mirror of
https://github.com/Z3Prover/z3
synced 2025-04-28 19:35:50 +00:00
Refactor basic lemmas out of nla_core
This commit is contained in:
parent
3e11b87aaf
commit
c7c2d81f53
8 changed files with 1065 additions and 296 deletions
115
src/util/lp/nla_basics_lemmas.h
Normal file
115
src/util/lp/nla_basics_lemmas.h
Normal file
|
@ -0,0 +1,115 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
Nikolaj Bjorner (nbjorner)
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
#include "util/lp/monomial.h"
|
||||
#include "util/lp/rooted_mons.h"
|
||||
#include "util/lp/factorization.h"
|
||||
|
||||
|
||||
namespace nla {
|
||||
struct core;
|
||||
struct basics {
|
||||
core* m_core;
|
||||
core& c() { return *m_core; }
|
||||
const core& c() const { return *m_core; }
|
||||
basics(core *core);
|
||||
bool basic_sign_lemma_on_two_monomials(const monomial& m, const monomial& n, const rational& sign);
|
||||
|
||||
void basic_sign_lemma_model_based_one_mon(const monomial& m, int product_sign);
|
||||
|
||||
bool basic_sign_lemma_model_based();
|
||||
bool basic_sign_lemma_on_mon(unsigned i, std::unordered_set<unsigned> & explore);
|
||||
|
||||
/**
|
||||
* \brief <generate lemma by using the fact that -ab = (-a)b) and
|
||||
-ab = a(-b)
|
||||
*/
|
||||
bool basic_sign_lemma(bool derived);
|
||||
bool basic_lemma_for_mon_zero(const rooted_mon& rm, const factorization& f);
|
||||
|
||||
void basic_lemma_for_mon_zero_model_based(const rooted_mon& rm, const factorization& f);
|
||||
|
||||
void basic_lemma_for_mon_non_zero_model_based(const rooted_mon& rm, const factorization& f);
|
||||
// x = 0 or y = 0 -> xy = 0
|
||||
void basic_lemma_for_mon_non_zero_model_based_rm(const rooted_mon& rm, const factorization& f);
|
||||
|
||||
void basic_lemma_for_mon_non_zero_model_based_mf(const factorization& f);
|
||||
// x = 0 or y = 0 -> xy = 0
|
||||
bool basic_lemma_for_mon_non_zero_derived(const rooted_mon& rm, const factorization& f);
|
||||
|
||||
// use the fact that
|
||||
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
|
||||
bool basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const rooted_mon& rm, const factorization& f);
|
||||
// use the fact that
|
||||
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
|
||||
bool basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(const monomial& m);
|
||||
bool basic_lemma_for_mon_neutral_monomial_to_factor_derived(const rooted_mon& rm, const factorization& f);
|
||||
|
||||
// use the fact
|
||||
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
|
||||
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(const rooted_mon& rm, const factorization& f);
|
||||
// use the fact
|
||||
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
|
||||
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm(const monomial& m);
|
||||
// use the fact
|
||||
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
|
||||
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_derived(const rooted_mon& rm, const factorization& f);
|
||||
void basic_lemma_for_mon_neutral_model_based(const rooted_mon& rm, const factorization& f);
|
||||
|
||||
bool basic_lemma_for_mon_neutral_derived(const rooted_mon& rm, const factorization& factorization);
|
||||
|
||||
void basic_lemma_for_mon_model_based(const rooted_mon& rm);
|
||||
|
||||
bool basic_lemma_for_mon_derived(const rooted_mon& rm);
|
||||
|
||||
// Use basic multiplication properties to create a lemma
|
||||
// for the given monomial.
|
||||
// "derived" means derived from constraints - the alternative is model based
|
||||
void basic_lemma_for_mon(const rooted_mon& rm, bool derived);
|
||||
// use basic multiplication properties to create a lemma
|
||||
bool basic_lemma(bool derived);
|
||||
template <typename T> rational vvr(T const& t) const;
|
||||
rational vvr(lpvar) const;
|
||||
template <typename T> lpvar var(T const& t) const;
|
||||
void generate_sign_lemma(const monomial& m, const monomial& n, const rational& sign);
|
||||
void generate_zero_lemmas(const monomial& m);
|
||||
lpvar find_best_zero(const monomial& m, unsigned_vector & fixed_zeros) const;
|
||||
bool try_get_non_strict_sign_from_bounds(lpvar j, int& sign) const;
|
||||
void get_non_strict_sign(lpvar j, int& sign) const;
|
||||
void add_trival_zero_lemma(lpvar zero_j, const monomial& m);
|
||||
void generate_strict_case_zero_lemma(const monomial& m, unsigned zero_j, int sign_of_zj);
|
||||
|
||||
void add_fixed_zero_lemma(const monomial& m, lpvar j);
|
||||
void add_empty_lemma();
|
||||
void negate_strict_sign(lpvar j);
|
||||
bool done() const;
|
||||
// x != 0 or y = 0 => |xy| >= |y|
|
||||
void proportion_lemma_model_based(const rooted_mon& rm, const factorization& factorization);
|
||||
// x != 0 or y = 0 => |xy| >= |y|
|
||||
bool proportion_lemma_derived(const rooted_mon& rm, const factorization& factorization);
|
||||
template <typename T> void explain(const T&);
|
||||
// if there are no zero factors then |m| >= |m[factor_index]|
|
||||
void generate_pl_on_mon(const monomial& m, unsigned factor_index);
|
||||
|
||||
// none of the factors is zero and the product is not zero
|
||||
// -> |fc[factor_index]| <= |rm|
|
||||
void generate_pl(const rooted_mon& rm, const factorization& fc, int factor_index);
|
||||
};
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue