3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 17:45:32 +00:00

Refactor basic lemmas out of nla_core

This commit is contained in:
Lev Nachmanson 2019-04-12 15:29:01 -07:00
parent 3e11b87aaf
commit c7c2d81f53
8 changed files with 1065 additions and 296 deletions

View file

@ -7,6 +7,7 @@ z3_add_component(lp
dense_matrix.cpp
eta_matrix.cpp
factorization.cpp
factorization_factory_imp.cpp
gomory.cpp
indexed_vector.cpp
int_solver.cpp
@ -23,6 +24,7 @@ z3_add_component(lp
lp_utils.cpp
matrix.cpp
mon_eq.cpp
nla_basics_lemmas.cpp
nla_core.cpp
nla_solver.cpp
nra_solver.cpp

View file

@ -0,0 +1,34 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Nikolaj Bjorner (nbjorner)
Lev Nachmanson (levnach)
Revision History:
--*/
#include "util/lp/factorization_factory_imp.h"
#include "util/lp/nla_core.h"
namespace nla {
factorization_factory_imp::factorization_factory_imp(const rooted_mon& rm, const core& s) :
factorization_factory(rm.m_vars, &s.m_monomials[rm.orig_index()]),
m_core(s), m_mon(& s.m_monomials[rm.orig_index()]), m_rm(rm) { }
bool factorization_factory_imp::find_rm_monomial_of_vars(const svector<lpvar>& vars, unsigned & i) const {
return m_core.find_rm_monomial_of_vars(vars, i);
}
const monomial* factorization_factory_imp::find_monomial_of_vars(const svector<lpvar>& vars) const {
return m_core.find_monomial_of_vars(vars);
}
}

View file

@ -0,0 +1,34 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Nikolaj Bjorner (nbjorner)
Lev Nachmanson (levnach)
Revision History:
--*/
#pragma once
#include "util/lp/factorization.h"
namespace nla {
struct core;
class rooted_mon;
struct factorization_factory_imp: factorization_factory {
const core& m_core;
const monomial *m_mon;
const rooted_mon& m_rm;
factorization_factory_imp(const rooted_mon& rm, const core& s);
bool find_rm_monomial_of_vars(const svector<lpvar>& vars, unsigned & i) const;
const monomial* find_monomial_of_vars(const svector<lpvar>& vars) const;
};
}

