);

View file

@ -393,10 +393,8 @@ expr_pattern_match::initialize(char const * spec_string) {
VERIFY(parse_smt2_commands(ctx, is));
ctx.set_print_success(ps);
ptr_vector<expr>::const_iterator it = ctx.begin_assertions();
ptr_vector<expr>::const_iterator end = ctx.end_assertions();
for (; it != end; ++it) {
compile(*it);
for (expr * e : ctx.assertions()) {
compile(e);
}
TRACE("expr_pattern_match", display(tout); );
}

View file

@ -1248,7 +1248,7 @@ void proof_checker::dump_proof(proof const* pr) {
void proof_checker::dump_proof(unsigned num_antecedents, expr * const * antecedents, expr * consequent) {
char buffer[128];
#ifdef _WINDOWS
sprintf_s(buffer, ARRAYSIZE(buffer), "proof_lemma_%d.smt2", m_proof_lemma_id);
sprintf_s(buffer, Z3_ARRAYSIZE(buffer), "proof_lemma_%d.smt2", m_proof_lemma_id);
#else
sprintf(buffer, "proof_lemma_%d.smt2", m_proof_lemma_id);
#endif

View file

@ -458,7 +458,7 @@ struct pb2bv_rewriter::imp {
result = m.mk_true();
expr_ref_vector carry(m), new_carry(m);
m_base.push_back(bound + rational::one());
for (rational b_i : m_base) {
for (const rational& b_i : m_base) {
unsigned B = b_i.get_unsigned();
unsigned d_i = (bound % b_i).get_unsigned();
bound = div(bound, b_i);

View file

@ -842,7 +842,9 @@ void seq_decl_plugin::get_sort_names(svector<builtin_name> & sort_names, symbol
}
app* seq_decl_plugin::mk_string(symbol const& s) {
parameter param(s);
zstring canonStr(s.bare_str());
symbol canonSym(canonStr.encode().c_str());
parameter param(canonSym);
func_decl* f = m_manager->mk_const_decl(m_stringc_sym, m_string,
func_decl_info(m_family_id, OP_STRING_CONST, 1, &param));
return m_manager->mk_const(f);

View file

@ -17,7 +17,7 @@ Notes:
--*/
#include "util/gparams.h"
#include "util/env_params.h"
#include "util/version.h"
#include "util/z3_version.h"
#include "ast/ast_smt_pp.h"
#include "ast/ast_smt2_pp.h"
#include "ast/ast_pp_dot.h"

View file

@ -1315,7 +1315,7 @@ void cmd_context::assert_expr(expr * t) {
m().inc_ref(t);
m_assertions.push_back(t);
if (produce_unsat_cores())
m_assertion_names.push_back(0);
m_assertion_names.push_back(nullptr);
if (m_solver)
m_solver->assert_expr(t);
}
@ -1491,13 +1491,24 @@ void cmd_context::check_sat(unsigned num_assumptions, expr * const * assumptions
scoped_ctrl_c ctrlc(eh);
scoped_timer timer(timeout, &eh);
scoped_rlimit _rlimit(m().limit(), rlimit);
expr_ref_vector asms(m());
asms.append(num_assumptions, assumptions);
if (!m_processing_pareto) {
ptr_vector<expr> cnstr(m_assertions);
cnstr.append(num_assumptions, assumptions);
get_opt()->set_hard_constraints(cnstr);
expr_ref_vector assertions(m());
unsigned sz = m_assertions.size();
for (unsigned i = 0; i < sz; ++i) {
if (m_assertion_names.size() > i && m_assertion_names[i]) {
asms.push_back(m_assertion_names[i]);
assertions.push_back(m().mk_implies(m_assertion_names[i], m_assertions[i]));
}
else {
assertions.push_back(m_assertions[i]);
}
}
get_opt()->set_hard_constraints(assertions);
}
try {
r = get_opt()->optimize();
r = get_opt()->optimize(asms);
if (r == l_true && get_opt()->is_pareto()) {
m_processing_pareto = true;
}
@ -1805,11 +1816,8 @@ void cmd_context::validate_model() {
cancel_eh<reslimit> eh(m().limit());
expr_ref r(m());
scoped_ctrl_c ctrlc(eh);
ptr_vector<expr>::const_iterator it = begin_assertions();
ptr_vector<expr>::const_iterator end = end_assertions();
bool invalid_model = false;
for (; it != end; ++it) {
expr * a = *it;
for (expr * a : assertions()) {
if (is_ground(a)) {
r = nullptr;
evaluator(a, r);

View file

@ -148,8 +148,8 @@ public:
virtual bool empty() = 0;
virtual void push() = 0;
virtual void pop(unsigned n) = 0;
virtual lbool optimize() = 0;
virtual void set_hard_constraints(ptr_vector<expr> & hard) = 0;
virtual lbool optimize(expr_ref_vector const& asms) = 0;
virtual void set_hard_constraints(expr_ref_vector const & hard) = 0;
virtual void display_assignment(std::ostream& out) = 0;
virtual bool is_pareto() = 0;
virtual void set_logic(symbol const& s) = 0;
@ -452,11 +452,8 @@ public:
double get_seconds() const { return m_watch.get_seconds(); }
ptr_vector<expr>::const_iterator begin_assertions() const { return m_assertions.begin(); }
ptr_vector<expr>::const_iterator end_assertions() const { return m_assertions.end(); }
ptr_vector<expr>::const_iterator begin_assertion_names() const { return m_assertion_names.begin(); }
ptr_vector<expr>::const_iterator end_assertion_names() const { return m_assertion_names.end(); }
ptr_vector<expr> const& assertions() const { return m_assertions; }
ptr_vector<expr> const& assertion_names() const { return m_assertion_names; }
/**
\brief Hack: consume assertions if there are no scopes.

View file

@ -28,20 +28,18 @@ void assert_exprs_from(cmd_context const & ctx, goal & t) {
ast_manager & m = t.m();
bool proofs_enabled = t.proofs_enabled();
if (ctx.produce_unsat_cores()) {
ptr_vector<expr>::const_iterator it = ctx.begin_assertions();
ptr_vector<expr>::const_iterator end = ctx.end_assertions();
ptr_vector<expr>::const_iterator it2 = ctx.begin_assertion_names();
SASSERT(end - it == ctx.end_assertion_names() - it2);
ptr_vector<expr>::const_iterator it = ctx.assertions().begin();
ptr_vector<expr>::const_iterator end = ctx.assertions().end();
ptr_vector<expr>::const_iterator it2 = ctx.assertion_names().begin();
SASSERT(ctx.assertions().size() == ctx.assertion_names().size());
for (; it != end; ++it, ++it2) {
t.assert_expr(*it, proofs_enabled ? m.mk_asserted(*it) : nullptr, m.mk_leaf(*it2));
}
}
else {
ptr_vector<expr>::const_iterator it = ctx.begin_assertions();
ptr_vector<expr>::const_iterator end = ctx.end_assertions();
for (; it != end; ++it) {
t.assert_expr(*it, proofs_enabled ? m.mk_asserted(*it) : nullptr, nullptr);
for (expr * e : ctx.assertions()) {
t.assert_expr(e, proofs_enabled ? m.mk_asserted(e) : nullptr, nullptr);
}
SASSERT(ctx.begin_assertion_names() == ctx.end_assertion_names());
SASSERT(ctx.assertion_names().empty());
}
}

View file

@ -53,7 +53,7 @@ public:
class psort_inst_cache;
#if defined(__APPLE__) && defined(__MACH__)
// CMW: for some unknown reason, llvm on OSX does not like the name `psort'
// CMW: for some unknown reason, llvm on macOS does not like the name `psort'
#define psort Z3_psort
#endif

View file

@ -100,7 +100,7 @@ namespace polynomial {
struct lt_var {
bool operator()(power const & p1, power const & p2) {
// CMW: The assertion below does not hold on OSX, because
// CMW: The assertion below does not hold on macOS, because
// their implementation of std::sort will try to compare
// two items at the same index instead of comparing
// the indices directly. I suspect that the purpose of

View file

@ -351,7 +351,7 @@ bool model::can_inline_def(top_sort& ts, func_decl* f) {
expr_ref model::cleanup_expr(top_sort& ts, expr* e, unsigned current_partition) {
if (!e) return expr_ref(0, m);
if (!e) return expr_ref(nullptr, m);
TRACE("model", tout << "cleaning up:\n" << mk_pp(e, m) << "\n";);
@ -453,7 +453,7 @@ void model::remove_decls(ptr_vector<func_decl> & decls, func_decl_set const & s)
expr_ref model::get_inlined_const_interp(func_decl* f) {
expr* v = get_const_interp(f);
if (!v) return expr_ref(0, m);
if (!v) return expr_ref(nullptr, m);
top_sort st(m);
expr_ref result1(v, m);
expr_ref result2 = cleanup_expr(st, v, UINT_MAX);

View file

@ -31,7 +31,7 @@ namespace datalog {
rule_dependencies::rule_dependencies(const rule_dependencies & o, bool reversed):
m_context(o.m_context) {
if (reversed) {
for (auto & kv : o) {
for (auto & kv : o) {
func_decl * pred = kv.m_key;
item_set & orig_items = *kv.get_value();
@ -114,8 +114,8 @@ namespace datalog {
app* a = to_app(e);
d = a->get_decl();
if (m_context.is_predicate(d)) {
// insert d and ensure the invariant
// that every predicate is present as
// insert d and ensure the invariant
// that every predicate is present as
// a key in m_data
s.insert(d);
ensure_key(d);
@ -148,7 +148,7 @@ namespace datalog {
item_set& itms = *kv.get_value();
set_intersection(itms, allowed);
}
for (func_decl* f : to_remove)
for (func_decl* f : to_remove)
remove_m_data_entry(f);
}
@ -253,18 +253,18 @@ namespace datalog {
//
// -----------------------------------
rule_set::rule_set(context & ctx)
: m_context(ctx),
m_rule_manager(ctx.get_rule_manager()),
m_rules(m_rule_manager),
rule_set::rule_set(context & ctx)
: m_context(ctx),
m_rule_manager(ctx.get_rule_manager()),
m_rules(m_rule_manager),
m_deps(ctx),
m_stratifier(nullptr),
m_refs(ctx.get_manager()) {
}
rule_set::rule_set(const rule_set & other)
: m_context(other.m_context),
m_rule_manager(other.m_rule_manager),
rule_set::rule_set(const rule_set & other)
: m_context(other.m_context),
m_rule_manager(other.m_rule_manager),
m_rules(m_rule_manager),
m_deps(other.m_context),
m_stratifier(nullptr),
@ -353,10 +353,27 @@ namespace datalog {
break; \
} \
} \
DEL_VECTOR(*rules);
DEL_VECTOR(m_rules);
}
}
void rule_set::replace_rule(rule * r, rule * other) {
TRACE("dl", r->display(m_context, tout << "replace:"););
func_decl* d = r->get_decl();
rule_vector* rules = m_head2rules.find(d);
#define REPLACE_VECTOR(_v) \
for (unsigned i = (_v).size(); i > 0; ) { \
--i; \
if ((_v)[i] == r) { \
(_v)[i] = other; \
break; \
} \
} \
REPLACE_VECTOR(*rules);
REPLACE_VECTOR(m_rules);
}
void rule_set::ensure_closed() {
if (!is_closed()) {
@ -365,7 +382,7 @@ namespace datalog {
}
bool rule_set::close() {
SASSERT(!is_closed()); //the rule_set is not already closed
SASSERT(!is_closed()); //the rule_set is not already closed
m_deps.populate(*this);
m_stratifier = alloc(rule_stratifier, m_deps);
if (!stratified_negation()) {
@ -426,7 +443,7 @@ namespace datalog {
inherit_predicates(src);
}
const rule_vector & rule_set::get_predicate_rules(func_decl * pred) const {
const rule_vector & rule_set::get_predicate_rules(func_decl * pred) const {
decl2rules::obj_map_entry * e = m_head2rules.find_core(pred);
if (!e) {
return m_empty_rule_vector;
@ -519,7 +536,7 @@ namespace datalog {
out << "\n";
non_empty = false;
}
for (func_decl * first : *strat) {
const func_decl_set & deps = m_deps.get_deps(first);
for (func_decl * dep : deps) {
@ -545,8 +562,8 @@ namespace datalog {
unsigned rule_stratifier::get_predicate_strat(func_decl * pred) const {
unsigned num;
if (!m_pred_strat_nums.find(pred, num)) {
//the number of the predicate is not stored, therefore it did not appear
//in the algorithm and therefore it does not depend on anything and nothing
//the number of the predicate is not stored, therefore it did not appear
//in the algorithm and therefore it does not depend on anything and nothing
//depends on it. So it is safe to assign zero strate to it, although it is
//not strictly true.
num = 0;
@ -641,7 +658,7 @@ namespace datalog {
}
// We put components whose indegree is zero to m_strats and assign its
// We put components whose indegree is zero to m_strats and assign its
// m_components entry to zero.
unsigned comp_cnt = m_components.size();
for (unsigned i = 0; i < comp_cnt; i++) {
@ -680,7 +697,7 @@ namespace datalog {
strats_index++;
}
//we have managed to topologicaly order all the components
SASSERT(std::find_if(m_components.begin(), m_components.end(),
SASSERT(std::find_if(m_components.begin(), m_components.end(),
std::bind1st(std::not_equal_to<item_set*>(), (item_set*)0)) == m_components.end());
//reverse the strats array, so that the only the later components would depend on earlier ones
@ -713,7 +730,7 @@ namespace datalog {
}
out << "\n";
}
}
};

View file

@ -77,7 +77,7 @@ namespace datalog {
\brief Number of predicates that depend on \c f.
*/
unsigned out_degree(func_decl * f) const;
/**
\brief If the rependency graph is acyclic, put all elements into \c res
ordered so that elements can depend only on elements that are before them.
@ -131,7 +131,7 @@ namespace datalog {
it must exist for the whole lifetime of the \c stratifier object.
*/
rule_stratifier(const rule_dependencies & deps)
: m_deps(deps), m_next_preorder(0)
: m_deps(deps), m_next_preorder(0)
{
process();
}
@ -145,7 +145,7 @@ namespace datalog {
const comp_vector & get_strats() const { return m_strats; }
unsigned get_predicate_strat(func_decl * pred) const;
void display( std::ostream & out ) const;
};
@ -203,6 +203,10 @@ namespace datalog {
\brief Remove rule \c r from the rule set.
*/
void del_rule(rule * r);
/**
\brief Replace a rule \c r with the rule \c other
*/
void replace_rule(rule * r, rule * other);
/**
\brief Add all rules from a different rule_set.
@ -276,8 +280,7 @@ namespace datalog {
inline std::ostream& operator<<(std::ostream& out, rule_set const& r) { r.display(out); return out; }
};
#endif /* DL_RULE_SET_H_ */

View file

@ -276,7 +276,7 @@ namespace datalog {
}
unsigned n = container.size();
unsigned ofs = 1;
int r_i = 1;
unsigned r_i = 1;
for(unsigned i=removed_cols[0]+1; i<n; i++) {
if(r_i!=removed_col_cnt && removed_cols[r_i]==i) {
r_i++;

View file

@ -177,5 +177,6 @@ def_module_params('fp',
('spacer.dump_threshold', DOUBLE, 5.0, 'Threshold in seconds on dumping benchmarks'),
('spacer.gpdr', BOOL, False, 'Use GPDR solving strategy for non-linear CHC'),
('spacer.gpdr.bfs', BOOL, True, 'Use BFS exploration strategy for expanding model search'),
('spacer.use_bg_invs', BOOL, False, 'Enable external background invariants'),
))

View file

@ -332,10 +332,8 @@ public:
private:
void set_background(cmd_context& ctx) {
datalog::context& dlctx = m_dl_ctx->dlctx();
ptr_vector<expr>::const_iterator it = ctx.begin_assertions();
ptr_vector<expr>::const_iterator end = ctx.end_assertions();
for (; it != end; ++it) {
dlctx.assert_expr(*it);
for (expr * e : ctx.assertions()) {
dlctx.assert_expr(e);
}
}

View file

@ -493,7 +493,8 @@ lemma::lemma (ast_manager &manager, expr * body, unsigned lvl) :
m_pob(nullptr), m_ctp(nullptr),
m_lvl(lvl), m_init_lvl(m_lvl),
m_bumped(0), m_weakness(WEAKNESS_MAX),
m_external(false), m_blocked(false) {
m_external(false), m_blocked(false),
m_background(false) {
SASSERT(m_body);
normalize(m_body, m_body);
}
@ -505,7 +506,8 @@ lemma::lemma(pob_ref const &p) :
m_pob(p), m_ctp(nullptr),
m_lvl(p->level()), m_init_lvl(m_lvl),
m_bumped(0), m_weakness(p->weakness()),
m_external(false), m_blocked(false) {
m_external(false), m_blocked(false),
m_background(false) {
SASSERT(m_pob);
m_pob->get_skolems(m_zks);
add_binding(m_pob->get_binding());
@ -519,8 +521,8 @@ lemma::lemma(pob_ref const &p, expr_ref_vector &cube, unsigned lvl) :
m_pob(p), m_ctp(nullptr),
m_lvl(p->level()), m_init_lvl(m_lvl),
m_bumped(0), m_weakness(p->weakness()),
m_external(false), m_blocked(false)
{
m_external(false), m_blocked(false),
m_background(false) {
if (m_pob) {
m_pob->get_skolems(m_zks);
add_binding(m_pob->get_binding());
@ -921,10 +923,10 @@ void pred_transformer::simplify_formulas()
{m_frames.simplify_formulas ();}
expr_ref pred_transformer::get_formulas(unsigned level) const
expr_ref pred_transformer::get_formulas(unsigned level, bool bg) const
{
expr_ref_vector res(m);
m_frames.get_frame_geq_lemmas (level, res);
m_frames.get_frame_geq_lemmas (level, res, bg);
return mk_and(res);
}
@ -935,6 +937,7 @@ bool pred_transformer::propagate_to_next_level (unsigned src_level)
/// \brief adds a lemma to the solver and to child solvers
void pred_transformer::add_lemma_core(lemma* lemma, bool ground_only)
{
SASSERT(!lemma->is_background());
unsigned lvl = lemma->level();
expr* l = lemma->get_expr();
SASSERT(!lemma->is_ground() || is_clause(m, l));
@ -975,8 +978,9 @@ void pred_transformer::add_lemma_core(lemma* lemma, bool ground_only)
next_level(lvl), ground_only); }
}
bool pred_transformer::add_lemma (expr *e, unsigned lvl) {
bool pred_transformer::add_lemma (expr *e, unsigned lvl, bool bg) {
lemma_ref lem = alloc(lemma, m, e, lvl);
lem->set_background(bg);
return m_frames.add_lemma(lem.get());
}
@ -1217,15 +1221,18 @@ expr_ref pred_transformer::get_origin_summary (model &mdl,
}
void pred_transformer::add_cover(unsigned level, expr* property)
void pred_transformer::add_cover(unsigned level, expr* property, bool bg)
{
SASSERT(!bg || is_infty_level(level));
// replace bound variables by local constants.
expr_ref result(property, m), v(m), c(m);
expr_substitution sub(m);
proof_ref pr(m);
pr = m.mk_asserted(m.mk_true());
for (unsigned i = 0; i < sig_size(); ++i) {
c = m.mk_const(pm.o2n(sig(i), 0));
v = m.mk_var(i, sig(i)->get_range());
sub.insert(v, c);
sub.insert(v, c, pr);
}
scoped_ptr<expr_replacer> rep = mk_default_expr_replacer(m);
rep->set_substitution(&sub);
@ -1236,13 +1243,38 @@ void pred_transformer::add_cover(unsigned level, expr* property)
expr_ref_vector lemmas(m);
flatten_and(result, lemmas);
for (unsigned i = 0, sz = lemmas.size(); i < sz; ++i) {
add_lemma(lemmas.get(i), level);
add_lemma(lemmas.get(i), level, bg);
}
}
void pred_transformer::propagate_to_infinity (unsigned level)
{m_frames.propagate_to_infinity (level);}
// compute a conjunction of all background facts
void pred_transformer::get_pred_bg_invs(expr_ref_vector& out) {
expr_ref inv(m), tmp1(m), tmp2(m);
ptr_vector<func_decl> preds;
for (auto kv : m_pt_rules) {
expr* tag = kv.m_value->tag();
datalog::rule const &r = kv.m_value->rule();
find_predecessors (r, preds);
for (unsigned i = 0, preds_sz = preds.size(); i < preds_sz; i++) {
func_decl* pre = preds[i];
pred_transformer &pt = ctx.get_pred_transformer(pre);
const lemma_ref_vector &invs = pt.get_bg_invs();
CTRACE("spacer", !invs.empty(),
tout << "add-bg-invariant: " << mk_pp (pre, m) << "\n";);
for (auto inv : invs) {
// tag -> inv1 ... tag -> invn
tmp1 = m.mk_implies(tag, inv->get_expr());
pm.formula_n2o(tmp1, tmp2, i);
out.push_back(tmp2);
TRACE("spacer", tout << tmp2 << "\n";);
}
}
}
}
/// \brief Returns true if the obligation is already blocked by current lemmas
@ -1293,7 +1325,7 @@ bool pred_transformer::is_qblocked (pob &n) {
// assert cti
s->assert_expr(n.post());
lbool res = s->check_sat(0, 0);
lbool res = s->check_sat(0, nullptr);
// if (res == l_false) {
// expr_ref_vector core(m);
@ -1344,6 +1376,14 @@ lbool pred_transformer::is_reachable(pob& n, expr_ref_vector* core,
expr_ref_vector post (m), reach_assumps (m);
post.push_back (n.post ());
flatten_and(post);
// if equality propagation is disabled in arithmetic, expand
// equality literals into two inequalities to increase the space
// for interpolation
if (!ctx.use_eq_prop()) {
expand_literals(m, post);
}
// populate reach_assumps
if (n.level () > 0 && !m_all_init) {
@ -1472,7 +1512,7 @@ bool pred_transformer::is_invariant(unsigned level, lemma* lem,
expr_ref lemma_expr(m);
lemma_expr = lem->get_expr();
expr_ref_vector conj(m), aux(m);
expr_ref_vector cand(m), aux(m), conj(m);
expr_ref gnd_lemma(m);
@ -1482,8 +1522,8 @@ bool pred_transformer::is_invariant(unsigned level, lemma* lem,
lemma_expr = gnd_lemma.get();
}
conj.push_back(mk_not(m, lemma_expr));
flatten_and (conj);
cand.push_back(mk_not(m, lemma_expr));
flatten_and (cand);
prop_solver::scoped_level _sl(*m_solver, level);
prop_solver::scoped_subset_core _sc (*m_solver, true);
@ -1494,9 +1534,12 @@ bool pred_transformer::is_invariant(unsigned level, lemma* lem,
if (ctx.use_ctp()) {mdl_ref_ptr = &mdl;}
m_solver->set_core(core);
m_solver->set_model(mdl_ref_ptr);
expr * bg = m_extend_lit.get ();
lbool r = m_solver->check_assumptions (conj, aux, m_transition_clause,
1, &bg, 1);
conj.push_back(m_extend_lit);
if (ctx.use_bg_invs()) get_pred_bg_invs(conj);
lbool r = m_solver->check_assumptions (cand, aux, m_transition_clause,
conj.size(), conj.c_ptr(), 1);
if (r == l_false) {
solver_level = m_solver->uses_level ();
lem->reset_ctp();
@ -1527,6 +1570,7 @@ bool pred_transformer::check_inductive(unsigned level, expr_ref_vector& state,
m_solver->set_core(&core);
m_solver->set_model (nullptr);
expr_ref_vector aux (m);
if (ctx.use_bg_invs()) get_pred_bg_invs(conj);
conj.push_back (m_extend_lit);
lbool res = m_solver->check_assumptions (state, aux,
m_transition_clause,
@ -1941,14 +1985,27 @@ void pred_transformer::update_solver_with_rfs(prop_solver *solver,
}
/// pred_transformer::frames
bool pred_transformer::frames::add_lemma(lemma *new_lemma)
{
TRACE("spacer", tout << "add-lemma: " << pp_level(new_lemma->level()) << " "
<< m_pt.head()->get_name() << " "
<< mk_pp(new_lemma->get_expr(), m_pt.get_ast_manager()) << "\n";);
if (new_lemma->is_background()) {
SASSERT (is_infty_level(new_lemma->level()));
for (auto &l : m_bg_invs) {
if (l->get_expr() == new_lemma->get_expr()) return false;
}
TRACE("spacer", tout << "add-external-lemma: "
<< pp_level(new_lemma->level()) << " "
<< m_pt.head()->get_name() << " "
<< mk_pp(new_lemma->get_expr(), m_pt.get_ast_manager()) << "\n";);
m_bg_invs.push_back(new_lemma);
return true;
}
unsigned i = 0;
for (auto *old_lemma : m_lemmas) {
if (old_lemma->get_expr() == new_lemma->get_expr()) {
@ -2295,6 +2352,7 @@ void context::updt_params() {
m_use_restarts = m_params.spacer_restarts();
m_restart_initial_threshold = m_params.spacer_restart_initial_threshold();
m_pdr_bfs = m_params.spacer_gpdr_bfs();
m_use_bg_invs = m_params.spacer_use_bg_invs();
if (m_use_gpdr) {
// set options to be compatible with GPDR
@ -2423,36 +2481,38 @@ expr_ref context::get_cover_delta(int level, func_decl* p_orig, func_decl* p)
if (m_rels.find(p, pt)) {
return pt->get_cover_delta(p_orig, level);
} else {
IF_VERBOSE(10, verbose_stream() << "did not find predicate " << p->get_name() << "\n";);
IF_VERBOSE(10, verbose_stream() << "did not find predicate "
<< p->get_name() << "\n";);
return expr_ref(m.mk_true(), m);
}
}
void context::add_cover(int level, func_decl* p, expr* property)
void context::add_cover(int level, func_decl* p, expr* property, bool bg)
{
scoped_proof _pf_(m);
pred_transformer* pt = nullptr;
if (!m_rels.find(p, pt)) {
pt = alloc(pred_transformer, *this, get_manager(), p);
m_rels.insert(p, pt);
IF_VERBOSE(10, verbose_stream() << "did not find predicate " << p->get_name() << "\n";);
IF_VERBOSE(10, verbose_stream() << "did not find predicate "
<< p->get_name() << "\n";);
}
unsigned lvl = (level == -1)?infty_level():((unsigned)level);
pt->add_cover(lvl, property);
pt->add_cover(lvl, property, bg);
}
void context::add_invariant (func_decl *p, expr *property)
{add_cover (infty_level(), p, property);}
{add_cover (infty_level(), p, property, true);}
expr_ref context::get_reachable(func_decl *p)
{
expr_ref context::get_reachable(func_decl *p) {
pred_transformer* pt = nullptr;
if (!m_rels.find(p, pt))
{ return expr_ref(m.mk_false(), m); }
return pt->get_reachable();
}
bool context::validate()
{
bool context::validate() {
if (!m_validate_result) { return true; }
std::stringstream msg;
@ -2483,7 +2543,7 @@ bool context::validate()
model_ref model;
vector<relation_info> rs;
model_converter_ref mc;
get_level_property(m_inductive_lvl, refs, rs);
get_level_property(m_inductive_lvl, refs, rs, use_bg_invs());
inductive_property ex(m, mc, rs);
ex.to_model(model);
var_subst vs(m, false);
@ -2624,13 +2684,13 @@ void context::init_lemma_generalizers()
}
void context::get_level_property(unsigned lvl, expr_ref_vector& res,
vector<relation_info>& rs) const {
vector<relation_info>& rs, bool with_bg) const {
for (auto const& kv : m_rels) {
pred_transformer* r = kv.m_value;
if (r->head() == m_query_pred) {
continue;
}
expr_ref conj = r->get_formulas(lvl);
expr_ref conj = r->get_formulas(lvl, with_bg);
m_pm.formula_n2o(0, false, conj);
res.push_back(conj);
ptr_vector<func_decl> sig(r->head()->get_arity(), r->sig());
@ -2662,7 +2722,7 @@ lbool context::solve(unsigned from_lvl)
IF_VERBOSE(1, {
expr_ref_vector refs(m);
vector<relation_info> rs;
get_level_property(m_inductive_lvl, refs, rs);
get_level_property(m_inductive_lvl, refs, rs, use_bg_invs());
model_converter_ref mc;
inductive_property ex(m, mc, rs);
verbose_stream() << ex.to_string();
@ -2844,7 +2904,7 @@ model_ref context::get_model()
model_ref model;
expr_ref_vector refs(m);
vector<relation_info> rs;
get_level_property(m_inductive_lvl, refs, rs);
get_level_property(m_inductive_lvl, refs, rs, use_bg_invs());
inductive_property ex(m, const_cast<model_converter_ref&>(m_mc), rs);
ex.to_model (model);
return model;
@ -2877,7 +2937,7 @@ expr_ref context::mk_unsat_answer() const
{
expr_ref_vector refs(m);
vector<relation_info> rs;
get_level_property(m_inductive_lvl, refs, rs);
get_level_property(m_inductive_lvl, refs, rs, use_bg_invs());
inductive_property ex(m, const_cast<model_converter_ref&>(m_mc), rs);
return ex.to_expr();
}

View file

@ -128,8 +128,9 @@ class lemma {
unsigned m_init_lvl; // level at which lemma was created
unsigned m_bumped:16;
unsigned m_weakness:16;
unsigned m_external:1;
unsigned m_blocked:1;
unsigned m_external:1; // external lemma from another solver
unsigned m_blocked:1; // blocked by CTP
unsigned m_background:1; // background assumed fact
void mk_expr_core();
void mk_cube_core();
@ -163,6 +164,9 @@ public:
void set_external(bool ext){m_external = ext;}
bool external() { return m_external;}
void set_background(bool v) {m_background = v;}
bool is_background() {return m_background;}
bool is_blocked() {return m_blocked;}
void set_blocked(bool v) {m_blocked=v;}
@ -222,6 +226,7 @@ class pred_transformer {
pred_transformer &m_pt; // parent pred_transformer
lemma_ref_vector m_pinned_lemmas; // all created lemmas
lemma_ref_vector m_lemmas; // active lemmas
lemma_ref_vector m_bg_invs; // background (assumed) invariants
unsigned m_size; // num of frames
bool m_sorted; // true if m_lemmas is sorted by m_lt
@ -230,7 +235,8 @@ class pred_transformer {
void sort ();
public:
frames (pred_transformer &pt) : m_pt (pt), m_size(0), m_sorted (true) {}
frames (pred_transformer &pt) : m_pt (pt),
m_size(0), m_sorted (true) {}
~frames() {}
void simplify_formulas ();
@ -245,17 +251,25 @@ class pred_transformer {
}
}
}
void get_frame_geq_lemmas (unsigned level, expr_ref_vector &out) const {
void get_frame_geq_lemmas (unsigned level, expr_ref_vector &out,
bool with_bg = false) const {
for (auto &lemma : m_lemmas) {
if (lemma->level() >= level) {
out.push_back(lemma->get_expr());
}
}
if (with_bg) {
for (auto &lemma : m_bg_invs)
out.push_back(lemma->get_expr());
}
}
unsigned size () const {return m_size;}
unsigned lemma_size () const {return m_lemmas.size ();}
void add_frame () {m_size++;}
const lemma_ref_vector& get_bg_invs() const {return m_bg_invs;}
unsigned size() const {return m_size;}
unsigned lemma_size() const {return m_lemmas.size ();}
unsigned bg_invs_size() const {return m_bg_invs.size();}
void add_frame() {m_size++;}
void inherit_frames (frames &other) {
for (auto &other_lemma : other.m_lemmas) {
lemma_ref new_lemma = alloc(lemma, m_pt.get_ast_manager(),
@ -265,6 +279,7 @@ class pred_transformer {
add_lemma(new_lemma.get());
}
m_sorted = false;
m_bg_invs.append(other.m_bg_invs);
}
bool add_lemma (lemma *new_lemma);
@ -418,6 +433,11 @@ class pred_transformer {
app_ref mk_fresh_rf_tag ();
// get tagged formulae of all of the background invariants for all of the
// predecessors of the current transformer
void get_pred_bg_invs(expr_ref_vector &out);
const lemma_ref_vector &get_bg_invs() const {return m_frames.get_bg_invs();}
public:
pred_transformer(context& ctx, manager& pm, func_decl* head);
~pred_transformer() {}
@ -448,7 +468,7 @@ public:
}
unsigned get_num_levels() const {return m_frames.size ();}
expr_ref get_cover_delta(func_decl* p_orig, int level);
void add_cover(unsigned level, expr* property);
void add_cover(unsigned level, expr* property, bool bg = false);
expr_ref get_reachable();
std::ostream& display(std::ostream& strm) const;
@ -484,7 +504,7 @@ public:
bool propagate_to_next_level(unsigned level);
void propagate_to_infinity(unsigned level);
/// \brief Add a lemma to the current context and all users
bool add_lemma(expr * lemma, unsigned lvl);
bool add_lemma(expr * e, unsigned lvl, bool bg);
bool add_lemma(lemma* lem) {return m_frames.add_lemma(lem);}
expr* get_reach_case_var (unsigned idx) const;
bool has_rfs () const { return !m_reach_facts.empty () ;}
@ -527,7 +547,7 @@ public:
bool check_inductive(unsigned level, expr_ref_vector& state,
unsigned& assumes_level, unsigned weakness = UINT_MAX);
expr_ref get_formulas(unsigned level) const;
expr_ref get_formulas(unsigned level, bool bg = false) const;
void simplify_formulas();
@ -958,6 +978,7 @@ class context {
bool m_simplify_formulas_pre;
bool m_simplify_formulas_post;
bool m_pdr_bfs;
bool m_use_bg_invs;
unsigned m_push_pob_max_depth;
unsigned m_max_level;
unsigned m_restart_initial_threshold;
@ -992,7 +1013,8 @@ class context {
// Generate inductive property
void get_level_property(unsigned lvl, expr_ref_vector& res,
vector<relation_info> & rs) const;
vector<relation_info> & rs,
bool with_bg = false) const;
// Initialization
@ -1027,18 +1049,20 @@ public:
const fp_params &get_params() const { return m_params; }
bool use_native_mbp () {return m_use_native_mbp;}
bool use_ground_pob () {return m_ground_pob;}
bool use_instantiate () {return m_instantiate;}
bool weak_abs() {return m_weak_abs;}
bool use_qlemmas () {return m_use_qlemmas;}
bool use_euf_gen() {return m_use_euf_gen;}
bool simplify_pob() {return m_simplify_pob;}
bool use_ctp() {return m_use_ctp;}
bool use_inc_clause() {return m_use_inc_clause;}
unsigned blast_term_ite_inflation() {return m_blast_term_ite_inflation;}
bool elim_aux() {return m_elim_aux;}
bool reach_dnf() {return m_reach_dnf;}
bool use_eq_prop() const {return m_use_eq_prop;}
bool use_native_mbp() const {return m_use_native_mbp;}
bool use_ground_pob() const {return m_ground_pob;}
bool use_instantiate() const {return m_instantiate;}
bool weak_abs() const {return m_weak_abs;}
bool use_qlemmas() const {return m_use_qlemmas;}
bool use_euf_gen() const {return m_use_euf_gen;}
bool simplify_pob() const {return m_simplify_pob;}
bool use_ctp() const {return m_use_ctp;}
bool use_inc_clause() const {return m_use_inc_clause;}
unsigned blast_term_ite_inflation() const {return m_blast_term_ite_inflation;}
bool elim_aux() const {return m_elim_aux;}
bool reach_dnf() const {return m_reach_dnf;}
bool use_bg_invs() const {return m_use_bg_invs;}
ast_manager& get_ast_manager() const {return m;}
manager& get_manager() {return m_pm;}
@ -1081,7 +1105,7 @@ public:
unsigned get_num_levels(func_decl* p);
expr_ref get_cover_delta(int level, func_decl* p_orig, func_decl* p);
void add_cover(int level, func_decl* pred, expr* property);
void add_cover(int level, func_decl* pred, expr* property, bool bg = false);
expr_ref get_reachable (func_decl* p);
void add_invariant (func_decl *pred, expr* property);
model_ref get_model();

View file

@ -50,7 +50,7 @@ namespace{
contains_array_op_proc(ast_manager &manager) :
m(manager), m_array_fid(m.mk_family_id("array"))
{}
virtual bool operator()(expr *e) {
bool operator()(expr *e) override {
return is_app(e) && to_app(e)->get_family_id() == m_array_fid;
}
};

View file

@ -117,11 +117,11 @@ class lemma_quantifier_generalizer : public lemma_generalizer {
int m_offset;
public:
lemma_quantifier_generalizer(context &ctx, bool normalize_cube = true);
virtual ~lemma_quantifier_generalizer() {}
virtual void operator()(lemma_ref &lemma);
~lemma_quantifier_generalizer() override {}
void operator()(lemma_ref &lemma) override;
virtual void collect_statistics(statistics& st) const;
virtual void reset_statistics() {m_st.reset();}
void collect_statistics(statistics& st) const override;
void reset_statistics() override {m_st.reset();}
private:
bool generalize(lemma_ref &lemma, app *term);

View file

@ -600,7 +600,7 @@ namespace spacer {
proof* hypothesis_reducer::reduce_core(proof* pf) {
SASSERT(m.is_false(m.get_fact(pf)));
proof *res = NULL;
proof *res = nullptr;
ptr_vector<proof> todo;
todo.push_back(pf);

View file

@ -94,6 +94,7 @@ void prop_solver::add_level()
void prop_solver::ensure_level(unsigned lvl)
{
if (is_infty_level(lvl)) return;
while (lvl >= level_cnt()) {
add_level();
}

View file

@ -48,7 +48,8 @@ namespace spacer {
}
inline bool is_infty_level(unsigned lvl) {
return lvl == infty_level ();
// XXX: level is 16 bits in class pob
return lvl >= 65535;
}
inline unsigned next_level(unsigned lvl) {

View file

@ -25,6 +25,7 @@ z3_add_component(transforms
dl_mk_array_eq_rewrite.cpp
dl_mk_array_instantiation.cpp
dl_mk_elim_term_ite.cpp
dl_mk_synchronize.cpp
COMPONENT_DEPENDENCIES
dataflow
hilbert

View file

@ -0,0 +1,376 @@
/*++
Copyright (c) 2017-2018 Saint-Petersburg State University
Module Name:
dl_mk_synchronize.h
Abstract:
Rule transformer that attempts to merge recursive iterations
relaxing the shape of the inductive invariant.
Author:
Dmitry Mordvinov (dvvrd) 2017-05-24
Lidiia Chernigovskaia (LChernigovskaya) 2017-10-20
Revision History:
--*/
#include "muz/transforms/dl_mk_synchronize.h"
#include <algorithm>
namespace datalog {
typedef mk_synchronize::item_set_vector item_set_vector;
mk_synchronize::mk_synchronize(context& ctx, unsigned priority):
rule_transformer::plugin(priority, false),
m_ctx(ctx),
m(ctx.get_manager()),
rm(ctx.get_rule_manager())
{}
bool mk_synchronize::is_recursive(rule &r, func_decl &decl) const {
func_decl *hdecl = r.get_head()->get_decl();
// AG: shouldn't decl appear in the body?
if (hdecl == &decl) return true;
auto & strata = m_stratifier->get_strats();
unsigned num_of_stratum = m_stratifier->get_predicate_strat(hdecl);
return strata[num_of_stratum]->contains(&decl);
}
bool mk_synchronize::has_recursive_premise(app * app) const {
func_decl* app_decl = app->get_decl();
if (m_deps->get_deps(app_decl).contains(app_decl)) {
return true;
}
rule_stratifier::comp_vector const & strata = m_stratifier->get_strats();
unsigned num_of_stratum = m_stratifier->get_predicate_strat(app_decl);
return strata[num_of_stratum]->size() > 1;
}
item_set_vector mk_synchronize::add_merged_decls(ptr_vector<app> & apps) {
unsigned sz = apps.size();
item_set_vector merged_decls;
merged_decls.resize(sz);
auto & strata = m_stratifier->get_strats();
for (unsigned j = 0; j < sz; ++j) {
unsigned nos;
nos = m_stratifier->get_predicate_strat(apps[j]->get_decl());
merged_decls[j] = strata[nos];
}
return merged_decls;
}
void mk_synchronize::add_new_rel_symbols(unsigned idx,
item_set_vector const & decls,
ptr_vector<func_decl> & decls_buf,
bool & was_added) {
if (idx >= decls.size()) {
string_buffer<> buffer;
ptr_vector<sort> domain;
for (auto &d : decls_buf) {
buffer << d->get_name() << "!!";
domain.append(d->get_arity(), d->get_domain());
}
symbol new_name = symbol(buffer.c_str());
if (!m_cache.contains(new_name)) {
was_added = true;
func_decl* orig = decls_buf[0];
func_decl* product_pred = m_ctx.mk_fresh_head_predicate(new_name,
symbol::null, domain.size(), domain.c_ptr(), orig);
m_cache.insert(new_name, product_pred);
}
return;
}
// -- compute Cartesian product of decls, and create a new
// -- predicate for each element of the product
for (auto &p : *decls[idx]) {
decls_buf[idx] = p;
add_new_rel_symbols(idx + 1, decls, decls_buf, was_added);
}
}
void mk_synchronize::replace_applications(rule & r, rule_set & rules,
ptr_vector<app> & apps) {
app_ref replacing = product_application(apps);
ptr_vector<app> new_tail;
svector<bool> new_tail_neg;
unsigned n = r.get_tail_size() - apps.size() + 1;
unsigned tail_idx = 0;
new_tail.resize(n);
new_tail_neg.resize(n);
new_tail[0] = replacing;
new_tail_neg[0] = false;
for (unsigned i = 0; i < r.get_positive_tail_size(); ++i) {
app* tail = r.get_tail(i);
if (!apps.contains(tail)) {
++tail_idx;
new_tail[tail_idx] = tail;
new_tail_neg[tail_idx] = false;
}
}
for (unsigned i = r.get_positive_tail_size(); i < r.get_uninterpreted_tail_size(); ++i) {
++tail_idx;
new_tail[tail_idx] = r.get_tail(i);
new_tail_neg[tail_idx] = true;
}
for (unsigned i = r.get_uninterpreted_tail_size(); i < r.get_tail_size(); ++i) {
++tail_idx;
new_tail[tail_idx] = r.get_tail(i);
new_tail_neg[tail_idx] = false;
}
rule_ref new_rule(rm);
new_rule = rm.mk(r.get_head(), tail_idx + 1,
new_tail.c_ptr(), new_tail_neg.c_ptr(), symbol::null, false);
rules.replace_rule(&r, new_rule.get());
}
rule_ref mk_synchronize::rename_bound_vars_in_rule(rule * r,
unsigned & var_idx) {
// AG: shift all variables in a rule so that lowest var index is var_idx?
// AG: update var_idx in the process?
ptr_vector<sort> sorts;
r->get_vars(m, sorts);
expr_ref_vector revsub(m);
revsub.resize(sorts.size());
for (unsigned i = 0; i < sorts.size(); ++i) {
if (sorts[i]) {
revsub[i] = m.mk_var(var_idx++, sorts[i]);
}
}
rule_ref new_rule(rm);
new_rule = rm.mk(r);
rm.substitute(new_rule, revsub.size(), revsub.c_ptr());
return new_rule;
}
vector<rule_ref_vector> mk_synchronize::rename_bound_vars(item_set_vector const & heads,
rule_set & rules) {
// AG: is every item_set in heads corresponds to rules that are merged?
// AG: why are bound variables renamed in the first place?
// AG: the data structure seems too complex
vector<rule_ref_vector> result;
unsigned var_idx = 0;
for (auto item : heads) {
rule_ref_vector dst_vector(rm);
for (auto *head : *item) {
for (auto *r : rules.get_predicate_rules(head)) {
rule_ref new_rule = rename_bound_vars_in_rule(r, var_idx);
dst_vector.push_back(new_rule.get());
}
}
result.push_back(dst_vector);
}
return result;
}
void mk_synchronize::add_rec_tail(vector< ptr_vector<app> > & recursive_calls,
app_ref_vector & new_tail,
svector<bool> & new_tail_neg,
unsigned & tail_idx) {
unsigned max_sz = 0;
for (auto &rc : recursive_calls)
max_sz= std::max(rc.size(), max_sz);
unsigned n = recursive_calls.size();
ptr_vector<app> merged_recursive_calls;
for (unsigned j = 0; j < max_sz; ++j) {
merged_recursive_calls.reset();
merged_recursive_calls.resize(n);
for (unsigned i = 0; i < n; ++i) {
unsigned sz = recursive_calls[i].size();
merged_recursive_calls[i] =
j < sz ? recursive_calls[i][j] : recursive_calls[i][sz - 1];
}
++tail_idx;
new_tail[tail_idx] = product_application(merged_recursive_calls);
new_tail_neg[tail_idx] = false;
}
}
void mk_synchronize::add_non_rec_tail(rule & r, app_ref_vector & new_tail,
svector<bool> & new_tail_neg,
unsigned & tail_idx) {
for (unsigned i = 0, sz = r.get_positive_tail_size(); i < sz; ++i) {
app* tail = r.get_tail(i);
if (!is_recursive(r, *tail)) {
++tail_idx;
new_tail[tail_idx] = tail;
new_tail_neg[tail_idx] = false;
}
}
for (unsigned i = r.get_positive_tail_size(),
sz = r.get_uninterpreted_tail_size() ; i < sz; ++i) {
++tail_idx;
new_tail[tail_idx] = r.get_tail(i);
new_tail_neg[tail_idx] = true;
}
for (unsigned i = r.get_uninterpreted_tail_size(),
sz = r.get_tail_size(); i < sz; ++i) {
++tail_idx;
new_tail[tail_idx] = r.get_tail(i);
new_tail_neg[tail_idx] = r.is_neg_tail(i);
}
}
app_ref mk_synchronize::product_application(ptr_vector<app> const &apps) {
unsigned args_num = 0;
string_buffer<> buffer;
// AG: factor out into mk_name
for (auto *app : apps) {
buffer << app->get_decl()->get_name() << "!!";
args_num += app->get_num_args();
}
symbol name = symbol(buffer.c_str());
SASSERT(m_cache.contains(name));
func_decl * pred = m_cache[name];
ptr_vector<expr> args;
args.resize(args_num);
unsigned idx = 0;
for (auto *a : apps) {
for (unsigned i = 0, sz = a->get_num_args(); i < sz; ++i, ++idx)
args[idx] = a->get_arg(i);
}
return app_ref(m.mk_app(pred, args_num, args.c_ptr()), m);
}
rule_ref mk_synchronize::product_rule(rule_ref_vector const & rules) {
unsigned n = rules.size();
string_buffer<> buffer;
bool first_rule = true;
for (auto it = rules.begin(); it != rules.end(); ++it, first_rule = false) {
if (!first_rule) {
buffer << "+";
}
buffer << (*it)->name();
}
ptr_vector<app> heads;
heads.resize(n);
for (unsigned i = 0; i < n; ++i) {
heads[i] = rules[i]->get_head();
}
app_ref product_head = product_application(heads);
unsigned product_tail_length = 0;
bool has_recursion = false;
vector< ptr_vector<app> > recursive_calls;
recursive_calls.resize(n);
for (unsigned i = 0; i < n; ++i) {
rule& rule = *rules[i];
product_tail_length += rule.get_tail_size();
for (unsigned j = 0; j < rule.get_positive_tail_size(); ++j) {
app* tail = rule.get_tail(j);
if (is_recursive(rule, *tail)) {
has_recursion = true;
recursive_calls[i].push_back(tail);
}
}
if (recursive_calls[i].empty()) {
recursive_calls[i].push_back(rule.get_head());
}
}
app_ref_vector new_tail(m);
svector<bool> new_tail_neg;
new_tail.resize(product_tail_length);
new_tail_neg.resize(product_tail_length);
unsigned tail_idx = -1;
if (has_recursion) {
add_rec_tail(recursive_calls, new_tail, new_tail_neg, tail_idx);
}
for (rule_vector::const_iterator it = rules.begin(); it != rules.end(); ++it) {
rule& rule = **it;
add_non_rec_tail(rule, new_tail, new_tail_neg, tail_idx);
}
rule_ref new_rule(rm);
new_rule = rm.mk(product_head, tail_idx + 1,
new_tail.c_ptr(), new_tail_neg.c_ptr(), symbol(buffer.c_str()), false);
rm.fix_unbound_vars(new_rule, false);
return new_rule;
}
void mk_synchronize::merge_rules(unsigned idx, rule_ref_vector & buf,
vector<rule_ref_vector> const & merged_rules,
rule_set & all_rules) {
if (idx >= merged_rules.size()) {
rule_ref product = product_rule(buf);
all_rules.add_rule(product.get());
return;
}
for (auto *r : merged_rules[idx]) {
buf[idx] = r;
merge_rules(idx + 1, buf, merged_rules, all_rules);
}
}
void mk_synchronize::merge_applications(rule & r, rule_set & rules) {
ptr_vector<app> non_recursive_preds;
obj_hashtable<app> apps;
for (unsigned i = 0; i < r.get_positive_tail_size(); ++i) {
app* t = r.get_tail(i);
if (!is_recursive(r, *t) && has_recursive_premise(t)) {
apps.insert(t);
}
}
if (apps.size() < 2) return;
for (auto *a : apps) non_recursive_preds.push_back(a);
item_set_vector merged_decls = add_merged_decls(non_recursive_preds);
unsigned n = non_recursive_preds.size();
ptr_vector<func_decl> decls_buf;
decls_buf.resize(n);
bool was_added = false;
add_new_rel_symbols(0, merged_decls, decls_buf, was_added);
if (was_added){
rule_ref_vector rules_buf(rm);
rules_buf.resize(n);
vector<rule_ref_vector> renamed_rules = rename_bound_vars(merged_decls, rules);
merge_rules(0, rules_buf, renamed_rules, rules);
}
replace_applications(r, rules, non_recursive_preds);
m_deps->populate(rules);
m_stratifier = alloc(rule_stratifier, *m_deps);
}
rule_set * mk_synchronize::operator()(rule_set const & source) {
rule_set* rules = alloc(rule_set, m_ctx);
rules->inherit_predicates(source);
for (auto *r : source) { rules->add_rule(r); }
m_deps = alloc(rule_dependencies, m_ctx);
m_deps->populate(*rules);
m_stratifier = alloc(rule_stratifier, *m_deps);
unsigned current_rule = 0;
while (current_rule < rules->get_num_rules()) {
rule *r = rules->get_rule(current_rule);
merge_applications(*r, *rules);
++current_rule;
}
return rules;
}
};

View file

@ -0,0 +1,134 @@
/*++
Copyright (c) 2017-2018 Saint-Petersburg State University
Module Name:
dl_mk_synchronize.h
Abstract:
Rule transformer that attempts to merge recursive iterations
relaxing the shape of the inductive invariant.
Example:
Q(z) :- A(x), B(y), phi1(x,y,z).
A(x) :- A(x'), phi2(x,x').
A(x) :- phi3(x).
B(y) :- C(y'), phi4(y,y').
C(y) :- B(y'), phi5(y,y').
B(y) :- phi6(y).
Transformed clauses:
Q(z) :- AB(x,y), phi1(x,y,z).
AB(x,y) :- AC(x',y'), phi2(x,x'), phi4(y,y').
AC(x,y) :- AB(x',y'), phi2(x,x'), phi5(y,y').
AB(x,y) :- AC(x, y'), phi3(x), phi4(y,y').
AC(x,y) :- AB(x, y'), phi3(x), phi5(y,y').
AB(x,y) :- AB(x',y), phi2(x,x'), phi6(y).
AB(x,y) :- phi3(x), phi6(y).
Author:
Dmitry Mordvinov (dvvrd) 2017-05-24
Lidiia Chernigovskaia (LChernigovskaya) 2017-10-20
Revision History:
--*/
#ifndef DL_MK_SYNCHRONIZE_H_
#define DL_MK_SYNCHRONIZE_H_
#include"muz/base/dl_context.h"
#include"muz/base/dl_rule_set.h"
#include"util/uint_set.h"
#include"muz/base/dl_rule_transformer.h"
#include"muz/transforms/dl_mk_rule_inliner.h"
namespace datalog {
/**
\brief Implements a synchronous product transformation.
*/
class mk_synchronize : public rule_transformer::plugin {
public:
typedef ptr_vector<rule_stratifier::item_set> item_set_vector;
private:
context& m_ctx;
ast_manager& m;
rule_manager& rm;
scoped_ptr<rule_dependencies> m_deps;
scoped_ptr<rule_stratifier> m_stratifier;
// symbol table that maps new predicate names to corresponding
// func_decl
map<symbol, func_decl*, symbol_hash_proc, symbol_eq_proc> m_cache;
/// returns true if decl is recursive in the given rule
/// requires that decl appears in the tail of r
bool is_recursive(rule &r, func_decl &decl) const;
bool is_recursive(rule &r, expr &e) const {
SASSERT(is_app(&e));
return is_app(&e) && is_recursive(r, *to_app(&e)->get_decl());
}
/// returns true if the top-level predicate of app is recursive
bool has_recursive_premise(app * app) const;
item_set_vector add_merged_decls(ptr_vector<app> & apps);
/**
Compute Cartesian product of decls and create a new
predicate for each element. For example, if decls is
( (a, b), (c, d) ) )
create new predicates: a!!c, a!!d, b!!c, and b!!d
*/
void add_new_rel_symbols(unsigned idx, item_set_vector const & decls,
ptr_vector<func_decl> & buf, bool & was_added);
/**
Convert vector of predicate apps into a single app. For example,
(Foo a) (Bar b) becomes (Foo!!Bar a b)
*/
app_ref product_application(ptr_vector<app> const & apps);
/**
Replace a given rule by a rule in which conjunction of
predicates is replaced by a single product predicate
*/
void replace_applications(rule & r, rule_set & rules,
ptr_vector<app> & apps);
rule_ref rename_bound_vars_in_rule(rule * r, unsigned & var_idx);
vector<rule_ref_vector> rename_bound_vars(item_set_vector const & heads,
rule_set & rules);
void add_rec_tail(vector< ptr_vector<app> > & recursive_calls,
app_ref_vector & new_tail,
svector<bool> & new_tail_neg, unsigned & tail_idx);
void add_non_rec_tail(rule & r, app_ref_vector & new_tail,
svector<bool> & new_tail_neg,
unsigned & tail_idx);
rule_ref product_rule(rule_ref_vector const & rules);
void merge_rules(unsigned idx, rule_ref_vector & buf,
vector<rule_ref_vector> const & merged_rules, rule_set & all_rules);
void merge_applications(rule & r, rule_set & rules);
public:
/**
\brief Create synchronous product transformer.
*/
mk_synchronize(context & ctx, unsigned priority = 22500);
rule_set * operator()(rule_set const & source) override;
};
};
#endif /* DL_MK_SYNCHRONIZE_H_ */

