mirror of
https://github.com/Z3Prover/z3
synced 2025-04-15 13:28:47 +00:00
avoid unnecessary inequalities
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
f2ec3b362a
commit
3e11b87aaf
225
src/util/lp/nla_tangent_lemmas.cpp
Normal file
225
src/util/lp/nla_tangent_lemmas.cpp
Normal file
|
@ -0,0 +1,225 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
Nikolaj Bjorner (nbjorner)
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#include "util/lp/nla_tangent_lemmas.h"
|
||||
#include "util/lp/nla_core.h"
|
||||
|
||||
namespace nla {
|
||||
template <typename T> rational tangents::vvr(T const& t) const { return m_core->vvr(t); }
|
||||
template <typename T> lpvar tangents::var(T const& t) const { return m_core->var(t); }
|
||||
void tangents::add_empty_lemma() { c().add_empty_lemma(); }
|
||||
|
||||
tangents::tangents(core * c) : m_core(c) {}
|
||||
std::ostream& tangents::print_point(const point &a, std::ostream& out) const {
|
||||
out << "(" << a.x << ", " << a.y << ")";
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& tangents::print_tangent_domain(const point &a, const point &b, std::ostream& out) const {
|
||||
out << "("; print_point(a, out); out << ", "; print_point(b, out); out << ")";
|
||||
return out;
|
||||
}
|
||||
void tangents::generate_simple_tangent_lemma(const rooted_mon* rm) {
|
||||
if (rm->size() != 2)
|
||||
return;
|
||||
TRACE("nla_solver", tout << "rm:"; m_core->print_rooted_monomial_with_vars(*rm, tout) << std::endl;);
|
||||
m_core->add_empty_lemma();
|
||||
unsigned i_mon = rm->orig_index();
|
||||
const monomial & m = c().m_monomials[i_mon];
|
||||
const rational v = c().product_value(m);
|
||||
const rational& mv = vvr(m);
|
||||
SASSERT(mv != v);
|
||||
SASSERT(!mv.is_zero() && !v.is_zero());
|
||||
rational sign = rational(nla::rat_sign(mv));
|
||||
if (sign != nla::rat_sign(v)) {
|
||||
c().generate_simple_sign_lemma(-sign, m);
|
||||
return;
|
||||
}
|
||||
bool gt = abs(mv) > abs(v);
|
||||
if (gt) {
|
||||
for (lpvar j : m) {
|
||||
const rational & jv = vvr(j);
|
||||
rational js = rational(nla::rat_sign(jv));
|
||||
c().mk_ineq(js, j, llc::LT);
|
||||
c().mk_ineq(js, j, llc::GT, jv);
|
||||
}
|
||||
c().mk_ineq(sign, i_mon, llc::LE, std::max(v, rational(-1)));
|
||||
} else {
|
||||
for (lpvar j : m) {
|
||||
const rational & jv = vvr(j);
|
||||
rational js = rational(nla::rat_sign(jv));
|
||||
c().mk_ineq(js, j, llc::LT, std::max(jv, rational(0)));
|
||||
}
|
||||
c().mk_ineq(sign, m.var(), llc::LT);
|
||||
c().mk_ineq(sign, m.var(), llc::GE, v);
|
||||
}
|
||||
TRACE("nla_solver", c().print_lemma(tout););
|
||||
}
|
||||
|
||||
void tangents::tangent_lemma() {
|
||||
bfc bf;
|
||||
lpvar j;
|
||||
rational sign;
|
||||
const rooted_mon* rm = nullptr;
|
||||
|
||||
if (c().find_bfc_to_refine(bf, j, sign, rm)) {
|
||||
tangent_lemma_bf(bf, j, sign, rm);
|
||||
} else {
|
||||
TRACE("nla_solver", tout << "cannot find a bfc to refine\n"; );
|
||||
if (rm != nullptr)
|
||||
generate_simple_tangent_lemma(rm);
|
||||
}
|
||||
}
|
||||
|
||||
void tangents::generate_explanations_of_tang_lemma(const rooted_mon& rm, const bfc& bf, lp::explanation& exp) {
|
||||
// here we repeat the same explanation for each lemma
|
||||
c().explain(rm, exp);
|
||||
c().explain(bf.m_x, exp);
|
||||
c().explain(bf.m_y, exp);
|
||||
}
|
||||
|
||||
void tangents::generate_tang_plane(const rational & a, const rational& b, const factor& x, const factor& y, bool below, lpvar j, const rational& j_sign) {
|
||||
lpvar jx = var(x);
|
||||
lpvar jy = var(y);
|
||||
add_empty_lemma();
|
||||
c().negate_relation(jx, a);
|
||||
c().negate_relation(jy, b);
|
||||
bool sbelow = j_sign.is_pos()? below: !below;
|
||||
#if Z3DEBUG
|
||||
int mult_sign = nla::rat_sign(a - vvr(jx))*nla::rat_sign(b - vvr(jy));
|
||||
SASSERT((mult_sign == 1) == sbelow);
|
||||
// If "mult_sign is 1" then (a - x)(b-y) > 0 and ab - bx - ay + xy > 0
|
||||
// or -ab + bx + ay < xy or -ay - bx + xy > -ab
|
||||
// j_sign*vvr(j) stands for xy. So, finally we have -ay - bx + j_sign*j > - ab
|
||||
#endif
|
||||
|
||||
lp::lar_term t;
|
||||
t.add_coeff_var(-a, jy);
|
||||
t.add_coeff_var(-b, jx);
|
||||
t.add_coeff_var( j_sign, j);
|
||||
c().mk_ineq(t, sbelow? llc::GT : llc::LT, - a*b);
|
||||
}
|
||||
void tangents::tangent_lemma_bf(const bfc& bf, lpvar j, const rational& sign, const rooted_mon* rm){
|
||||
point a, b;
|
||||
point xy (vvr(bf.m_x), vvr(bf.m_y));
|
||||
rational correct_mult_val = xy.x * xy.y;
|
||||
rational val = vvr(j) * sign;
|
||||
bool below = val < correct_mult_val;
|
||||
TRACE("nla_solver", tout << "rm = " << rm << ", below = " << below << std::endl; );
|
||||
get_tang_points(a, b, below, val, xy);
|
||||
TRACE("nla_solver", tout << "sign = " << sign << ", tang domain = "; print_tangent_domain(a, b, tout); tout << std::endl;);
|
||||
unsigned lemmas_size_was = c().m_lemma_vec->size();
|
||||
generate_two_tang_lines(bf, xy, sign, j);
|
||||
generate_tang_plane(a.x, a.y, bf.m_x, bf.m_y, below, j, sign);
|
||||
generate_tang_plane(b.x, b.y, bf.m_x, bf.m_y, below, j, sign);
|
||||
// if rm == nullptr there is no need to explain equivs since we work on a monomial and not on a rooted monomial
|
||||
if (rm != nullptr) {
|
||||
lp::explanation expl;
|
||||
generate_explanations_of_tang_lemma(*rm, bf, expl);
|
||||
for (unsigned i = lemmas_size_was; i < c().m_lemma_vec->size(); i++) {
|
||||
auto &l = ((*c().m_lemma_vec)[i]);
|
||||
l.expl().add(expl);
|
||||
}
|
||||
}
|
||||
TRACE("nla_solver",
|
||||
for (unsigned i = lemmas_size_was; i < c().m_lemma_vec->size(); i++)
|
||||
c().print_specific_lemma((*c().m_lemma_vec)[i], tout); );
|
||||
}
|
||||
|
||||
void tangents::generate_two_tang_lines(const bfc & bf, const point& xy, const rational& sign, lpvar j) {
|
||||
add_empty_lemma();
|
||||
c().mk_ineq(var(bf.m_x), llc::NE, xy.x);
|
||||
c().mk_ineq(sign, j, - xy.x, var(bf.m_y), llc::EQ);
|
||||
|
||||
add_empty_lemma();
|
||||
c().mk_ineq(var(bf.m_y), llc::NE, xy.y);
|
||||
c().mk_ineq(sign, j, - xy.y, var(bf.m_x), llc::EQ);
|
||||
}
|
||||
|
||||
// Get two planes tangent to surface z = xy, one at point a, and another at point b.
|
||||
// One can show that these planes still create a cut.
|
||||
void tangents::get_initial_tang_points(point &a, point &b, const point& xy,
|
||||
bool below) const {
|
||||
const rational& x = xy.x;
|
||||
const rational& y = xy.y;
|
||||
if (!below){
|
||||
a = point(x - rational(1), y + rational(1));
|
||||
b = point(x + rational(1), y - rational(1));
|
||||
}
|
||||
else {
|
||||
a = point(x - rational(1), y - rational(1));
|
||||
b = point(x + rational(1), y + rational(1));
|
||||
}
|
||||
}
|
||||
|
||||
void tangents::push_tang_point(point &a, const point& xy, bool below, const rational& correct_val, const rational& val) const {
|
||||
SASSERT(correct_val == xy.x * xy.y);
|
||||
int steps = 10;
|
||||
point del = a - xy;
|
||||
while (steps--) {
|
||||
del *= rational(2);
|
||||
point na = xy + del;
|
||||
TRACE("nla_solver", tout << "del = "; print_point(del, tout); tout << std::endl;);
|
||||
if (!plane_is_correct_cut(na, xy, correct_val, val, below)) {
|
||||
TRACE("nla_solver_tp", tout << "exit";tout << std::endl;);
|
||||
return;
|
||||
}
|
||||
a = na;
|
||||
}
|
||||
}
|
||||
|
||||
void tangents::push_tang_points(point &a, point &b, const point& xy, bool below, const rational& correct_val, const rational& val) const {
|
||||
push_tang_point(a, xy, below, correct_val, val);
|
||||
push_tang_point(b, xy, below, correct_val, val);
|
||||
}
|
||||
|
||||
rational tangents::tang_plane(const point& a, const point& x) const {
|
||||
return a.x * x.y + a.y * x.x - a.x * a.y;
|
||||
}
|
||||
|
||||
bool tangents:: plane_is_correct_cut(const point& plane,
|
||||
const point& xy,
|
||||
const rational & correct_val,
|
||||
const rational & val,
|
||||
bool below) const {
|
||||
SASSERT(correct_val == xy.x * xy.y);
|
||||
if (below && val > correct_val) return false;
|
||||
rational sign = below? rational(1) : rational(-1);
|
||||
rational px = tang_plane(plane, xy);
|
||||
return ((correct_val - px)*sign).is_pos() && !((px - val)*sign).is_neg();
|
||||
|
||||
}
|
||||
|
||||
// "below" means that the val is below the surface xy
|
||||
void tangents::get_tang_points(point &a, point &b, bool below, const rational& val,
|
||||
const point& xy) const {
|
||||
get_initial_tang_points(a, b, xy, below);
|
||||
auto correct_val = xy.x * xy.y;
|
||||
TRACE("nla_solver", tout << "xy = "; print_point(xy, tout); tout << ", correct val = " << xy.x * xy.y;
|
||||
tout << "\ntang points:"; print_tangent_domain(a, b, tout);tout << std::endl;);
|
||||
TRACE("nla_solver", tout << "tang_plane(a, xy) = " << tang_plane(a, xy) << " , val = " << val;
|
||||
tout << "\ntang_plane(b, xy) = " << tang_plane(b, xy); tout << std::endl;);
|
||||
SASSERT(plane_is_correct_cut(a, xy, correct_val, val, below));
|
||||
SASSERT(plane_is_correct_cut(b, xy, correct_val, val, below));
|
||||
push_tang_points(a, b, xy, below, correct_val, val);
|
||||
TRACE("nla_solver", tout << "pushed a = "; print_point(a, tout); tout << "\npushed b = "; print_point(b, tout); tout << std::endl;);
|
||||
}
|
||||
|
||||
}
|
||||
|
Loading…
Reference in a new issue