3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-28 19:35:50 +00:00

Refactor basic lemmas out of nla_core

This commit is contained in:
Lev Nachmanson 2019-04-12 15:29:01 -07:00
parent 3e11b87aaf
commit c7c2d81f53
8 changed files with 1065 additions and 296 deletions

View file

@ -0,0 +1,115 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Nikolaj Bjorner (nbjorner)
Lev Nachmanson (levnach)
Revision History:
--*/
#pragma once
#include "util/lp/monomial.h"
#include "util/lp/rooted_mons.h"
#include "util/lp/factorization.h"
namespace nla {
struct core;
struct basics {
core* m_core;
core& c() { return *m_core; }
const core& c() const { return *m_core; }
basics(core *core);
bool basic_sign_lemma_on_two_monomials(const monomial& m, const monomial& n, const rational& sign);
void basic_sign_lemma_model_based_one_mon(const monomial& m, int product_sign);
bool basic_sign_lemma_model_based();
bool basic_sign_lemma_on_mon(unsigned i, std::unordered_set<unsigned> & explore);
/**
* \brief <generate lemma by using the fact that -ab = (-a)b) and
-ab = a(-b)
*/
bool basic_sign_lemma(bool derived);
bool basic_lemma_for_mon_zero(const rooted_mon& rm, const factorization& f);
void basic_lemma_for_mon_zero_model_based(const rooted_mon& rm, const factorization& f);
void basic_lemma_for_mon_non_zero_model_based(const rooted_mon& rm, const factorization& f);
// x = 0 or y = 0 -> xy = 0
void basic_lemma_for_mon_non_zero_model_based_rm(const rooted_mon& rm, const factorization& f);
void basic_lemma_for_mon_non_zero_model_based_mf(const factorization& f);
// x = 0 or y = 0 -> xy = 0
bool basic_lemma_for_mon_non_zero_derived(const rooted_mon& rm, const factorization& f);
// use the fact that
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
bool basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const rooted_mon& rm, const factorization& f);
// use the fact that
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
bool basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(const monomial& m);
bool basic_lemma_for_mon_neutral_monomial_to_factor_derived(const rooted_mon& rm, const factorization& f);
// use the fact
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(const rooted_mon& rm, const factorization& f);
// use the fact
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm(const monomial& m);
// use the fact
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_derived(const rooted_mon& rm, const factorization& f);
void basic_lemma_for_mon_neutral_model_based(const rooted_mon& rm, const factorization& f);
bool basic_lemma_for_mon_neutral_derived(const rooted_mon& rm, const factorization& factorization);
void basic_lemma_for_mon_model_based(const rooted_mon& rm);
bool basic_lemma_for_mon_derived(const rooted_mon& rm);
// Use basic multiplication properties to create a lemma
// for the given monomial.
// "derived" means derived from constraints - the alternative is model based
void basic_lemma_for_mon(const rooted_mon& rm, bool derived);
// use basic multiplication properties to create a lemma
bool basic_lemma(bool derived);
template <typename T> rational vvr(T const& t) const;
rational vvr(lpvar) const;
template <typename T> lpvar var(T const& t) const;
void generate_sign_lemma(const monomial& m, const monomial& n, const rational& sign);
void generate_zero_lemmas(const monomial& m);
lpvar find_best_zero(const monomial& m, unsigned_vector & fixed_zeros) const;
bool try_get_non_strict_sign_from_bounds(lpvar j, int& sign) const;
void get_non_strict_sign(lpvar j, int& sign) const;
void add_trival_zero_lemma(lpvar zero_j, const monomial& m);
void generate_strict_case_zero_lemma(const monomial& m, unsigned zero_j, int sign_of_zj);
void add_fixed_zero_lemma(const monomial& m, lpvar j);
void add_empty_lemma();
void negate_strict_sign(lpvar j);
bool done() const;
// x != 0 or y = 0 => |xy| >= |y|
void proportion_lemma_model_based(const rooted_mon& rm, const factorization& factorization);
// x != 0 or y = 0 => |xy| >= |y|
bool proportion_lemma_derived(const rooted_mon& rm, const factorization& factorization);
template <typename T> void explain(const T&);
// if there are no zero factors then |m| >= |m[factor_index]|
void generate_pl_on_mon(const monomial& m, unsigned factor_index);
// none of the factors is zero and the product is not zero
// -> |fc[factor_index]| <= |rm|
void generate_pl(const rooted_mon& rm, const factorization& fc, int factor_index);
};
}