mirror of
				https://github.com/Z3Prover/z3
				synced 2025-10-31 19:52:29 +00:00 
			
		
		
		
	streamline axioms
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
		
							parent
							
								
									4464ab9431
								
							
						
					
					
						commit
						c0ca3b5a0a
					
				
					 2 changed files with 49 additions and 92 deletions
				
			
		|  | @ -12,14 +12,13 @@ Abstract: | |||
| 
 | ||||
| Author: | ||||
| 
 | ||||
|     GitHub Copilot Agent 2025 | ||||
| 
 | ||||
| Revision History: | ||||
|     nbjorner October 2025 | ||||
| 
 | ||||
| --*/ | ||||
| 
 | ||||
| #include "ast/ast.h" | ||||
| #include "ast/ast_pp.h" | ||||
| #include "ast/ast_util.h" | ||||
| #include "ast/finite_set_decl_plugin.h" | ||||
| #include "ast/arith_decl_plugin.h" | ||||
| #include "ast/array_decl_plugin.h" | ||||
|  | @ -64,16 +63,10 @@ void finite_set_axioms::in_union_axiom(expr *x, expr *a) { | |||
|     m_add_clause(ax1); | ||||
| 
 | ||||
|     // (x in b) => (x in a)
 | ||||
|     theory_axiom* ax2 = alloc(theory_axiom, m, "in-union", x, a); | ||||
|     ax2->clause.push_back(m.mk_not(x_in_b)); | ||||
|     ax2->clause.push_back(x_in_a); | ||||
|     m_add_clause(ax2); | ||||
|     add_binary("in-union", x, a, m.mk_not(x_in_b), x_in_a); | ||||
| 
 | ||||
|     // (x in c) => (x in a)
 | ||||
|     theory_axiom* ax3 = alloc(theory_axiom, m, "in-union", x, a); | ||||
|     ax3->clause.push_back(m.mk_not(x_in_c)); | ||||
|     ax3->clause.push_back(x_in_a); | ||||
|     m_add_clause(ax3); | ||||
|     add_binary("in-union", x, a, m.mk_not(x_in_c), x_in_a); | ||||
| } | ||||
| 
 | ||||
| // a := set.intersect(b, c)
 | ||||
|  | @ -86,25 +79,18 @@ void finite_set_axioms::in_intersect_axiom(expr *x, expr *a) { | |||
|     expr_ref x_in_a(u.mk_in(x, a), m); | ||||
|     expr_ref x_in_b(u.mk_in(x, b), m); | ||||
|     expr_ref x_in_c(u.mk_in(x, c), m); | ||||
|     expr_ref nx_in_a(m.mk_not(x_in_a), m); | ||||
|     expr_ref nx_in_b(m.mk_not(x_in_b), m); | ||||
|     expr_ref nx_in_c(m.mk_not(x_in_c), m); | ||||
|      | ||||
|     // (x in a) => (x in b)
 | ||||
|     theory_axiom* ax1 = alloc(theory_axiom, m, "in-intersect", x, a); | ||||
|     ax1->clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax1->clause.push_back(x_in_b); | ||||
|     m_add_clause(ax1); | ||||
|     add_binary("in-intersect", x, a, nx_in_a, x_in_b); | ||||
| 
 | ||||
|     // (x in a) => (x in c)
 | ||||
|     theory_axiom* ax2 = alloc(theory_axiom, m, "in-intersect", x, a); | ||||
|     ax2->clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax2->clause.push_back(x_in_c); | ||||
|     m_add_clause(ax2); | ||||
|     add_binary("in-intersect", x, a, nx_in_a, x_in_c); | ||||
| 
 | ||||
|     // (x in b) and (x in c) => (x in a)
 | ||||
|     theory_axiom* ax3 = alloc(theory_axiom, m, "in-intersect", x, a); | ||||
|     ax3->clause.push_back(m.mk_not(x_in_b)); | ||||
|     ax3->clause.push_back(m.mk_not(x_in_c)); | ||||
|     ax3->clause.push_back(x_in_a); | ||||
|     m_add_clause(ax3); | ||||
|     add_ternary("in-intersect", x, a, nx_in_b, nx_in_c, x_in_a); | ||||
| } | ||||
| 
 | ||||
| // a := set.difference(b, c)
 | ||||
|  | @ -117,25 +103,18 @@ void finite_set_axioms::in_difference_axiom(expr *x, expr *a) { | |||
|     expr_ref x_in_a(u.mk_in(x, a), m); | ||||