View file

@ -144,7 +144,7 @@ public:
}
}
virtual ~maxres() {}
~maxres() override {}
bool is_literal(expr* l) {
return
@ -332,7 +332,7 @@ public:
}
virtual lbool operator()() {
lbool operator()() override {
m_defs.reset();
switch(m_st) {
case s_primal:
@ -343,7 +343,7 @@ public:
return l_undef;
}
virtual void collect_statistics(statistics& st) const {
void collect_statistics(statistics& st) const override {
st.update("maxres-cores", m_stats.m_num_cores);
st.update("maxres-correction-sets", m_stats.m_num_cs);
}
@ -781,7 +781,7 @@ public:
TRACE("opt", tout << "after remove: " << asms << "\n";);
}
virtual void updt_params(params_ref& _p) {
void updt_params(params_ref& _p) override {
maxsmt_solver_base::updt_params(_p);
opt_params p(_p);
m_hill_climb = p.maxres_hill_climb();
@ -816,7 +816,7 @@ public:
return l_true;
}
virtual void commit_assignment() {
void commit_assignment() override {
if (m_found_feasible_optimum) {
TRACE("opt", tout << "Committing feasible solution\n" << m_defs << " " << m_asms;);
s().assert_expr(m_defs);

View file

@ -56,33 +56,33 @@ public:
m_opt(opt)
{}
virtual ~assert_soft_cmd() {
~assert_soft_cmd() override {
}
virtual void reset(cmd_context & ctx) {
void reset(cmd_context & ctx) override {
m_idx = 0;
m_formula = nullptr;
}
virtual char const * get_usage() const { return "<formula> [:weight <rational-weight>] [:id <symbol>]"; }
virtual char const * get_main_descr() const { return "assert soft constraint with optional weight and identifier"; }
char const * get_usage() const override { return "<formula> [:weight <rational-weight>] [:id <symbol>]"; }
char const * get_main_descr() const override { return "assert soft constraint with optional weight and identifier"; }
// command invocation
virtual void prepare(cmd_context & ctx) {
void prepare(cmd_context & ctx) override {
reset(ctx);
}
virtual cmd_arg_kind next_arg_kind(cmd_context & ctx) const {
cmd_arg_kind next_arg_kind(cmd_context & ctx) const override {
if (m_idx == 0) return CPK_EXPR;
return parametric_cmd::next_arg_kind(ctx);
}
virtual void init_pdescrs(cmd_context & ctx, param_descrs & p) {
void init_pdescrs(cmd_context & ctx, param_descrs & p) override {
p.insert("weight", CPK_NUMERAL, "(default: 1) penalty of not satisfying constraint.");
p.insert("id", CPK_SYMBOL, "(default: null) partition identifier for soft constraints.");
}
virtual void set_next_arg(cmd_context & ctx, expr * t) {
void set_next_arg(cmd_context & ctx, expr * t) override {
SASSERT(m_idx == 0);
if (!ctx.m().is_bool(t)) {
throw cmd_exception("Invalid type for expression. Expected Boolean type.");
@ -91,11 +91,11 @@ public:
++m_idx;
}
virtual void failure_cleanup(cmd_context & ctx) {
void failure_cleanup(cmd_context & ctx) override {
reset(ctx);
}
virtual void execute(cmd_context & ctx) {
void execute(cmd_context & ctx) override {
if (!m_formula) {
throw cmd_exception("assert-soft requires a formulas as argument.");
}
@ -107,7 +107,7 @@ public:
reset(ctx);
}
virtual void finalize(cmd_context & ctx) {
void finalize(cmd_context & ctx) override {
}
};
@ -123,14 +123,14 @@ public:
m_opt(opt)
{}
virtual void reset(cmd_context & ctx) { }
virtual char const * get_usage() const { return "<term>"; }
virtual char const * get_descr(cmd_context & ctx) const { return "check sat modulo objective function";}
virtual unsigned get_arity() const { return 1; }
virtual void prepare(cmd_context & ctx) {}
virtual cmd_arg_kind next_arg_kind(cmd_context & ctx) const { return CPK_EXPR; }
void reset(cmd_context & ctx) override { }
char const * get_usage() const override { return "<term>"; }
char const * get_descr(cmd_context & ctx) const override { return "check sat modulo objective function";}
unsigned get_arity() const override { return 1; }
void prepare(cmd_context & ctx) override {}
cmd_arg_kind next_arg_kind(cmd_context & ctx) const override { return CPK_EXPR; }
virtual void set_next_arg(cmd_context & ctx, expr * t) {
void set_next_arg(cmd_context & ctx, expr * t) override {
if (!is_app(t)) {
throw cmd_exception("malformed objective term: it cannot be a quantifier or bound variable");
}
@ -138,11 +138,11 @@ public:
ctx.print_success();
}
virtual void failure_cleanup(cmd_context & ctx) {
void failure_cleanup(cmd_context & ctx) override {
reset(ctx);
}
virtual void execute(cmd_context & ctx) {
void execute(cmd_context & ctx) override {
}
};
@ -154,18 +154,18 @@ public:
m_opt(opt)
{}
virtual void reset(cmd_context & ctx) { }
virtual char const * get_usage() const { return "(get-objectives)"; }
virtual char const * get_descr(cmd_context & ctx) const { return "retrieve the objective values (after optimization)"; }
virtual unsigned get_arity() const { return 0; }
virtual void prepare(cmd_context & ctx) {}
void reset(cmd_context & ctx) override { }
char const * get_usage() const override { return "(get-objectives)"; }
char const * get_descr(cmd_context & ctx) const override { return "retrieve the objective values (after optimization)"; }
unsigned get_arity() const override { return 0; }
void prepare(cmd_context & ctx) override {}
virtual void failure_cleanup(cmd_context & ctx) {
void failure_cleanup(cmd_context & ctx) override {
reset(ctx);
}
virtual void execute(cmd_context & ctx) {
void execute(cmd_context & ctx) override {
if (!ctx.ignore_check()) {
get_opt(ctx, m_opt).display_assignment(ctx.regular_stream());
}

View file

@ -79,13 +79,13 @@ namespace opt {
m_hard.push_back(hard);
}
bool context::scoped_state::set(ptr_vector<expr> & hard) {
bool context::scoped_state::set(expr_ref_vector const & hard) {
bool eq = hard.size() == m_hard.size();
for (unsigned i = 0; eq && i < hard.size(); ++i) {
eq = hard[i] == m_hard[i].get();
eq = hard.get(i) == m_hard.get(i);
}
m_hard.reset();
m_hard.append(hard.size(), hard.c_ptr());
m_hard.append(hard);
return !eq;
}
@ -130,6 +130,7 @@ namespace opt {
m_fm(alloc(generic_model_converter, m, "opt")),
m_model_fixed(),
m_objective_refs(m),
m_core(m),
m_enable_sat(false),
m_is_clausal(false),
m_pp_neat(false),
@ -173,11 +174,10 @@ namespace opt {
}
void context::get_unsat_core(expr_ref_vector & r) {
throw default_exception("Unsat cores are not supported with optimization");
r.append(m_core);
}
void context::set_hard_constraints(ptr_vector<expr>& fmls) {
void context::set_hard_constraints(expr_ref_vector const& fmls) {
if (m_scoped_state.set(fmls)) {
clear_state();
}
@ -253,7 +253,7 @@ namespace opt {
m_hard_constraints.append(s.m_hard);
}
lbool context::optimize() {
lbool context::optimize(expr_ref_vector const& asms) {
if (m_pareto) {
return execute_pareto();
}
@ -263,7 +263,10 @@ namespace opt {
clear_state();
init_solver();
import_scoped_state();
normalize();
normalize(asms);
if (m_hard_constraints.size() == 1 && m.is_false(m_hard_constraints.get(0))) {
return l_false;
}
internalize();
update_solver();
if (contains_quantifiers()) {
@ -281,7 +284,7 @@ namespace opt {
symbol pri = optp.priority();
IF_VERBOSE(1, verbose_stream() << "(optimize:check-sat)\n");
lbool is_sat = s.check_sat(0,0);
lbool is_sat = s.check_sat(asms.size(),asms.c_ptr());
TRACE("opt", s.display(tout << "initial search result: " << is_sat << "\n"););
if (is_sat != l_false) {
s.get_model(m_model);
@ -289,7 +292,10 @@ namespace opt {
model_updated(m_model.get());
}
if (is_sat != l_true) {
TRACE("opt", tout << m_hard_constraints << "\n";);
TRACE("opt", tout << m_hard_constraints << " " << asms << "\n";);
if (!asms.empty()) {
s.get_unsat_core(m_core);
}
return is_sat;
}
IF_VERBOSE(1, verbose_stream() << "(optimize:sat)\n");
@ -479,7 +485,6 @@ namespace opt {
return r;
}
expr_ref context::mk_le(unsigned i, model_ref& mdl) {
objective const& obj = m_objectives[i];
return mk_cmp(false, mdl, obj);
@ -489,8 +494,7 @@ namespace opt {
objective const& obj = m_objectives[i];
return mk_cmp(true, mdl, obj);
}
expr_ref context::mk_gt(unsigned i, model_ref& mdl) {
expr_ref result = mk_le(i, mdl);
result = mk_not(m, result);
@ -751,22 +755,25 @@ namespace opt {
return m_arith.is_numeral(e, n) || m_bv.is_numeral(e, n, sz);
}
void context::normalize() {
void context::normalize(expr_ref_vector const& asms) {
expr_ref_vector fmls(m);
to_fmls(fmls);
simplify_fmls(fmls);
simplify_fmls(fmls, asms);
from_fmls(fmls);
}
void context::simplify_fmls(expr_ref_vector& fmls) {
void context::simplify_fmls(expr_ref_vector& fmls, expr_ref_vector const& asms) {
if (m_is_clausal) {
return;
}
goal_ref g(alloc(goal, m, true, false));
goal_ref g(alloc(goal, m, true, !asms.empty()));
for (expr* fml : fmls) {
g->assert_expr(fml);
}
for (expr * a : asms) {
g->assert_expr(a, a);
}
tactic_ref tac0 =
and_then(mk_simplify_tactic(m, m_params),
mk_propagate_values_tactic(m),
@ -788,6 +795,7 @@ namespace opt {
set_simplify(tac0.get());
}
goal_ref_buffer result;
TRACE("opt", g->display(tout););
(*m_simplify)(g, result);
SASSERT(result.size() == 1);
goal* r = result[0];
@ -795,8 +803,27 @@ namespace opt {
fmls.reset();
expr_ref tmp(m);
for (unsigned i = 0; i < r->size(); ++i) {
fmls.push_back(r->form(i));
if (asms.empty()) {
fmls.push_back(r->form(i));
continue;
}
ptr_vector<expr> deps;
expr_dependency_ref core(r->dep(i), m);
m.linearize(core, deps);
if (!deps.empty()) {
fmls.push_back(m.mk_implies(m.mk_and(deps.size(), deps.c_ptr()), r->form(i)));
}
else {
fmls.push_back(r->form(i));
}
}
if (r->inconsistent()) {
ptr_vector<expr> core_elems;
expr_dependency_ref core(r->dep(0), m);
m.linearize(core, core_elems);
m_core.append(core_elems.size(), core_elems.c_ptr());
}
}
bool context::is_maximize(expr* fml, app_ref& term, expr_ref& orig_term, unsigned& index) {
@ -1084,11 +1111,7 @@ namespace opt {
}
term = m_arith.mk_add(args.size(), args.c_ptr());
}
else if (m_arith.is_arith_expr(term) && !is_mul_const(term)) {
TRACE("opt", tout << "Purifying " << term << "\n";);
term = purify(fm, term);
}
else if (m.is_ite(term)) {
else if (m.is_ite(term) || !is_mul_const(term)) {
TRACE("opt", tout << "Purifying " << term << "\n";);
term = purify(fm, term);
}
@ -1399,6 +1422,7 @@ namespace opt {
m_box_index = UINT_MAX;
m_model.reset();
m_model_fixed.reset();
m_core.reset();
}
void context::set_pareto(pareto_base* p) {

View file

@ -133,7 +133,7 @@ namespace opt {
void push();
void pop();
void add(expr* hard);
bool set(ptr_vector<expr> & hard);
bool set(expr_ref_vector const& hard);
unsigned add(expr* soft, rational const& weight, symbol const& id);
unsigned add(app* obj, bool is_max);
unsigned get_index(symbol const& id) { return m_indices[id]; }
@ -164,6 +164,7 @@ namespace opt {
obj_map<func_decl, unsigned> m_objective_fns;
obj_map<func_decl, expr*> m_objective_orig;
func_decl_ref_vector m_objective_refs;
expr_ref_vector m_core;
tactic_ref m_simplify;
bool m_enable_sat;
bool m_enable_sls;
@ -186,8 +187,8 @@ namespace opt {
void push() override;
void pop(unsigned n) override;
bool empty() override { return m_scoped_state.m_objectives.empty(); }
void set_hard_constraints(ptr_vector<expr> & hard) override;
lbool optimize() override;
void set_hard_constraints(expr_ref_vector const& hard) override;
lbool optimize(expr_ref_vector const& asms) override;
void set_model(model_ref& _m) override { m_model = _m; }
void get_model_core(model_ref& _m) override;
void get_box_model(model_ref& _m, unsigned index) override;
@ -254,7 +255,7 @@ namespace opt {
void reset_maxsmts();
void import_scoped_state();
void normalize();
void normalize(expr_ref_vector const& asms);
void internalize();
bool is_maximize(expr* fml, app_ref& term, expr_ref& orig_term, unsigned& index);
bool is_minimize(expr* fml, app_ref& term, expr_ref& orig_term, unsigned& index);
@ -270,7 +271,7 @@ namespace opt {
expr* mk_objective_fn(unsigned index, objective_t ty, unsigned sz, expr*const* args);
void to_fmls(expr_ref_vector& fmls);
void from_fmls(expr_ref_vector const& fmls);
void simplify_fmls(expr_ref_vector& fmls);
void simplify_fmls(expr_ref_vector& fmls, expr_ref_vector const& asms);
void mk_atomic(expr_ref_vector& terms);
void update_lower() { update_bound(true); }

View file

@ -71,7 +71,7 @@ namespace opt {
fmls.push_back(mk_or(gt));
fml = mk_and(fmls);
IF_VERBOSE(10, verbose_stream() << "dominates: " << fml << "\n";);
TRACE("opt", tout << fml << "\n"; model_smt2_pp(tout, m, *m_model, 0););
TRACE("opt", model_smt2_pp(tout << fml << "\n", m, *m_model, 0););
m_solver->assert_expr(fml);
}

View file

@ -39,9 +39,9 @@ namespace opt {
sortmax(maxsat_context& c, weights_t& ws, expr_ref_vector const& soft):
maxsmt_solver_base(c, ws, soft), m_sort(*this), m_trail(m), m_fresh(m) {}
virtual ~sortmax() {}
~sortmax() override {}
lbool operator()() {
lbool operator()() override {
obj_map<expr, rational> soft;
if (!init()) {
return l_false;

View file

@ -49,9 +49,9 @@ namespace opt {
m_trail(m),
m_defs(m) {}
virtual ~wmax() {}
~wmax() override {}
lbool operator()() {
lbool operator()() override {
TRACE("opt", tout << "weighted maxsat\n";);
scoped_ensure_theory wth(*this);
obj_map<expr, rational> soft;

View file

@ -36,11 +36,12 @@ std::string marshal(expr_ref e, ast_manager &m) {
expr_ref unmarshal(std::istream &is, ast_manager &m) {
cmd_context ctx(false, &m);
ctx.set_ignore_check(true);
if (!parse_smt2_commands(ctx, is)) { return expr_ref(nullptr, m); }
if (!parse_smt2_commands(ctx, is)) {
return expr_ref(nullptr, m);
}
ptr_vector<expr>::const_iterator it = ctx.begin_assertions();
ptr_vector<expr>::const_iterator end = ctx.end_assertions();
unsigned size = static_cast<unsigned>(end - it);
ptr_vector<expr>::const_iterator it = ctx.assertions().begin();
unsigned size = ctx.assertions().size();
return expr_ref(mk_and(m, size, it), m);
}

View file

@ -2614,7 +2614,7 @@ namespace smt2 {
check_rparen("invalid get-value command, ')' expected");
model_ref md;
if (!m_ctx.is_model_available(md) || m_ctx.get_check_sat_result() == 0)
if (!m_ctx.is_model_available(md) || m_ctx.get_check_sat_result() == nullptr)
throw cmd_exception("model is not available");
if (index != 0) {
m_ctx.get_opt()->get_box_model(md, index);

View file

@ -394,7 +394,7 @@ namespace eq {
expr* const* args = &e;
if (is_lambda(q)) {
r = q;
pr = 0;
pr = nullptr;
return;
}
flatten_args(q, num_args, args);

View file

@ -156,7 +156,7 @@ namespace qe {
std::swap(e1, e2);
}
// y + -1*x == 0 --> y = x
expr *a0 = 0, *a1 = 0, *x = 0;
expr *a0 = nullptr, *a1 = nullptr, *x = nullptr;
if (a.is_zero(e2) && a.is_add(e1, a0, a1)) {
if (a.is_times_minus_one(a1, x)) {
e1 = a0;

View file

@ -1266,9 +1266,9 @@ namespace qe {
in->reset();
in->inc_depth();
result.push_back(in.get());
if (in->models_enabled()) {
if (in->models_enabled()) {
model_converter_ref mc;
mc = model2model_converter(m_model.get());
mc = model2model_converter(m_model_save.get());
mc = concat(m_pred_abs.fmc(), mc.get());
in->add(mc.get());
}

View file

@ -1862,8 +1862,9 @@ namespace sat {
return p;
}
ba_solver::ba_solver(): m_solver(0), m_lookahead(0), m_unit_walk(0),
m_allocator("ba"), m_constraint_id(0), m_ba(*this), m_sort(m_ba) {
ba_solver::ba_solver()
: m_solver(nullptr), m_lookahead(nullptr), m_unit_walk(nullptr),
m_constraint_id(0), m_ba(*this), m_sort(m_ba) {
TRACE("ba", tout << this << "\n";);
m_num_propagations_since_pop = 0;
}
@ -3838,7 +3839,7 @@ namespace sat {
}
init_visited();
for (wliteral l : p1) {
SASSERT(m_weights.get(l.second.index(), 0) == 0);
SASSERT(m_weights.size() <= l.second.index() || m_weights[l.second.index()] == 0);
m_weights.setx(l.second.index(), l.first, 0);
mark_visited(l.second);
}
@ -4394,6 +4395,12 @@ namespace sat {
}
if (slack >= k) {
#if 0
return active2constraint();
active2pb(m_A);
std::cout << "not asserting\n";
display(std::cout, m_A, true);
#endif
return nullptr;
}