View file

@ -0,0 +1,855 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Nikolaj Bjorner (nbjorner)
Lev Nachmanson (levnach)
Revision History:
--*/
#include "util/lp/nla_basics_lemmas.h"
#include "util/lp/nla_core.h"
#include "util/lp/factorization_factory_imp.h"
namespace nla {
template <typename T> rational basics::vvr(T const& t) const { return m_core->vvr(t); }
rational basics::vvr(lpvar t) const { return m_core->vvr(t); }
template <typename T> lpvar basics::var(T const& t) const { return m_core->var(t); }
basics::basics(core * c) : m_core(c) {}
// Monomials m and n vars have the same values, up to "sign"
// Generate a lemma if values of m.var() and n.var() are not the same up to sign
bool basics::basic_sign_lemma_on_two_monomials(const monomial& m, const monomial& n, const rational& sign) {
if (vvr(m) == vvr(n) *sign)
return false;
TRACE("nla_solver", tout << "sign contradiction:\nm = "; c().print_monomial_with_vars(m, tout); tout << "n= "; c().print_monomial_with_vars(n, tout); tout << "sign: " << sign << "\n";);
generate_sign_lemma(m, n, sign);
return true;
}
void basics::generate_zero_lemmas(const monomial& m) {
SASSERT(!vvr(m).is_zero() && c().product_value(m).is_zero());
int sign = nla::rat_sign(vvr(m));
unsigned_vector fixed_zeros;
lpvar zero_j = find_best_zero(m, fixed_zeros);
SASSERT(is_set(zero_j));
unsigned zero_power = 0;
for (unsigned j : m){
if (j == zero_j) {
zero_power++;
continue;
}
get_non_strict_sign(j, sign);
if(sign == 0)
break;
}
if (sign && is_even(zero_power))
sign = 0;
TRACE("nla_solver_details", tout << "zero_j = " << zero_j << ", sign = " << sign << "\n";);
if (sign == 0) { // have to generate a non-convex lemma
add_trival_zero_lemma(zero_j, m);
} else {
generate_strict_case_zero_lemma(m, zero_j, sign);
}
for (lpvar j : fixed_zeros)
add_fixed_zero_lemma(m, j);
}
bool basics::try_get_non_strict_sign_from_bounds(lpvar j, int& sign) const {
SASSERT(sign);
if (c().has_lower_bound(j) && c().get_lower_bound(j) >= rational(0))
return true;
if (c().has_upper_bound(j) && c().get_upper_bound(j) <= rational(0)) {
sign = -sign;
return true;
}
sign = 0;
return false;
}
void basics::get_non_strict_sign(lpvar j, int& sign) const {
const rational & v = vvr(j);
if (v.is_zero()) {
try_get_non_strict_sign_from_bounds(j, sign);
} else {
sign *= nla::rat_sign(v);
}
}
void basics::basic_sign_lemma_model_based_one_mon(const monomial& m, int product_sign) {
if (product_sign == 0) {
TRACE("nla_solver_bl", tout << "zero product sign\n";);
generate_zero_lemmas(m);
} else {
add_empty_lemma();
for(lpvar j: m) {
negate_strict_sign(j);
}
c().mk_ineq(m.var(), product_sign == 1? llc::GT : llc::LT);
TRACE("nla_solver", c().print_lemma(tout); tout << "\n";);
}
}
bool basics::basic_sign_lemma_model_based() {
unsigned i = random() % c().m_to_refine.size();
unsigned ii = i;
do {
const monomial& m = c().m_monomials[c().m_to_refine[i]];
int mon_sign = nla::rat_sign(vvr(m));
int product_sign = c().rat_sign(m);
if (mon_sign != product_sign) {
basic_sign_lemma_model_based_one_mon(m, product_sign);
if (c().done())
return true;
}
i++;
if (i == c().m_to_refine.size())
i = 0;
} while (i != ii);
return c().m_lemma_vec->size() > 0;
}
bool basics::basic_sign_lemma_on_mon(unsigned i, std::unordered_set<unsigned> & explored){
const monomial& m = c().m_monomials[i];
TRACE("nla_solver_details", tout << "i = " << i << ", mon = "; c().print_monomial_with_vars(m, tout););
const index_with_sign& rm_i_s = c().m_rm_table.get_rooted_mon(i);
unsigned k = rm_i_s.index();
if (!try_insert(k, explored))
return false;
const auto& mons_to_explore = c().m_rm_table.rms()[k].m_mons;
TRACE("nla_solver", tout << "rm = "; c().print_rooted_monomial_with_vars(c().m_rm_table.rms()[k], tout) << "\n";);
for (index_with_sign i_s : mons_to_explore) {
TRACE("nla_solver", tout << "i_s = (" << i_s.index() << "," << i_s.sign() << ")\n";
c().print_monomial_with_vars(c().m_monomials[i_s.index()], tout << "m = ") << "\n";
{
for (lpvar j : c().m_monomials[i_s.index()] ) {
lpvar rj = c().m_evars.find(j).var();
if (j == rj)
tout << "rj = j =" << j << "\n";
else {
lp::explanation e;
c().m_evars.explain(j, e);
tout << "j = " << j << ", e = "; c().print_explanation(e, tout) << "\n";
}
}
}
);
unsigned n = i_s.index();
if (n == i) continue;
if (basic_sign_lemma_on_two_monomials(m, c().m_monomials[n], rm_i_s.sign()*i_s.sign()))
if(done())
return true;
}
TRACE("nla_solver_details", tout << "return false\n";);
return false;
}
/**
* \brief <generate lemma by using the fact that -ab = (-a)b) and
-ab = a(-b)
*/
bool basics::basic_sign_lemma(bool derived) {
if (!derived)
return basic_sign_lemma_model_based();
std::unordered_set<unsigned> explored;
for (unsigned i : c().m_to_refine){
if (basic_sign_lemma_on_mon(i, explored))
return true;
}
return false;
}
// the value of the i-th monomial has to be equal to the value of the k-th monomial modulo sign
// but it is not the case in the model
void basics::generate_sign_lemma(const monomial& m, const monomial& n, const rational& sign) {
add_empty_lemma();
TRACE("nla_solver",
tout << "m = "; c().print_monomial_with_vars(m, tout);
tout << "n = "; c().print_monomial_with_vars(n, tout);
);
c().mk_ineq(m.var(), -sign, n.var(), llc::EQ);
explain(m);
explain(n);
TRACE("nla_solver", c().print_lemma(tout););
}
// try to find a variable j such that vvr(j) = 0
// and the bounds on j contain 0 as an inner point
lpvar basics::find_best_zero(const monomial& m, unsigned_vector & fixed_zeros) const {
lpvar zero_j = -1;
for (unsigned j : m){
if (vvr(j).is_zero()){
if (c().var_is_fixed_to_zero(j))
fixed_zeros.push_back(j);
if (!is_set(zero_j) || c().zero_is_an_inner_point_of_bounds(j))
zero_j = j;
}
}
return zero_j;