|     expr_ref x_in_b(u.mk_in(x, b), m); | ||||
|     expr_ref x_in_c(u.mk_in(x, c), m); | ||||
|     expr_ref nx_in_a(m.mk_not(x_in_a), m); | ||||
|     expr_ref nx_in_b(m.mk_not(x_in_b), m); | ||||
|     expr_ref nx_in_c(m.mk_not(x_in_c), m); | ||||
|      | ||||
|     // (x in a) => (x in b)
 | ||||
|     theory_axiom* ax1 = alloc(theory_axiom, m, "in-difference", x, a); | ||||
|     ax1->clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax1->clause.push_back(x_in_b); | ||||
|     m_add_clause(ax1); | ||||
|     add_binary("in-difference", x, a, nx_in_a, x_in_b); | ||||
|      | ||||
|     // (x in a) => not (x in c)
 | ||||
|     theory_axiom* ax2 = alloc(theory_axiom, m, "in-difference", x, a); | ||||
|     ax2->clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax2->clause.push_back(m.mk_not(x_in_c)); | ||||
|     m_add_clause(ax2); | ||||
|     add_binary("in-difference", x, a, nx_in_a, nx_in_c); | ||||
| 
 | ||||
|     // (x in b) and not (x in c) => (x in a)
 | ||||
|     theory_axiom* ax3 = alloc(theory_axiom, m, "in-difference", x, a); | ||||
|     ax3->clause.push_back(m.mk_not(x_in_b)); | ||||
|     ax3->clause.push_back(x_in_c); | ||||
|     ax3->clause.push_back(x_in_a); | ||||
|     m_add_clause(ax3); | ||||
|     add_ternary("in-difference", x, a, nx_in_b, x_in_c, x_in_a); | ||||
| } | ||||
| 
 | ||||
| // a := set.singleton(b)
 | ||||
|  | @ -147,7 +126,6 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) { | |||
|      | ||||
|     expr_ref x_in_a(u.mk_in(x, a), m); | ||||
| 
 | ||||
| 
 | ||||
|     if (x == b) { | ||||
|         // If x and b are syntactically identical, then (x in a) is always true  
 | ||||
|         theory_axiom* ax = alloc(theory_axiom, m, "in-singleton", x, a);      | ||||
|  | @ -192,6 +170,8 @@ void finite_set_axioms::in_range_axiom(expr *x, expr *a) { | |||
|     expr_ref x_le_hi(arith.mk_le(arith.mk_sub(x, hi), arith.mk_int(0)), m); | ||||
|     m_rewriter(lo_le_x); | ||||
|     m_rewriter(x_le_hi); | ||||
|     expr_ref nx_le_hi(m.mk_not(x_le_hi), m); | ||||
|     expr_ref nlo_le_x(m.mk_not(lo_le_x), m); | ||||
|      | ||||
|     // (x in a) => (lo <= x)
 | ||||
|     add_binary("in-range", x, a, m.mk_not(x_in_a), lo_le_x); | ||||
|  | @ -200,11 +180,7 @@ void finite_set_axioms::in_range_axiom(expr *x, expr *a) { | |||
|     add_binary("in-range", x, a, m.mk_not(x_in_a), x_le_hi); | ||||
| 
 | ||||
|     // (lo <= x) and (x <= hi) => (x in a)
 | ||||
|     theory_axiom* ax3 = alloc(theory_axiom, m, "in-range", x, a); | ||||
|     ax3->clause.push_back(m.mk_not(lo_le_x)); | ||||
|     ax3->clause.push_back(m.mk_not(x_le_hi)); | ||||
|     ax3->clause.push_back(x_in_a); | ||||
|     m_add_clause(ax3); | ||||
|     add_ternary("in-range", x, a, nlo_le_x, nx_le_hi, x_in_a); | ||||
| } | ||||
| 
 | ||||
| // a := set.range(lo, hi)
 | ||||
|  | @ -216,19 +192,13 @@ void finite_set_axioms::in_range_axiom(expr* r) { | |||
|     expr *lo = nullptr, *hi = nullptr; | ||||
|     if (!u.is_range(r, lo, hi)) | ||||
|         return; | ||||
|     theory_axiom* ax = alloc(theory_axiom, m, "range-bounds"); | ||||
| 
 | ||||
|     arith_util a(m); | ||||
|     expr_ref lo_le_hi(a.mk_le(a.mk_sub(lo, hi), a.mk_int(0)), m); | ||||
|     m_rewriter(lo_le_hi); | ||||