View file

@ -134,7 +134,7 @@ namespace sat {
virtual void set_k(unsigned k) { VERIFY(k < 4000000000); m_k = k; }
virtual unsigned get_coeff(unsigned i) const { UNREACHABLE(); return 0; }
unsigned k() const { return m_k; }
virtual bool well_formed() const;
bool well_formed() const override;
};
class card : public pb_base {
@ -146,13 +146,13 @@ namespace sat {
literal& operator[](unsigned i) { return m_lits[i]; }
literal const* begin() const { return m_lits; }
literal const* end() const { return static_cast<literal const*>(m_lits) + m_size; }
virtual void negate();
virtual void swap(unsigned i, unsigned j) { std::swap(m_lits[i], m_lits[j]); }
virtual literal_vector literals() const { return literal_vector(m_size, m_lits); }
virtual bool is_watching(literal l) const;
virtual literal get_lit(unsigned i) const { return m_lits[i]; }
virtual void set_lit(unsigned i, literal l) { m_lits[i] = l; }
virtual unsigned get_coeff(unsigned i) const { return 1; }
void negate() override;
void swap(unsigned i, unsigned j) override { std::swap(m_lits[i], m_lits[j]); }
literal_vector literals() const override { return literal_vector(m_size, m_lits); }
bool is_watching(literal l) const override;
literal get_lit(unsigned i) const override { return m_lits[i]; }
void set_lit(unsigned i, literal l) override { m_lits[i] = l; }
unsigned get_coeff(unsigned i) const override { return 1; }
};
@ -179,14 +179,14 @@ namespace sat {
void update_max_sum();
void set_num_watch(unsigned s) { m_num_watch = s; }
bool is_cardinality() const;
virtual void negate();
virtual void set_k(unsigned k) { m_k = k; VERIFY(k < 4000000000); update_max_sum(); }
virtual void swap(unsigned i, unsigned j) { std::swap(m_wlits[i], m_wlits[j]); }
virtual literal_vector literals() const { literal_vector lits; for (auto wl : *this) lits.push_back(wl.second); return lits; }
virtual bool is_watching(literal l) const;
virtual literal get_lit(unsigned i) const { return m_wlits[i].second; }
virtual void set_lit(unsigned i, literal l) { m_wlits[i].second = l; }
virtual unsigned get_coeff(unsigned i) const { return m_wlits[i].first; }
void negate() override;
void set_k(unsigned k) override { m_k = k; VERIFY(k < 4000000000); update_max_sum(); }
void swap(unsigned i, unsigned j) override { std::swap(m_wlits[i], m_wlits[j]); }
literal_vector literals() const override { literal_vector lits; for (auto wl : *this) lits.push_back(wl.second); return lits; }
bool is_watching(literal l) const override;
literal get_lit(unsigned i) const override { return m_wlits[i].second; }
void set_lit(unsigned i, literal l) override { m_wlits[i].second = l; }
unsigned get_coeff(unsigned i) const override { return m_wlits[i].first; }
};
class xr : public constraint {
@ -197,13 +197,13 @@ namespace sat {
literal operator[](unsigned i) const { return m_lits[i]; }
literal const* begin() const { return m_lits; }
literal const* end() const { return begin() + m_size; }
virtual void negate() { m_lits[0].neg(); }
virtual void swap(unsigned i, unsigned j) { std::swap(m_lits[i], m_lits[j]); }
virtual bool is_watching(literal l) const;
virtual literal_vector literals() const { return literal_vector(size(), begin()); }
virtual literal get_lit(unsigned i) const { return m_lits[i]; }
virtual void set_lit(unsigned i, literal l) { m_lits[i] = l; }
virtual bool well_formed() const;
void negate() override { m_lits[0].neg(); }
void swap(unsigned i, unsigned j) override { std::swap(m_lits[i], m_lits[j]); }
bool is_watching(literal l) const override;
literal_vector literals() const override { return literal_vector(size(), begin()); }
literal get_lit(unsigned i) const override { return m_lits[i]; }
void set_lit(unsigned i, literal l) override { m_lits[i] = l; }
bool well_formed() const override;
};
@ -524,44 +524,44 @@ namespace sat {
public:
ba_solver();
virtual ~ba_solver();
virtual void set_solver(solver* s) { m_solver = s; }
virtual void set_lookahead(lookahead* l) { m_lookahead = l; }
virtual void set_unit_walk(unit_walk* u) { m_unit_walk = u; }
~ba_solver() override;
void set_solver(solver* s) override { m_solver = s; }
void set_lookahead(lookahead* l) override { m_lookahead = l; }
void set_unit_walk(unit_walk* u) override { m_unit_walk = u; }
void add_at_least(bool_var v, literal_vector const& lits, unsigned k);
void add_pb_ge(bool_var v, svector<wliteral> const& wlits, unsigned k);
void add_xr(literal_vector const& lits);
virtual bool propagate(literal l, ext_constraint_idx idx);
virtual lbool resolve_conflict();
virtual void get_antecedents(literal l, ext_justification_idx idx, literal_vector & r);
virtual void asserted(literal l);
virtual check_result check();
virtual void push();
virtual void pop(unsigned n);
virtual void simplify();
virtual void clauses_modifed();
virtual lbool get_phase(bool_var v);
virtual bool set_root(literal l, literal r);
virtual void flush_roots();
virtual std::ostream& display(std::ostream& out) const;
virtual std::ostream& display_justification(std::ostream& out, ext_justification_idx idx) const;
virtual void collect_statistics(statistics& st) const;
virtual extension* copy(solver* s);
virtual extension* copy(lookahead* s, bool learned);
virtual void find_mutexes(literal_vector& lits, vector<literal_vector> & mutexes);
virtual void pop_reinit();
virtual void gc();
virtual double get_reward(literal l, ext_justification_idx idx, literal_occs_fun& occs) const;
virtual bool is_extended_binary(ext_justification_idx idx, literal_vector & r);
virtual void init_use_list(ext_use_list& ul);
virtual bool is_blocked(literal l, ext_constraint_idx idx);
virtual bool check_model(model const& m) const;
bool propagate(literal l, ext_constraint_idx idx) override;
lbool resolve_conflict() override;
void get_antecedents(literal l, ext_justification_idx idx, literal_vector & r) override;
void asserted(literal l) override;
check_result check() override;
void push() override;
void pop(unsigned n) override;
void simplify() override;
void clauses_modifed() override;
lbool get_phase(bool_var v) override;
bool set_root(literal l, literal r) override;
void flush_roots() override;
std::ostream& display(std::ostream& out) const override;
std::ostream& display_justification(std::ostream& out, ext_justification_idx idx) const override;
void collect_statistics(statistics& st) const override;
extension* copy(solver* s) override;
extension* copy(lookahead* s, bool learned) override;
void find_mutexes(literal_vector& lits, vector<literal_vector> & mutexes) override;
void pop_reinit() override;
void gc() override;
double get_reward(literal l, ext_justification_idx idx, literal_occs_fun& occs) const override;
bool is_extended_binary(ext_justification_idx idx, literal_vector & r) override;
void init_use_list(ext_use_list& ul) override;
bool is_blocked(literal l, ext_constraint_idx idx) override;
bool check_model(model const& m) const override;
ptr_vector<constraint> const & constraints() const { return m_constraints; }
void display(std::ostream& out, constraint const& c, bool values) const;
virtual bool validate();
bool validate() override;
};

View file

@ -152,6 +152,8 @@ namespace sat {
m_gc_burst = p.gc_burst();
m_gc_defrag = p.gc_defrag();
m_force_cleanup = p.force_cleanup();
m_minimize_lemmas = p.minimize_lemmas();
m_core_minimize = p.core_minimize();
m_core_minimize_partial = p.core_minimize_partial();

View file

@ -146,6 +146,8 @@ namespace sat {
bool m_gc_burst;
bool m_gc_defrag;
bool m_force_cleanup;
bool m_minimize_lemmas;
bool m_dyn_sub_res;

View file

@ -26,7 +26,7 @@ Notes:
namespace sat {
drat::drat(solver& s):
s(s),
m_out(0),
m_out(nullptr),
m_inconsistent(false),
m_check_unsat(false),
m_check_sat(false),

View file

@ -529,7 +529,7 @@ namespace sat {
}
lbool local_search::check() {
return check(0, 0);
return check(0, nullptr);
}
#define PROGRESS(tries, flips) \

View file

@ -277,7 +277,7 @@ namespace sat {
lbool check();
lbool check(unsigned sz, literal const* assumptions, parallel* p = 0);
lbool check(unsigned sz, literal const* assumptions, parallel* p = nullptr);
local_search_config& config() { return m_config; }

View file

@ -16,6 +16,8 @@ Author:
Notes:
--*/
#include <cmath>
@ -31,7 +33,7 @@ namespace sat {
}
lookahead::scoped_ext::~scoped_ext() {
if (p.m_s.m_ext) p.m_s.m_ext->set_lookahead(0);
if (p.m_s.m_ext) p.m_s.m_ext->set_lookahead(nullptr);
}
lookahead::scoped_assumptions::scoped_assumptions(lookahead& p, literal_vector const& lits): p(p), lits(lits) {
@ -1215,7 +1217,7 @@ namespace sat {
lookahead& lh;
public:
lookahead_literal_occs_fun(lookahead& lh): lh(lh) {}
double operator()(literal l) { return lh.literal_occs(l); }
double operator()(literal l) override { return lh.literal_occs(l); }
};
// Ternary clause managagement:
@ -2055,6 +2057,15 @@ namespace sat {
return h;
}
bool lookahead::should_cutoff(unsigned depth) {
return depth > 0 &&
((m_config.m_cube_cutoff == depth_cutoff && depth == m_config.m_cube_depth) ||
(m_config.m_cube_cutoff == freevars_cutoff && m_freevars.size() <= m_init_freevars * m_config.m_cube_freevars) ||
(m_config.m_cube_cutoff == psat_cutoff && psat_heur() >= m_config.m_cube_psat_trigger) ||
(m_config.m_cube_cutoff == adaptive_freevars_cutoff && m_freevars.size() < m_cube_state.m_freevars_threshold) ||
(m_config.m_cube_cutoff == adaptive_psat_cutoff && psat_heur() >= m_cube_state.m_psat_threshold));
}
lbool lookahead::cube(bool_var_vector& vars, literal_vector& lits, unsigned backtrack_level) {
scoped_ext _scoped_ext(*this);
lits.reset();
@ -2100,22 +2111,13 @@ namespace sat {
}
backtrack_level = UINT_MAX;
depth = m_cube_state.m_cube.size();
if ((m_config.m_cube_cutoff == depth_cutoff && depth == m_config.m_cube_depth) ||
(m_config.m_cube_cutoff == freevars_cutoff && m_freevars.size() <= m_init_freevars * m_config.m_cube_freevars) ||
(m_config.m_cube_cutoff == psat_cutoff && psat_heur() >= m_config.m_cube_psat_trigger) ||
(m_config.m_cube_cutoff == adaptive_freevars_cutoff && m_freevars.size() < m_cube_state.m_freevars_threshold) ||
(m_config.m_cube_cutoff == adaptive_psat_cutoff && psat_heur() >= m_cube_state.m_psat_threshold)) {
if (should_cutoff(depth)) {
double dec = (1.0 - pow(m_config.m_cube_fraction, depth));
m_cube_state.m_freevars_threshold *= dec;
m_cube_state.m_psat_threshold *= 2.0 - dec;
set_conflict();
m_cube_state.inc_cutoff();
#if 0
// return cube of all literals, not just the ones in the main cube
lits.append(m_trail.size() - init_trail, m_trail.c_ptr() + init_trail);
#else
lits.append(m_cube_state.m_cube);
#endif
vars.reset();
for (auto v : m_freevars) if (in_reduced_clause(v)) vars.push_back(v);
backtrack(m_cube_state.m_cube, m_cube_state.m_is_decision);
@ -2135,6 +2137,8 @@ namespace sat {
if (lit == null_literal) {
vars.reset();
for (auto v : m_freevars) if (in_reduced_clause(v)) vars.push_back(v);
m_model.reset();
init_model();
return l_true;
}
TRACE("sat", tout << "choose: " << lit << " cube: " << m_cube_state.m_cube << "\n";);

Some files were not shown because too many files have changed in this diff Show more