}
void basics::add_trival_zero_lemma(lpvar zero_j, const monomial& m) {
add_empty_lemma();
c().mk_ineq(zero_j, llc::NE);
c().mk_ineq(m.var(), llc::EQ);
TRACE("nla_solver", c().print_lemma(tout););
}
void basics::generate_strict_case_zero_lemma(const monomial& m, unsigned zero_j, int sign_of_zj) {
TRACE("nla_solver_bl", tout << "sign_of_zj = " << sign_of_zj << "\n";);
// we know all the signs
add_empty_lemma();
c().mk_ineq(zero_j, (sign_of_zj == 1? llc::GT : llc::LT));
for (unsigned j : m){
if (j != zero_j) {
negate_strict_sign(j);
}
}
negate_strict_sign(m.var());
TRACE("nla_solver", c().print_lemma(tout););
}
void basics::add_fixed_zero_lemma(const monomial& m, lpvar j) {
add_empty_lemma();
c().explain_fixed_var(j);
c().mk_ineq(m.var(), llc::EQ);
TRACE("nla_solver", c().print_lemma(tout););
}
void basics::add_empty_lemma() { c().add_empty_lemma(); }
void basics::negate_strict_sign(lpvar j) {
TRACE("nla_solver_details", c().print_var(j, tout););
if (!vvr(j).is_zero()) {
int sign = nla::rat_sign(vvr(j));
c().mk_ineq(j, (sign == 1? llc::LE : llc::GE));
} else { // vvr(j).is_zero()
if (c().has_lower_bound(j) && c().get_lower_bound(j) >= rational(0)) {
c().explain_existing_lower_bound(j);
c().mk_ineq(j, llc::GT);
} else {
SASSERT(c().has_upper_bound(j) && c().get_upper_bound(j) <= rational(0));
c().explain_existing_upper_bound(j);
c().mk_ineq(j, llc::LT);
}
}
}
// here we use the fact
// xy = 0 -> x = 0 or y = 0
bool basics::basic_lemma_for_mon_zero(const rooted_mon& rm, const factorization& f) {
TRACE("nla_solver", c().trace_print_monomial_and_factorization(rm, f, tout););
add_empty_lemma();
c().explain_fixed_var(var(rm));
std::unordered_set<lpvar> processed;
for (auto j : f) {
if (try_insert(var(j), processed))
c().mk_ineq(var(j), llc::EQ);
}
explain(rm);
TRACE("nla_solver", c().print_lemma(tout););
return true;
}
// use basic multiplication properties to create a lemma
bool basics::basic_lemma(bool derived) {
if (basic_sign_lemma(derived))
return true;
if (derived)
return false;
c().init_rm_to_refine();
const auto& rm_ref = c().m_rm_table.to_refine();
TRACE("nla_solver", tout << "rm_ref = "; print_vector(rm_ref, tout););
unsigned start = random() % rm_ref.size();
unsigned i = start;
do {
const rooted_mon& r = c().m_rm_table.rms()[rm_ref[i]];
SASSERT (!c().check_monomial(c().m_monomials[r.orig_index()]));
basic_lemma_for_mon(r, derived);
if (++i == rm_ref.size()) {
i = 0;
}
} while(i != start && !done());
return false;
}
// Use basic multiplication properties to create a lemma
// for the given monomial.
// "derived" means derived from constraints - the alternative is model based
void basics::basic_lemma_for_mon(const rooted_mon& rm, bool derived) {
if (derived)
basic_lemma_for_mon_derived(rm);
else
basic_lemma_for_mon_model_based(rm);
}
bool basics::basic_lemma_for_mon_derived(const rooted_mon& rm) {
if (c().var_is_fixed_to_zero(var(rm))) {
for (auto factorization : factorization_factory_imp(rm, c())) {
if (factorization.is_empty())
continue;
if (basic_lemma_for_mon_zero(rm, factorization) ||
basic_lemma_for_mon_neutral_derived(rm, factorization)) {
explain(factorization);
return true;
}
}
} else {
for (auto factorization : factorization_factory_imp(rm, c())) {
if (factorization.is_empty())
continue;
if (basic_lemma_for_mon_non_zero_derived(rm, factorization) ||
basic_lemma_for_mon_neutral_derived(rm, factorization) ||
proportion_lemma_derived(rm, factorization)) {
explain(factorization);
return true;
}
}
}
return false;
}
// x = 0 or y = 0 -> xy = 0
bool basics::basic_lemma_for_mon_non_zero_derived(const rooted_mon& rm, const factorization& f) {
TRACE("nla_solver", c().trace_print_monomial_and_factorization(rm, f, tout););
if (! c().var_is_separated_from_zero(var(rm)))
return false;
int zero_j = -1;
for (auto j : f) {
if ( c().var_is_fixed_to_zero(var(j))) {
zero_j = var(j);
break;
}
}
if (zero_j == -1) {
return false;
}
add_empty_lemma();
c().explain_fixed_var(zero_j);
c().explain_var_separated_from_zero(var(rm));
explain(rm);
TRACE("nla_solver", c().print_lemma(tout););
return true;
}
// use the fact that
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_derived(const rooted_mon& rm, const factorization& f) {
TRACE("nla_solver", c().trace_print_monomial_and_factorization(rm, f, tout););
lpvar mon_var = c().m_monomials[rm.orig_index()].var();
TRACE("nla_solver", c().trace_print_monomial_and_factorization(rm, f, tout); tout << "\nmon_var = " << mon_var << "\n";);
const auto & mv = vvr(mon_var);
const auto abs_mv = abs(mv);
if (abs_mv == rational::zero()) {
return false;
}
bool mon_var_is_sep_from_zero = c().var_is_separated_from_zero(mon_var);
lpvar jl = -1;
for (auto fc : f ) {
lpvar j = var(fc);
if (abs(vvr(j)) == abs_mv && c().vars_are_equiv(j, mon_var) &&
(mon_var_is_sep_from_zero || c().var_is_separated_from_zero(j))) {
jl = j;
break;
}
}
if (jl == static_cast<lpvar>(-1))
return false;
lpvar not_one_j = -1;
for (auto j : f ) {
if (var(j) == jl) {
continue;
}
if (abs(vvr(j)) != rational(1)) {
not_one_j = var(j);
break;
}
}
if (not_one_j == static_cast<lpvar>(-1)) {
return false;
}
add_empty_lemma();
// mon_var = 0
if (mon_var_is_sep_from_zero)
c().explain_var_separated_from_zero(mon_var);
else
c().explain_var_separated_from_zero(jl);
c().explain_equiv_vars(mon_var, jl);
// not_one_j = 1
c().mk_ineq(not_one_j, llc::EQ, rational(1));
// not_one_j = -1
c().mk_ineq(not_one_j, llc::EQ, -rational(1));
explain(rm);
TRACE("nla_solver", c().print_lemma(tout); );
return true;
}
// use the fact
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_derived(const rooted_mon& rm, const factorization& f) {
return false;
rational sign = rm.orig().m_sign;
lpvar not_one = -1;