|     ax->clause.push_back(m.mk_not(lo_le_hi)); | ||||
|     ax->clause.push_back(u.mk_in(lo, r)); | ||||
|     m_add_clause(ax); | ||||
| 
 | ||||
|     ax = alloc(theory_axiom, m, "range-bounds", r); | ||||
|     ax->clause.push_back(m.mk_not(lo_le_hi)); | ||||
|     ax->clause.push_back(u.mk_in(hi, r)); | ||||
|     m_add_clause(ax); | ||||
| 
 | ||||
|     add_binary("range-bounds", r, nullptr, m.mk_not(lo_le_hi), u.mk_in(lo, r)); | ||||
|     add_binary("range-bounds", r, nullptr, m.mk_not(lo_le_hi), u.mk_in(hi, r)); | ||||
|     add_unit("range-bounds", r, m.mk_not(u.mk_in(a.mk_add(hi, a.mk_int(1)), r))); | ||||
|     add_unit("range-bounds", r, m.mk_not(u.mk_in(a.mk_add(lo, a.mk_int(-1)), r))); | ||||
| } | ||||
|  | @ -245,10 +215,6 @@ void finite_set_axioms::in_map_axiom(expr *x, expr *a) { | |||
|     expr_ref f2(u.mk_in(inv, b), m); | ||||
|     add_binary("map-inverse", x, a, m.mk_not(f1), f2); | ||||
|     add_binary("map-inverse", x, b, f1, m.mk_not(f2)); | ||||
|     // For now, we provide a placeholder implementation
 | ||||
|     // The full implementation would require skolemization
 | ||||
|     // to express the inverse relationship properly.
 | ||||
|     // This would be: exists y. f(y) = x and y in b
 | ||||
| } | ||||
| 
 | ||||
| // a := set.map(f, b)
 | ||||
|  | @ -283,6 +249,8 @@ void finite_set_axioms::in_filter_axiom(expr *x, expr *a) { | |||
|     // Apply predicate p to x using array select
 | ||||
|     array_util autil(m); | ||||
|     expr_ref px(autil.mk_select(p, x), m); | ||||
|     m_rewriter(px); | ||||
|     expr_ref npx(mk_not(m, px), m); | ||||
|      | ||||
|     // (x in a) => (x in b)
 | ||||
|     add_binary("in-filter", x, a, m.mk_not(x_in_a), x_in_b); | ||||
|  | @ -291,26 +259,30 @@ void finite_set_axioms::in_filter_axiom(expr *x, expr *a) { | |||
|     add_binary("in-filter", x, a, m.mk_not(x_in_a), px); | ||||
| 
 | ||||
|     // (x in b) and p(x) => (x in a)
 | ||||
|     theory_axiom* ax3 = alloc(theory_axiom, m, "in-filter", x, a); | ||||
|     ax3->clause.push_back(m.mk_not(x_in_b)); | ||||
|     ax3->clause.push_back(m.mk_not(px)); | ||||
|     ax3->clause.push_back(x_in_a); | ||||
|     m_add_clause(ax3); | ||||
|     add_ternary("in-filter", x, a, m.mk_not(x_in_b), npx, x_in_a); | ||||
| } | ||||
| 
 | ||||
| void finite_set_axioms::add_unit(char const* name, expr* e, expr* unit) { | ||||
|     theory_axiom *ax = alloc(theory_axiom, m, name, e); | ||||
| void finite_set_axioms::add_unit(char const* name, expr* p1, expr* unit) { | ||||
|     theory_axiom *ax = alloc(theory_axiom, m, name, p1); | ||||
|     ax->clause.push_back(unit); | ||||
|     m_add_clause(ax); | ||||
| } | ||||
| 
 | ||||
| void finite_set_axioms::add_binary(char const* name, expr* x, expr* y, expr* f1, expr* f2) { | ||||
|     theory_axiom *ax = alloc(theory_axiom, m, name, x, y); | ||||
| void finite_set_axioms::add_binary(char const* name, expr* p1, expr* p2, expr* f1, expr* f2) { | ||||
|     theory_axiom *ax = alloc(theory_axiom, m, name, p1, p2); | ||||
|     ax->clause.push_back(f1); | ||||
|     ax->clause.push_back(f2); | ||||
|     m_add_clause(ax); | ||||
| } | ||||
| 
 | ||||
| void finite_set_axioms::add_ternary(char const *name, expr *p1, expr *p2, expr *f1, expr *f2, expr *f3) { | ||||
|     theory_axiom *ax = alloc(theory_axiom, m, name, p1, p2); | ||||