TRACE("nla_solver", tout << "f = "; c().print_factorization(f, tout););
for (auto j : f){
TRACE("nla_solver", tout << "j = "; c().print_factor_with_vars(j, tout););
auto v = vvr(j);
if (v == rational(1)) {
continue;
}
if (v == -rational(1)) {
sign = - sign;
continue;
}
if (not_one == static_cast<lpvar>(-1)) {
not_one = var(j);
continue;
}
// if we are here then there are at least two factors with values different from one and minus one: cannot create the lemma
return false;
}
add_empty_lemma();
explain(rm);
for (auto j : f){
lpvar var_j = var(j);
if (not_one == var_j) continue;
c().mk_ineq(var_j, llc::NE, j.is_var()? vvr(j) : c().canonize_sign(j) * vvr(j));
}
if (not_one == static_cast<lpvar>(-1)) {
c().mk_ineq( c().m_monomials[rm.orig_index()].var(), llc::EQ, sign);
} else {
c().mk_ineq( c().m_monomials[rm.orig_index()].var(), -sign, not_one, llc::EQ);
}
TRACE("nla_solver",
tout << "rm = "; c().print_rooted_monomial_with_vars(rm, tout);
c().print_lemma(tout););
return true;
}
bool basics::basic_lemma_for_mon_neutral_derived(const rooted_mon& rm, const factorization& factorization) {
return
basic_lemma_for_mon_neutral_monomial_to_factor_derived(rm, factorization) ||
basic_lemma_for_mon_neutral_from_factors_to_monomial_derived(rm, factorization);
return false;
}
// x != 0 or y = 0 => |xy| >= |y|
void basics::proportion_lemma_model_based(const rooted_mon& rm, const factorization& factorization) {
rational rmv = abs(vvr(rm));
if (rmv.is_zero()) {
SASSERT(c().has_zero_factor(factorization));
return;
}
int factor_index = 0;
for (factor f : factorization) {
if (abs(vvr(f)) > rmv) {
generate_pl(rm, factorization, factor_index);
return;
}
factor_index++;
}
}
// x != 0 or y = 0 => |xy| >= |y|
bool basics::proportion_lemma_derived(const rooted_mon& rm, const factorization& factorization) {
return false;
rational rmv = abs(vvr(rm));
if (rmv.is_zero()) {
SASSERT(c().has_zero_factor(factorization));
return false;
}
int factor_index = 0;
for (factor f : factorization) {
if (abs(vvr(f)) > rmv) {
generate_pl(rm, factorization, factor_index);
return true;
}
factor_index++;
}
return false;
}
// if there are no zero factors then |m| >= |m[factor_index]|
void basics::generate_pl_on_mon(const monomial& m, unsigned factor_index) {
add_empty_lemma();
unsigned mon_var = m.var();
rational mv = vvr(mon_var);
rational sm = rational(nla::rat_sign(mv));
c().mk_ineq(sm, mon_var, llc::LT);
for (unsigned fi = 0; fi < m.size(); fi ++) {
lpvar j = m[fi];
if (fi != factor_index) {
c().mk_ineq(j, llc::EQ);
} else {
rational jv = vvr(j);
rational sj = rational(nla::rat_sign(jv));
SASSERT(sm*mv < sj*jv);
c().mk_ineq(sj, j, llc::LT);
c().mk_ineq(sm, mon_var, -sj, j, llc::GE );
}
}
TRACE("nla_solver", c().print_lemma(tout); );
}
// none of the factors is zero and the product is not zero
// -> |fc[factor_index]| <= |rm|
void basics::generate_pl(const rooted_mon& rm, const factorization& fc, int factor_index) {
TRACE("nla_solver", tout << "factor_index = " << factor_index << ", rm = ";
c().print_rooted_monomial_with_vars(rm, tout);
tout << "fc = "; c().print_factorization(fc, tout);
tout << "orig mon = "; c().print_monomial(c().m_monomials[rm.orig_index()], tout););
if (fc.is_mon()) {
generate_pl_on_mon(*fc.mon(), factor_index);
return;
}
add_empty_lemma();
int fi = 0;
rational rmv = vvr(rm);
rational sm = rational(nla::rat_sign(rmv));
unsigned mon_var = var(rm);
c().mk_ineq(sm, mon_var, llc::LT);
for (factor f : fc) {
if (fi++ != factor_index) {
c().mk_ineq(var(f), llc::EQ);
} else {
lpvar j = var(f);
rational jv = vvr(j);
rational sj = rational(nla::rat_sign(jv));
SASSERT(sm*rmv < sj*jv);
c().mk_ineq(sj, j, llc::LT);
c().mk_ineq(sm, mon_var, -sj, j, llc::GE );
}
}
if (!fc.is_mon()) {
explain(fc);
explain(rm);
}
TRACE("nla_solver", c().print_lemma(tout); );
}
// here we use the fact xy = 0 -> x = 0 or y = 0
void basics::basic_lemma_for_mon_zero_model_based(const rooted_mon& rm, const factorization& f) {
TRACE("nla_solver", c().trace_print_monomial_and_factorization(rm, f, tout););
SASSERT(vvr(rm).is_zero()&& ! c().rm_check(rm));
add_empty_lemma();
int sign = c().get_derived_sign(rm, f);
if (sign == 0) {
c().mk_ineq(var(rm), llc::NE);
for (auto j : f) {
c().mk_ineq(var(j), llc::EQ);
}
} else {
c().mk_ineq(var(rm), llc::NE);
for (auto j : f) {
c().explain_separation_from_zero(var(j));
}
}
explain(rm);
explain(f);
TRACE("nla_solver", c().print_lemma(tout););
}
void basics::basic_lemma_for_mon_model_based(const rooted_mon& rm) {
TRACE("nla_solver_bl", tout << "rm = "; c().print_rooted_monomial(rm, tout););
if (vvr(rm).is_zero()) {
for (auto factorization : factorization_factory_imp(rm, c())) {
if (factorization.is_empty())
continue;
basic_lemma_for_mon_zero_model_based(rm, factorization);
basic_lemma_for_mon_neutral_model_based(rm, factorization); // todo - the same call is made in the else branch
}
} else {
for (auto factorization : factorization_factory_imp(rm, c())) {
if (factorization.is_empty())
continue;
basic_lemma_for_mon_non_zero_model_based(rm, factorization);
basic_lemma_for_mon_neutral_model_based(rm, factorization);
proportion_lemma_model_based(rm, factorization) ;
}
}
}
// use the fact that
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(const monomial& m) {
TRACE("nla_solver_bl", c().print_monomial(m, tout););
lpvar mon_var = m.var();
const auto & mv = vvr(mon_var);
const auto abs_mv = abs(mv);
if (abs_mv == rational::zero()) {
return false;
}
lpvar jl = -1;
for (auto j : m ) {
if (abs(vvr(j)) == abs_mv) {
jl = j;
break;
}
}
if (jl == static_cast<lpvar>(-1))
return false;
lpvar not_one_j = -1;
for (auto j : m ) {
if (j == jl) {
continue;
}
if (abs(vvr(j)) != rational(1)) {
not_one_j = j;
break;
}
}
if (not_one_j == static_cast<lpvar>(-1)) {
return false;
}
add_empty_lemma();
// mon_var = 0
c().mk_ineq(mon_var, llc::EQ);
// negate abs(jl) == abs()
if (vvr(jl) == - vvr(mon_var))
c().mk_ineq(jl, mon_var, llc::NE, c().current_lemma());
else // jl == mon_var
c().mk_ineq(jl, -rational(1), mon_var, llc::NE);
// not_one_j = 1
c().mk_ineq(not_one_j, llc::EQ, rational(1));
// not_one_j = -1
c().mk_ineq(not_one_j, llc::EQ, -rational(1));
TRACE("nla_solver", c().print_lemma(tout); );
return true;
}
// use the fact
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm(const monomial& m) {
lpvar not_one = -1;
rational sign(1);
TRACE("nla_solver_bl", tout << "m = "; c().print_monomial(m, tout););
for (auto j : m){
auto v = vvr(j);
if (v == rational(1)) {
continue;
}
if (v == -rational(1)) {
sign = - sign;
continue;
}
if (not_one == static_cast<lpvar>(-1)) {
not_one = j;
continue;
}
// if we are here then there are at least two factors with values different from one and minus one: cannot create the lemma
return false;
}
if (not_one + 1) { // we found the only not_one
if (vvr(m) == vvr(not_one) * sign) {
TRACE("nla_solver", tout << "the whole equal to the factor" << std::endl;);
return false;
}
}
add_empty_lemma();
for (auto j : m){
if (not_one == j) continue;
c().mk_ineq(j, llc::NE, vvr(j));
}
if (not_one == static_cast<lpvar>(-1)) {
c().mk_ineq(m.var(), llc::EQ, sign);
} else {
c().mk_ineq(m.var(), -sign, not_one, llc::EQ);
}
TRACE("nla_solver", c().print_lemma(tout););
return true;
}
// use the fact that
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const rooted_mon& rm, const factorization& f) {
TRACE("nla_solver_bl", c().trace_print_monomial_and_factorization(rm, f, tout););
lpvar mon_var = c().m_monomials[rm.orig_index()].var();
TRACE("nla_solver_bl", c().trace_print_monomial_and_factorization(rm, f, tout); tout << "\nmon_var = " << mon_var << "\n";);
const auto & mv = vvr(mon_var);
const auto abs_mv = abs(mv);
if (abs_mv == rational::zero()) {
return false;
}
lpvar jl = -1;
for (auto j : f ) {
if (abs(vvr(j)) == abs_mv) {
jl = var(j);
break;
}
}
if (jl == static_cast<lpvar>(-1))
return false;
lpvar not_one_j = -1;
for (auto j : f ) {
if (var(j) == jl) {
continue;
}
if (abs(vvr(j)) != rational(1)) {
not_one_j = var(j);
break;
}
}
if (not_one_j == static_cast<lpvar>(-1)) {
return false;
}
add_empty_lemma();
// mon_var = 0
c().mk_ineq(mon_var, llc::EQ);
// negate abs(jl) == abs()
if (vvr(jl) == - vvr(mon_var))
c().mk_ineq(jl, mon_var, llc::NE, c().current_lemma());
else // jl == mon_var
c().mk_ineq(jl, -rational(1), mon_var, llc::NE);
// not_one_j = 1
c().mk_ineq(not_one_j, llc::EQ, rational(1));
// not_one_j = -1
c().mk_ineq(not_one_j, llc::EQ, -rational(1));
explain(rm);
explain(f);
TRACE("nla_solver", c().print_lemma(tout); );
return true;
}
void basics::basic_lemma_for_mon_neutral_model_based(const rooted_mon& rm, const factorization& f) {
if (f.is_mon()) {
basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(*f.mon());
basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm(*f.mon());
}
else {
basic_lemma_for_mon_neutral_monomial_to_factor_model_based(rm, f);
basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(rm, f);
}
}
// use the fact
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(const rooted_mon& rm, const factorization& f) {
rational sign = rm.orig_sign();
TRACE("nla_solver_bl", tout << "f = "; c().print_factorization(f, tout); tout << ", sign = " << sign << '\n'; );
lpvar not_one = -1;
for (auto j : f){
TRACE("nla_solver_bl", tout << "j = "; c().print_factor_with_vars(j, tout););
auto v = vvr(j);
if (v == rational(1)) {
continue;
}
if (v == -rational(1)) {
sign = - sign;
continue;
}
if (not_one == static_cast<lpvar>(-1)) {
not_one = var(j);
continue;
}
// if we are here then there are at least two factors with absolute values different from one : cannot create the lemma
return false;
}
if (not_one + 1) {
// we found the only not_one
if (vvr(rm) == vvr(not_one) * sign) {
TRACE("nla_solver", tout << "the whole equal to the factor" << std::endl;);
return false;
}
} else {
// we have +-ones only in the factorization
if (vvr(rm) == sign) {
return false;
}
}
TRACE("nla_solver_bl", tout << "not_one = " << not_one << "\n";);
add_empty_lemma();
for (auto j : f){
lpvar var_j = var(j);
if (not_one == var_j) continue;
c().mk_ineq(var_j, llc::NE, j.is_var()? vvr(j) : c().canonize_sign(j) * vvr(j));
}
if (not_one == static_cast<lpvar>(-1)) {
c().mk_ineq(c().m_monomials[rm.orig_index()].var(), llc::EQ, sign);
} else {
c().mk_ineq(c().m_monomials[rm.orig_index()].var(), -sign, not_one, llc::EQ);
}
explain(rm);
explain(f);
TRACE("nla_solver",
c().print_lemma(tout);
tout << "rm = "; c().print_rooted_monomial_with_vars(rm, tout);
);
return true;
}
void basics::basic_lemma_for_mon_non_zero_model_based_mf(const factorization& f) {
TRACE("nla_solver_bl", c().print_factorization(f, tout););
int zero_j = -1;
for (auto j : f) {
if (vvr(j).is_zero()) {
zero_j = var(j);
break;
}
}
if (zero_j == -1) { return; }
add_empty_lemma();
c().mk_ineq(zero_j, llc::NE);
c().mk_ineq(f.mon()->var(), llc::EQ);
TRACE("nla_solver", c().print_lemma(tout););
}
// x = 0 or y = 0 -> xy = 0
void basics::basic_lemma_for_mon_non_zero_model_based(const rooted_mon& rm, const factorization& f) {
TRACE("nla_solver_bl", c().trace_print_monomial_and_factorization(rm, f, tout););
if (f.is_mon())
basic_lemma_for_mon_non_zero_model_based_mf(f);
else
basic_lemma_for_mon_non_zero_model_based_mf(f);
}
bool basics::done() const { return c().done(); }
template <typename T> void basics::explain(const T& t) {
c().explain(t, c().current_expl());
}
template void basics::explain<monomial>(const monomial& t);
}

View file

@ -0,0 +1,115 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Nikolaj Bjorner (nbjorner)
Lev Nachmanson (levnach)
Revision History:
--*/
#pragma once
#include "util/lp/monomial.h"
#include "util/lp/rooted_mons.h"
#include "util/lp/factorization.h"
namespace nla {
struct core;
struct basics {
core* m_core;
core& c() { return *m_core; }
const core& c() const { return *m_core; }
basics(core *core);
bool basic_sign_lemma_on_two_monomials(const monomial& m, const monomial& n, const rational& sign);
void basic_sign_lemma_model_based_one_mon(const monomial& m, int product_sign);
bool basic_sign_lemma_model_based();
bool basic_sign_lemma_on_mon(unsigned i, std::unordered_set<unsigned> & explore);
/**
* \brief <generate lemma by using the fact that -ab = (-a)b) and
-ab = a(-b)
*/
bool basic_sign_lemma(bool derived);
bool basic_lemma_for_mon_zero(const rooted_mon& rm, const factorization& f);
void basic_lemma_for_mon_zero_model_based(const rooted_mon& rm, const factorization& f);
void basic_lemma_for_mon_non_zero_model_based(const rooted_mon& rm, const factorization& f);
// x = 0 or y = 0 -> xy = 0
void basic_lemma_for_mon_non_zero_model_based_rm(const rooted_mon& rm, const factorization& f);
void basic_lemma_for_mon_non_zero_model_based_mf(const factorization& f);
// x = 0 or y = 0 -> xy = 0
bool basic_lemma_for_mon_non_zero_derived(const rooted_mon& rm, const factorization& f);
// use the fact that
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
bool basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const rooted_mon& rm, const factorization& f);
// use the fact that
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
bool basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(const monomial& m);
bool basic_lemma_for_mon_neutral_monomial_to_factor_derived(const rooted_mon& rm, const factorization& f);
// use the fact
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(const rooted_mon& rm, const factorization& f);
// use the fact
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm(const monomial& m);
// use the fact
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_derived(const rooted_mon& rm, const factorization& f);
void basic_lemma_for_mon_neutral_model_based(const rooted_mon& rm, const factorization& f);
bool basic_lemma_for_mon_neutral_derived(const rooted_mon& rm, const factorization& factorization);
void basic_lemma_for_mon_model_based(const rooted_mon& rm);
bool basic_lemma_for_mon_derived(const rooted_mon& rm);
// Use basic multiplication properties to create a lemma
// for the given monomial.
// "derived" means derived from constraints - the alternative is model based
void basic_lemma_for_mon(const rooted_mon& rm, bool derived);
// use basic multiplication properties to create a lemma
bool basic_lemma(bool derived);
template <typename T> rational vvr(T const& t) const;
rational vvr(lpvar) const;
template <typename T> lpvar var(T const& t) const;
void generate_sign_lemma(const monomial& m, const monomial& n, const rational& sign);
void generate_zero_lemmas(const monomial& m);
lpvar find_best_zero(const monomial& m, unsigned_vector & fixed_zeros) const;
bool try_get_non_strict_sign_from_bounds(lpvar j, int& sign) const;
void get_non_strict_sign(lpvar j, int& sign) const;
void add_trival_zero_lemma(lpvar zero_j, const monomial& m);
void generate_strict_case_zero_lemma(const monomial& m, unsigned zero_j, int sign_of_zj);
void add_fixed_zero_lemma(const monomial& m, lpvar j);
void add_empty_lemma();
void negate_strict_sign(lpvar j);
bool done() const;
// x != 0 or y = 0 => |xy| >= |y|
void proportion_lemma_model_based(const rooted_mon& rm, const factorization& factorization);
// x != 0 or y = 0 => |xy| >= |y|
bool proportion_lemma_derived(const rooted_mon& rm, const factorization& factorization);
template <typename T> void explain(const T&);
// if there are no zero factors then |m| >= |m[factor_index]|
void generate_pl_on_mon(const monomial& m, unsigned factor_index);
// none of the factors is zero and the product is not zero
// -> |fc[factor_index]| <= |rm|
void generate_pl(const rooted_mon& rm, const factorization& fc, int factor_index);
};
}

View file

@ -18,16 +18,9 @@ Revision History:
--*/
#include "util/lp/nla_core.h"
#include "util/lp/factorization_factory_imp.h"
namespace nla {
template <typename A, typename B>
bool try_insert(const A& elem, B& collection) {
auto it = collection.find(elem);
if (it != collection.end())
return false;
collection.insert(elem);
return true;
}
point operator+(const point& a, const point& b) {
return point(a.x + b.x, a.y + b.y);
@ -47,13 +40,11 @@ unsigned core::find_monomial(const unsigned_vector& k) const {
return it->second;
}
core::core(lp::lar_solver& s, reslimit& lim, params_ref const& p)
:
core::core(lp::lar_solver& s) :
m_evars(),
m_lar_solver(s)
// m_limit(lim),
// m_params(p)
{
m_lar_solver(s),
m_tangents(this),
m_basics(this) {
}
bool core::compare_holds(const rational& ls, llc cmp, const rational& rs) const {
@ -588,19 +579,6 @@ monomial_coeff core::canonize_monomial(monomial const& m) const {
return monomial_coeff(vars, sign);
}
// the value of the i-th monomial has to be equal to the value of the k-th monomial modulo sign
// but it is not the case in the model
void core::generate_sign_lemma(const monomial& m, const monomial& n, const rational& sign) {
add_empty_lemma();
TRACE("nla_solver",
tout << "m = "; print_monomial_with_vars(m, tout);
tout << "n = "; print_monomial_with_vars(n, tout);
);
mk_ineq(m.var(), -sign, n.var(), llc::EQ);
explain(m, current_expl());
explain(n, current_expl());
TRACE("nla_solver", print_lemma(tout););
}
lemma& core::current_lemma() { return m_lemma_vec->back(); }
const lemma& core::current_lemma() const { return m_lemma_vec->back(); }
vector<ineq>& core::current_ineqs() { return current_lemma().ineqs(); }
@ -673,21 +651,6 @@ bool core::zero_is_an_inner_point_of_bounds(lpvar j) const {
return true;
}
// try to find a variable j such that vvr(j) = 0
// and the bounds on j contain 0 as an inner point
lpvar core::find_best_zero(const monomial& m, unsigned_vector & fixed_zeros) const {
lpvar zero_j = -1;
for (unsigned j : m){
if (vvr(j).is_zero()){
if (var_is_fixed_to_zero(j))
fixed_zeros.push_back(j);
if (!is_set(zero_j) || zero_is_an_inner_point_of_bounds(j))
zero_j = j;
}
}
return zero_j;
}
bool core:: try_get_non_strict_sign_from_bounds(lpvar j, int& sign) const {
SASSERT(sign);
@ -752,6 +715,7 @@ void core:: add_fixed_zero_lemma(const monomial& m, lpvar j) {
mk_ineq(m.var(), llc::EQ);
TRACE("nla_solver", print_lemma(tout););
}
llc core::negate(llc cmp) {
switch(cmp) {
case llc::LE: return llc::GT;
@ -796,6 +760,7 @@ bool core:: sign_contradiction(const monomial& m) const {
return m_evars.eq_vars(j);
}
*/
// Monomials m and n vars have the same values, up to "sign"
// Generate a lemma if values of m.var() and n.var() are not the same up to sign
bool core:: basic_sign_lemma_on_two_monomials(const monomial& m, const monomial& n, const rational& sign) {
@ -994,38 +959,6 @@ const monomial* core::find_monomial_of_vars(const svector<lpvar>& vars) const {
return &m_monomials[m_rm_table.rms()[i].orig_index()];
}
struct factorization_factory_imp: factorization_factory {
const core& m_core;
const monomial *m_mon;
const rooted_mon& m_rm;
factorization_factory_imp(const rooted_mon& rm, const core& s) :
factorization_factory(rm.m_vars, &s.m_monomials[rm.orig_index()]),
m_core(s), m_mon(& s.m_monomials[rm.orig_index()]), m_rm(rm) { }
bool find_rm_monomial_of_vars(const svector<lpvar>& vars, unsigned & i) const {
return m_core.find_rm_monomial_of_vars(vars, i);
}
const monomial* find_monomial_of_vars(const svector<lpvar>& vars) const {
return m_core.find_monomial_of_vars(vars);
}
};
// here we use the fact
// xy = 0 -> x = 0 or y = 0
bool core::basic_lemma_for_mon_zero(const rooted_mon& rm, const factorization& f) {
TRACE("nla_solver", trace_print_monomial_and_factorization(rm, f, tout););
add_empty_lemma();
explain_fixed_var(var(rm));
std::unordered_set<lpvar> processed;
for (auto j : f) {
if (try_insert(var(j), processed))
mk_ineq(var(j), llc::EQ);
}
explain(rm, current_expl());
TRACE("nla_solver", print_lemma(tout););
return true;
}
void core::explain_existing_lower_bound(lpvar j) {
SASSERT(has_lower_bound(j));
@ -1057,28 +990,6 @@ int core::get_derived_sign(const rooted_mon& rm, const factorization& f) const {
}
return nla::rat_sign(sign);
}
// here we use the fact xy = 0 -> x = 0 or y = 0
void core::basic_lemma_for_mon_zero_model_based(const rooted_mon& rm, const factorization& f) {
TRACE("nla_solver", trace_print_monomial_and_factorization(rm, f, tout););
SASSERT(vvr(rm).is_zero()&& !rm_check(rm));
add_empty_lemma();
int sign = get_derived_sign(rm, f);
if (sign == 0) {
mk_ineq(var(rm), llc::NE);
for (auto j : f) {
mk_ineq(var(j), llc::EQ);
}
} else {
mk_ineq(var(rm), llc::NE);
for (auto j : f) {
explain_separation_from_zero(var(j));
}
}
explain(rm, current_expl());
explain(f, current_expl());
TRACE("nla_solver", print_lemma(tout););
}
void core::trace_print_monomial_and_factorization(const rooted_mon& rm, const factorization& f, std::ostream& out) const {
out << "rooted vars: ";
print_product(rm.m_vars, out);
@ -1102,51 +1013,6 @@ void core::explain_fixed_var(lpvar j) {
current_expl().add(m_lar_solver.get_column_upper_bound_witness(j));
current_expl().add(m_lar_solver.get_column_lower_bound_witness(j));
}
// x = 0 or y = 0 -> xy = 0
void core::basic_lemma_for_mon_non_zero_model_based(const rooted_mon& rm, const factorization& f) {
TRACE("nla_solver_bl", trace_print_monomial_and_factorization(rm, f, tout););
if (f.is_mon())
basic_lemma_for_mon_non_zero_model_based_mf(f);
else
basic_lemma_for_mon_non_zero_model_based_mf(f);
}
// x = 0 or y = 0 -> xy = 0
void core::basic_lemma_for_mon_non_zero_model_based_rm(const rooted_mon& rm, const factorization& f) {
TRACE("nla_solver_bl", trace_print_monomial_and_factorization(rm, f, tout););
SASSERT (!vvr(rm).is_zero());
int zero_j = -1;
for (auto j : f) {
if (vvr(j).is_zero()) {
zero_j = var(j);
break;
}
}
if (zero_j == -1) { return; }
add_empty_lemma();
mk_ineq(zero_j, llc::NE);
mk_ineq(var(rm), llc::EQ);
explain(rm, current_expl());
explain(f, current_expl());
TRACE("nla_solver", print_lemma(tout););
}
void core::basic_lemma_for_mon_non_zero_model_based_mf(const factorization& f) {
TRACE("nla_solver_bl", print_factorization(f, tout););
int zero_j = -1;
for (auto j : f) {
if (vvr(j).is_zero()) {
zero_j = var(j);
break;
}
}
if (zero_j == -1) { return; }
add_empty_lemma();
mk_ineq(zero_j, llc::NE);
mk_ineq(f.mon()->var(), llc::EQ);
TRACE("nla_solver", print_lemma(tout););
}
bool core:: var_has_positive_lower_bound(lpvar j) const {
return m_lar_solver.column_has_lower_bound(j) && m_lar_solver.get_lower_bound(j) > lp::zero_of_type<lp::impq>();
@ -1315,6 +1181,7 @@ void core::explain_equiv_vars(lpvar a, lpvar b) {
explain_fixed_var(b);
}
}
// use the fact that
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
bool core:: basic_lemma_for_mon_neutral_monomial_to_factor_derived(const rooted_mon& rm, const factorization& f) {
@ -1564,64 +1431,6 @@ bool core:: has_zero_factor(const factorization& factorization) const {
return false;
}
// if there are no zero factors then |m| >= |m[factor_index]|
void core::generate_pl_on_mon(const monomial& m, unsigned factor_index) {
add_empty_lemma();
unsigned mon_var = m.var();
rational mv = vvr(mon_var);
rational sm = rational(nla::rat_sign(mv));
mk_ineq(sm, mon_var, llc::LT);
for (unsigned fi = 0; fi < m.size(); fi ++) {
lpvar j = m[fi];
if (fi != factor_index) {
mk_ineq(j, llc::EQ);
} else {
rational jv = vvr(j);
rational sj = rational(nla::rat_sign(jv));
SASSERT(sm*mv < sj*jv);
mk_ineq(sj, j, llc::LT);
mk_ineq(sm, mon_var, -sj, j, llc::GE );
}
}
TRACE("nla_solver", print_lemma(tout); );
}
// none of the factors is zero and the product is not zero
// -> |fc[factor_index]| <= |rm|
void core::generate_pl(const rooted_mon& rm, const factorization& fc, int factor_index) {
TRACE("nla_solver", tout << "factor_index = " << factor_index << ", rm = ";
print_rooted_monomial_with_vars(rm, tout);
tout << "fc = "; print_factorization(fc, tout);
tout << "orig mon = "; print_monomial(m_monomials[rm.orig_index()], tout););
if (fc.is_mon()) {
generate_pl_on_mon(*fc.mon(), factor_index);
return;
}
add_empty_lemma();
int fi = 0;
rational rmv = vvr(rm);
rational sm = rational(nla::rat_sign(rmv));
unsigned mon_var = var(rm);
mk_ineq(sm, mon_var, llc::LT);
for (factor f : fc) {
if (fi++ != factor_index) {
mk_ineq(var(f), llc::EQ);
} else {
lpvar j = var(f);
rational jv = vvr(j);
rational sj = rational(nla::rat_sign(jv));
SASSERT(sm*rmv < sj*jv);
mk_ineq(sj, j, llc::LT);
mk_ineq(sm, mon_var, -sj, j, llc::GE );
}
}
if (!fc.is_mon()) {
explain(fc, current_expl());
explain(rm, current_expl());
}
TRACE("nla_solver", print_lemma(tout); );
}
template <typename T>
bool core:: has_zero(const T& product) const {
for (const rational & t : product) {
@ -3167,7 +2976,7 @@ lbool core:: inner_check(bool derived) {
for (int search_level = 0; search_level < 3 && !done(); search_level++) {
TRACE("nla_solver", tout << "derived = " << derived << ", search_level = " << search_level << "\n";);
if (search_level == 0) {
basic_lemma(derived);
m_basics.basic_lemma(derived);
if (!m_lemma_vec->empty())
return l_false;
}
@ -3241,5 +3050,6 @@ lbool core:: test_check(
m_lar_solver.set_status(lp::lp_status::OPTIMAL);
return check(l);
}
template rational core::product_value<monomial>(const monomial & m) const;
} // end of nla

View file

@ -22,8 +22,19 @@
#include "util/lp/lp_types.h"
#include "util/lp/var_eqs.h"
#include "util/lp/rooted_mons.h"
#include "util/lp/nla_tangent_lemmas.h"
#include "util/lp/nla_basics_lemmas.h"
namespace nla {
template <typename A, typename B>
bool try_insert(const A& elem, B& collection) {
auto it = collection.find(elem);
if (it != collection.end())
return false;
collection.insert(elem);
return true;
}
typedef lp::constraint_index lpci;
typedef lp::lconstraint_kind llc;
@ -91,7 +102,9 @@ struct core {
vector<lemma> * m_lemma_vec;
unsigned_vector m_to_refine;
std::unordered_map<unsigned_vector, unsigned, hash_svector> m_mkeys; // the key is the sorted vars of a monomial
tangents m_tangents;
basics m_basics;
// methods
unsigned find_monomial(const unsigned_vector& k) const;
core(lp::lar_solver& s, reslimit& lim, params_ref const& p);
@ -246,9 +259,6 @@ struct core {
//
monomial_coeff canonize_monomial(monomial const& m) const;
// the value of the i-th monomial has to be equal to the value of the k-th monomial modulo sign
// but it is not the case in the model
void generate_sign_lemma(const monomial& m, const monomial& n, const rational& sign);
lemma& current_lemma();
const lemma& current_lemma() const;
vector<ineq>& current_ineqs();
@ -257,10 +267,6 @@ struct core {
int vars_sign(const svector<lpvar>& v);
void negate_strict_sign(lpvar j);
void generate_strict_case_zero_lemma(const monomial& m, unsigned zero_j, int sign_of_zj);
bool has_upper_bound(lpvar j) const;
bool has_lower_bound(lpvar j) const;
@ -271,20 +277,6 @@ struct core {
bool zero_is_an_inner_point_of_bounds(lpvar j) const;
// try to find a variable j such that vvr(j) = 0
// and the bounds on j contain 0 as an inner point
lpvar find_best_zero(const monomial& m, unsigned_vector & fixed_zeros) const;
bool try_get_non_strict_sign_from_bounds(lpvar j, int& sign) const;
void get_non_strict_sign(lpvar j, int& sign) const;
void add_trival_zero_lemma(lpvar zero_j, const monomial& m);
void generate_zero_lemmas(const monomial& m);
void add_fixed_zero_lemma(const monomial& m, lpvar j);
int rat_sign(const monomial& m) const;
inline int rat_sign(lpvar j) const { return nla::rat_sign(vvr(j)); }
@ -296,18 +288,6 @@ struct core {
*/
// Monomials m and n vars have the same values, up to "sign"
// Generate a lemma if values of m.var() and n.var() are not the same up to sign
bool basic_sign_lemma_on_two_monomials(const monomial& m, const monomial& n, const rational& sign);
void basic_sign_lemma_model_based_one_mon(const monomial& m, int product_sign);
bool basic_sign_lemma_model_based();
bool basic_sign_lemma_on_mon(unsigned i, std::unordered_set<unsigned> & explore);
/**
* \brief <generate lemma by using the fact that -ab = (-a)b) and
-ab = a(-b)
*/
bool basic_sign_lemma(bool derived);
bool var_is_fixed_to_zero(lpvar j) const;
bool var_is_fixed_to_val(lpvar j, const rational& v) const;
@ -328,8 +308,6 @@ struct core {
const monomial* find_monomial_of_vars(const svector<lpvar>& vars) const;
bool basic_lemma_for_mon_zero(const rooted_mon& rm, const factorization& f);
void explain_existing_lower_bound(lpvar j);
void explain_existing_upper_bound(lpvar j);
@ -338,19 +316,12 @@ struct core {
int get_derived_sign(const rooted_mon& rm, const factorization& f) const;
// here we use the fact xy = 0 -> x = 0 or y = 0
void basic_lemma_for_mon_zero_model_based(const rooted_mon& rm, const factorization& f);
void trace_print_monomial_and_factorization(const rooted_mon& rm, const factorization& f, std::ostream& out) const;
void explain_var_separated_from_zero(lpvar j);
void explain_fixed_var(lpvar j);
// x = 0 or y = 0 -> xy = 0
void basic_lemma_for_mon_non_zero_model_based(const rooted_mon& rm, const factorization& f);
// x = 0 or y = 0 -> xy = 0
void basic_lemma_for_mon_non_zero_model_based_rm(const rooted_mon& rm, const factorization& f);
void basic_lemma_for_mon_non_zero_model_based_mf(const factorization& f);
bool var_has_positive_lower_bound(lpvar j) const;
@ -358,15 +329,6 @@ struct core {
bool var_is_separated_from_zero(lpvar j) const;
// x = 0 or y = 0 -> xy = 0
bool basic_lemma_for_mon_non_zero_derived(const rooted_mon& rm, const factorization& f);
// use the fact that
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
bool basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const rooted_mon& rm, const factorization& f);
// use the fact that
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
bool basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(const monomial& m);
bool vars_are_equiv(lpvar a, lpvar b) const;
@ -374,61 +336,19 @@ struct core {
void explain_equiv_vars(lpvar a, lpvar b);
// use the fact that
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
bool basic_lemma_for_mon_neutral_monomial_to_factor_derived(const rooted_mon& rm, const factorization& f);
// use the fact
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(const rooted_mon& rm, const factorization& f);
// use the fact
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm(const monomial& m);
// use the fact
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_derived(const rooted_mon& rm, const factorization& f);
void basic_lemma_for_mon_neutral_model_based(const rooted_mon& rm, const factorization& f);
bool basic_lemma_for_mon_neutral_derived(const rooted_mon& rm, const factorization& factorization);
void explain(const factorization& f, lp::explanation& exp);
bool has_zero_factor(const factorization& factorization) const;
// if there are no zero factors then |m| >= |m[factor_index]|
void generate_pl_on_mon(const monomial& m, unsigned factor_index);
// none of the factors is zero and the product is not zero
// -> |fc[factor_index]| <= |rm|
void generate_pl(const rooted_mon& rm, const factorization& fc, int factor_index);
template <typename T>
bool has_zero(const T& product) const;
template <typename T>
bool mon_has_zero(const T& product) const;
// x != 0 or y = 0 => |xy| >= |y|
void proportion_lemma_model_based(const rooted_mon& rm, const factorization& factorization);
// x != 0 or y = 0 => |xy| >= |y|
bool proportion_lemma_derived(const rooted_mon& rm, const factorization& factorization);
void basic_lemma_for_mon_model_based(const rooted_mon& rm);
bool basic_lemma_for_mon_derived(const rooted_mon& rm);
// Use basic multiplication properties to create a lemma
// for the given monomial.
// "derived" means derived from constraints - the alternative is model based
void basic_lemma_for_mon(const rooted_mon& rm, bool derived);
void init_rm_to_refine();
lp::lp_settings& settings();
unsigned random();
// use basic multiplication properties to create a lemma
bool basic_lemma(bool derived);
void map_monomial_vars_to_monomial_indices(unsigned i);
void map_vars_to_monomials();

View file

@ -220,6 +220,5 @@ void tangents::get_tang_points(point &a, point &b, bool below, const rational& v
push_tang_points(a, b, xy, below, correct_val, val);
TRACE("nla_solver", tout << "pushed a = "; print_point(a, tout); tout << "\npushed b = "; print_point(b, tout); tout << std::endl;);
}
}