|     ax->clause.push_back(f1); | ||||
|     ax->clause.push_back(f2); | ||||
|     ax->clause.push_back(f3); | ||||
|     m_add_clause(ax); | ||||
| } | ||||
| 
 | ||||
| // Auxiliary algebraic axioms to ease reasoning about set.size
 | ||||
| // The axioms are not required for completenss for the base fragment
 | ||||
| // as they are handled by creating semi-linear sets.
 | ||||
|  | @ -369,20 +341,10 @@ void finite_set_axioms::size_lb_axiom(expr* e) { | |||
| void finite_set_axioms::subset_axiom(expr* a) { | ||||
|     expr *b = nullptr, *c = nullptr; | ||||
|     if (!u.is_subset(a, b, c)) | ||||
|         return; | ||||
|      | ||||
|     expr_ref intersect_bc(u.mk_intersect(b, c), m); | ||||
|     expr_ref eq(m.mk_eq(intersect_bc, b), m); | ||||
| 
 | ||||
|     theory_axiom* ax1 = alloc(theory_axiom, m,  "subset", a); | ||||
|     ax1->clause.push_back(m.mk_not(a)); | ||||
|     ax1->clause.push_back(eq); | ||||
|     m_add_clause(ax1); | ||||
| 
 | ||||
|     theory_axiom* ax2 = alloc(theory_axiom, m,  "subset", a); | ||||
|     ax2->clause.push_back(a); | ||||
|     ax2->clause.push_back(m.mk_not(eq)); | ||||
|     m_add_clause(ax2); | ||||
|         return;     | ||||
|     expr_ref eq(m.mk_eq(u.mk_intersect(b, c), b), m); | ||||
|     add_binary("subset", a, nullptr, m.mk_not(a), eq); | ||||
|     add_binary("subset", a, nullptr, a, m.mk_not(eq)); | ||||
| } | ||||
| 
 | ||||
| void finite_set_axioms::extensionality_axiom(expr *a, expr* b) { | ||||
|  | @ -392,17 +354,10 @@ void finite_set_axioms::extensionality_axiom(expr *a, expr* b) { | |||
|     expr_ref a_eq_b(m.mk_eq(a, b), m); | ||||
|     expr_ref diff_in_a(u.mk_in(diff_ab, a), m); | ||||
|     expr_ref diff_in_b(u.mk_in(diff_ab, b), m); | ||||
|     expr_ref ndiff_in_a(m.mk_not(diff_in_a), m); | ||||
|     expr_ref ndiff_in_b(m.mk_not(diff_in_b), m); | ||||
|      | ||||
|     // (a != b) => (x in diff_ab != x in diff_ba) 
 | ||||
|     theory_axiom* ax = alloc(theory_axiom, m, "extensionality", a, b); | ||||
|     ax->clause.push_back(a_eq_b); | ||||
|     ax->clause.push_back(m.mk_not(diff_in_a)); | ||||
|     ax->clause.push_back(m.mk_not(diff_in_b)); | ||||
|     m_add_clause(ax); | ||||
| 
 | ||||
|     ax = alloc(theory_axiom, m, "extensionality", a, b); | ||||
|     ax->clause.push_back(a_eq_b); | ||||
|     ax->clause.push_back(diff_in_a); | ||||
|     ax->clause.push_back(diff_in_b); | ||||
|     m_add_clause(ax); | ||||
|     add_ternary("extensionality", a, b, a_eq_b, ndiff_in_a, ndiff_in_b); | ||||
|     add_ternary("extensionality", a, b, a_eq_b, diff_in_a, diff_in_b); | ||||
| } | ||||
|  | @ -46,9 +46,11 @@ class finite_set_axioms { | |||
| 
 | ||||
|     std::function<void(theory_axiom *)> m_add_clause; | ||||
| 
 | ||||
|     void add_unit(char const* name, expr* x, expr *e); | ||||
|     void add_unit(char const* name, expr* p1, expr *e); | ||||
| 
 | ||||
|     void add_binary(char const *name, expr *x, expr *y, expr *f1, expr *f2); | ||||
|     void add_binary(char const *name, expr *p1, expr *p2, expr *f1, expr *f2); | ||||
| 
 | ||||
|     void add_ternary(char const *name, expr *p1, expr *p2, expr *f1, expr *f2, expr *f3); | ||||
| 
 | ||||
| public: | ||||
| 
 | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue