mirror of
https://github.com/Z3Prover/z3
synced 2025-10-29 18:52:29 +00:00
fix empty set declaration, add axioms and rewrites
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
4630373a97
commit
4464ab9431
6 changed files with 180 additions and 122 deletions
|
|
@ -27,7 +27,7 @@ Revision History:
|
|||
finite_set_decl_plugin::finite_set_decl_plugin():
|
||||
m_init(false) {
|
||||
m_names.resize(LAST_FINITE_SET_OP, nullptr);
|
||||
m_names[OP_FINITE_SET_EMPTY] = "set.empty ";
|
||||
m_names[OP_FINITE_SET_EMPTY] = "set.empty";
|
||||
m_names[OP_FINITE_SET_SINGLETON] = "set.singleton";
|
||||
m_names[OP_FINITE_SET_UNION] = "set.union";
|
||||
m_names[OP_FINITE_SET_INTERSECT] = "set.intersect";
|
||||
|
|
@ -39,6 +39,7 @@ finite_set_decl_plugin::finite_set_decl_plugin():
|
|||
m_names[OP_FINITE_SET_FILTER] = "set.filter";
|
||||
m_names[OP_FINITE_SET_RANGE] = "set.range";
|
||||
m_names[OP_FINITE_SET_EXT] = "set.diff";
|
||||
m_names[OP_FINITE_SET_MAP_INVERSE] = "set.map.inverse";
|
||||
}
|
||||
|
||||
finite_set_decl_plugin::~finite_set_decl_plugin() {
|
||||
|
|
@ -70,6 +71,7 @@ void finite_set_decl_plugin::init() {
|
|||
sort* arrABsetA[2] = { arrAB, setA };
|
||||
sort* arrABoolsetA[2] = { arrABool, setA };
|
||||
sort* intintT[2] = { intT, intT };
|
||||
sort *arrABsetBsetA[3] = {arrAB, setB, setA};
|
||||
|
||||
m_sigs.resize(LAST_FINITE_SET_OP);
|
||||
m_sigs[OP_FINITE_SET_EMPTY] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_EMPTY], 1, 0, nullptr, setA);
|
||||
|
|
@ -84,7 +86,7 @@ void finite_set_decl_plugin::init() {
|
|||
m_sigs[OP_FINITE_SET_FILTER] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_FILTER], 1, 2, arrABoolsetA, setA);
|
||||
m_sigs[OP_FINITE_SET_RANGE] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_RANGE], 0, 2, intintT, setInt);
|
||||
m_sigs[OP_FINITE_SET_EXT] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_EXT], 1, 2, setAsetA, A);
|
||||
// m_sigs[OP_FINITE_SET_MAP_INVERSE] = alloc(polymorphism::psig, m, "set.map_inverse", 2, 3, arrABsetBsetA, A);
|
||||
m_sigs[OP_FINITE_SET_MAP_INVERSE] = alloc(polymorphism::psig, m, "set.map_inverse", 2, 3, arrABsetBsetA, A);
|
||||
}
|
||||
|
||||
sort * finite_set_decl_plugin::mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters) {
|
||||
|
|
@ -190,6 +192,7 @@ func_decl * finite_set_decl_plugin::mk_func_decl(decl_kind k, unsigned num_param
|
|||
case OP_FINITE_SET_SIZE:
|
||||
case OP_FINITE_SET_SUBSET:
|
||||
case OP_FINITE_SET_MAP:
|
||||
case OP_FINITE_SET_MAP_INVERSE:
|
||||
case OP_FINITE_SET_FILTER:
|
||||
case OP_FINITE_SET_RANGE:
|
||||
case OP_FINITE_SET_EXT:
|
||||
|
|
@ -322,3 +325,4 @@ func_decl *finite_set_util::mk_range_decl() {
|
|||
sort *domain[2] = {i, i};
|
||||
return m_manager.mk_func_decl(m_fid, OP_FINITE_SET_RANGE, 0, nullptr, 2, domain, nullptr);
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -201,6 +201,10 @@ public:
|
|||
return m_manager.mk_app(m_fid, OP_FINITE_SET_MAP, arr, set);
|
||||
}
|
||||
|
||||
app *mk_map_inverse(expr *arr, expr *a, expr *b) {
|
||||
return m_manager.mk_app(m_fid, OP_FINITE_SET_MAP_INVERSE, arr, b, a);
|
||||
}
|
||||
|
||||
app * mk_filter(expr* arr, expr* set) {
|
||||
return m_manager.mk_app(m_fid, OP_FINITE_SET_FILTER, arr, set);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -41,11 +41,8 @@ void finite_set_axioms::in_empty_axiom(expr *x) {
|
|||
sort* elem_sort = x->get_sort();
|
||||
sort *set_sort = u.mk_finite_set_sort(elem_sort);
|
||||
expr_ref empty_set(u.mk_empty(set_sort), m);
|
||||
expr_ref x_in_empty(u.mk_in(x, empty_set), m);
|
||||
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "in-empty", x);
|
||||
ax->clause.push_back(m.mk_not(x_in_empty));
|
||||
m_add_clause(ax);
|
||||
expr_ref x_in_empty(u.mk_in(x, empty_set), m);
|
||||
add_unit("in-empty", x, m.mk_not(x_in_empty));
|
||||
}
|
||||
|
||||
// a := set.union(b, c)
|
||||
|
|
@ -55,7 +52,6 @@ void finite_set_axioms::in_union_axiom(expr *x, expr *a) {
|
|||
if (!u.is_union(a, b, c))
|
||||
return;
|
||||
|
||||
|
||||
expr_ref x_in_a(u.mk_in(x, a), m);
|
||||
expr_ref x_in_b(u.mk_in(x, b), m);
|
||||
expr_ref x_in_c(u.mk_in(x, c), m);
|
||||
|
|
@ -151,10 +147,10 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) {
|
|||
|
||||
expr_ref x_in_a(u.mk_in(x, a), m);
|
||||
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "in-singleton", x, a);
|
||||
if (x == b) {
|
||||
// If x and b are syntactically identical, then (x in a) is always true
|
||||
|
||||
if (x == b) {
|
||||
// If x and b are syntactically identical, then (x in a) is always true
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "in-singleton", x, a);
|
||||
ax->clause.push_back(x_in_a);
|
||||
m_add_clause(ax);
|
||||
return;
|
||||
|
|
@ -163,35 +159,28 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) {
|
|||
expr_ref x_eq_b(m.mk_eq(x, b), m);
|
||||
|
||||
// (x in a) => (x == b)
|
||||
ax->clause.push_back(m.mk_not(x_in_a));
|
||||
ax->clause.push_back(x_eq_b);
|
||||
m_add_clause(ax);
|
||||
ax = alloc(theory_axiom, m, "in-singleton", x, a);
|
||||
add_binary("in-singleton", x, a, m.mk_not(x_in_a), x_eq_b);
|
||||
|
||||
// (x == b) => (x in a)
|
||||
ax->clause.push_back(m.mk_not(x_eq_b));
|
||||
ax->clause.push_back(x_in_a);
|
||||
m_add_clause(ax);
|
||||
add_binary("in-singleton", x, a, m.mk_not(x_eq_b), x_in_a);
|
||||
}
|
||||
|
||||
void finite_set_axioms::in_singleton_axiom(expr* a) {
|
||||
expr *b = nullptr;
|
||||
if (!u.is_singleton(a, b))
|
||||
return;
|
||||
|
||||
|
||||
|
||||
expr_ref b_in_a(u.mk_in(b, a), m);
|
||||
|
||||
auto ax = alloc(theory_axiom, m, "in-singleton");
|
||||
ax->clause.push_back(b_in_a);
|
||||
m_add_clause(ax);
|
||||
return;
|
||||
add_unit("in-singleton", a, u.mk_in(b, a));
|
||||
}
|
||||
|
||||
|
||||
|
||||
// a := set.range(lo, hi)
|
||||
// (x in a) <=> (lo <= x <= hi)
|
||||
// we use the rewriter to simplify inequalitiess because the arithmetic solver
|
||||
// makes some assumptions that inequalities are in normal form.
|
||||
// this complicates proof checking.
|
||||
// Options are to include a proof of the rewrite within the justification
|
||||
// fix the arithmetic solver to use the inequalities without rewriting (it really should)
|
||||
// the same issue applies to everywhere we apply rewriting when adding theory axioms.
|
||||
|
||||
void finite_set_axioms::in_range_axiom(expr *x, expr *a) {
|
||||
expr* lo = nullptr, *hi = nullptr;
|
||||
if (!u.is_range(a, lo, hi))
|
||||
|
|
@ -205,16 +194,10 @@ void finite_set_axioms::in_range_axiom(expr *x, expr *a) {
|
|||
m_rewriter(x_le_hi);
|
||||
|
||||
// (x in a) => (lo <= x)
|
||||
theory_axiom* ax1 = alloc(theory_axiom, m, "in-range", x, a);
|
||||
ax1->clause.push_back(m.mk_not(x_in_a));
|
||||
ax1->clause.push_back(lo_le_x);
|
||||
m_add_clause(ax1);
|
||||
add_binary("in-range", x, a, m.mk_not(x_in_a), lo_le_x);
|
||||
|
||||
// (x in a) => (x <= hi)
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "in-range", x, a);
|
||||
ax2->clause.push_back(m.mk_not(x_in_a));
|
||||
ax2->clause.push_back(x_le_hi);
|
||||
m_add_clause(ax2);
|
||||
add_binary("in-range", x, a, m.mk_not(x_in_a), x_le_hi);
|
||||
|
||||
// (lo <= x) and (x <= hi) => (x in a)
|
||||
theory_axiom* ax3 = alloc(theory_axiom, m, "in-range", x, a);
|
||||
|
|
@ -246,13 +229,8 @@ void finite_set_axioms::in_range_axiom(expr* r) {
|
|||
ax->clause.push_back(u.mk_in(hi, r));
|
||||
m_add_clause(ax);
|
||||
|
||||
ax = alloc(theory_axiom, m, "range-bounds", r);
|
||||
ax->clause.push_back(m.mk_not(u.mk_in(a.mk_add(hi, a.mk_int(1)), r)));
|
||||
m_add_clause(ax);
|
||||
|
||||
ax = alloc(theory_axiom, m, "range-bounds", r);
|
||||
ax->clause.push_back(m.mk_not(u.mk_in(a.mk_add(lo, a.mk_int(-1)), r)));
|
||||
m_add_clause(ax);
|
||||
add_unit("range-bounds", r, m.mk_not(u.mk_in(a.mk_add(hi, a.mk_int(1)), r)));
|
||||
add_unit("range-bounds", r, m.mk_not(u.mk_in(a.mk_add(lo, a.mk_int(-1)), r)));
|
||||
}
|
||||
|
||||
// a := set.map(f, b)
|
||||
|
|
@ -262,6 +240,11 @@ void finite_set_axioms::in_map_axiom(expr *x, expr *a) {
|
|||
if (!u.is_map(a, f, b))
|
||||
return;
|
||||
|
||||
expr_ref inv(u.mk_map_inverse(x, f, b), m);
|
||||
expr_ref f1(u.mk_in(x, a), m);
|
||||
expr_ref f2(u.mk_in(inv, b), m);
|
||||
add_binary("map-inverse", x, a, m.mk_not(f1), f2);
|
||||
add_binary("map-inverse", x, b, f1, m.mk_not(f2));
|
||||
// For now, we provide a placeholder implementation
|
||||
// The full implementation would require skolemization
|
||||
// to express the inverse relationship properly.
|
||||
|
|
@ -281,12 +264,10 @@ void finite_set_axioms::in_map_image_axiom(expr *x, expr *a) {
|
|||
array_util autil(m);
|
||||
expr_ref fx(autil.mk_select(f, x), m);
|
||||
expr_ref fx_in_a(u.mk_in(fx, a), m);
|
||||
m_rewriter(fx);
|
||||
|
||||
// (x in b) => f(x) in a
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "in-map-image", x, a);
|
||||
ax->clause.push_back(m.mk_not(x_in_b));
|
||||
ax->clause.push_back(fx_in_a);
|
||||
m_add_clause(ax);
|
||||
add_binary("in-map", x, a, m.mk_not(x_in_b), fx_in_a);
|
||||
}
|
||||
|
||||
// a := set.filter(p, b)
|
||||
|
|
@ -304,16 +285,10 @@ void finite_set_axioms::in_filter_axiom(expr *x, expr *a) {
|
|||
expr_ref px(autil.mk_select(p, x), m);
|
||||
|
||||
// (x in a) => (x in b)
|
||||
theory_axiom* ax1 = alloc(theory_axiom, m, "in-filter", x, a);
|
||||
ax1->clause.push_back(m.mk_not(x_in_a));
|
||||
ax1->clause.push_back(x_in_b);
|
||||
m_add_clause(ax1);
|
||||
add_binary("in-filter", x, a, m.mk_not(x_in_a), x_in_b);
|
||||
|
||||
// (x in a) => p(x)
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "in-filter", x, a);
|
||||
ax2->clause.push_back(m.mk_not(x_in_a));
|
||||
ax2->clause.push_back(px);
|
||||
m_add_clause(ax2);
|
||||
add_binary("in-filter", x, a, m.mk_not(x_in_a), px);
|
||||
|
||||
// (x in b) and p(x) => (x in a)
|
||||
theory_axiom* ax3 = alloc(theory_axiom, m, "in-filter", x, a);
|
||||
|
|
@ -323,23 +298,74 @@ void finite_set_axioms::in_filter_axiom(expr *x, expr *a) {
|
|||
m_add_clause(ax3);
|
||||
}
|
||||
|
||||
// a := set.singleton(b)
|
||||
// set.size(a) = 1
|
||||
void finite_set_axioms::size_singleton_axiom(expr *a) {
|
||||
expr* b = nullptr;
|
||||
if (!u.is_singleton(a, b))
|
||||
return;
|
||||
|
||||
arith_util arith(m);
|
||||
expr_ref size_a(u.mk_size(a), m);
|
||||
expr_ref one(arith.mk_int(1), m);
|
||||
expr_ref eq(m.mk_eq(size_a, one), m);
|
||||
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "size-singleton", a);
|
||||
ax->clause.push_back(eq);
|
||||
void finite_set_axioms::add_unit(char const* name, expr* e, expr* unit) {
|
||||
theory_axiom *ax = alloc(theory_axiom, m, name, e);
|
||||
ax->clause.push_back(unit);
|
||||
m_add_clause(ax);
|
||||
}
|
||||
|
||||
void finite_set_axioms::add_binary(char const* name, expr* x, expr* y, expr* f1, expr* f2) {
|
||||
theory_axiom *ax = alloc(theory_axiom, m, name, x, y);
|
||||
ax->clause.push_back(f1);
|
||||
ax->clause.push_back(f2);
|
||||
m_add_clause(ax);
|
||||
}
|
||||
|
||||
// Auxiliary algebraic axioms to ease reasoning about set.size
|
||||
// The axioms are not required for completenss for the base fragment
|
||||
// as they are handled by creating semi-linear sets.
|
||||
void finite_set_axioms::size_ub_axiom(expr *e) {
|
||||
expr *b = nullptr, *x = nullptr, *y = nullptr;
|
||||
arith_util a(m);
|
||||
expr_ref ineq(m);
|
||||
|
||||
if (u.is_singleton(e, b))
|
||||
add_unit("size", e, m.mk_eq(u.mk_size(e), a.mk_int(1)));
|
||||
else if (u.is_empty(e))
|
||||
add_unit("size", e, m.mk_eq(u.mk_size(e), a.mk_int(0)));
|
||||
else if (u.is_union(e, x, y)) {
|
||||
ineq = a.mk_le(u.mk_size(e), a.mk_add(u.mk_size(x), u.mk_size(y)));
|
||||
m_rewriter(ineq);
|
||||
add_unit("size", e, ineq);
|
||||
}
|
||||
else if (u.is_intersect(e, x, y)) {
|
||||
ineq = a.mk_le(u.mk_size(e), u.mk_size(x));
|
||||
m_rewriter(ineq);
|
||||
add_unit("size", e, ineq);
|
||||
ineq = a.mk_le(u.mk_size(e), u.mk_size(y));
|
||||
m_rewriter(ineq);
|
||||
add_unit("size", e, ineq);
|
||||
}
|
||||
else if (u.is_difference(e, x, y)) {
|
||||
ineq = a.mk_le(u.mk_size(e), u.mk_size(x));
|
||||
m_rewriter(ineq);
|
||||
add_unit("size", e, ineq);
|
||||
}
|
||||
else if (u.is_filter(e, x, y)) {
|
||||
ineq = a.mk_le(u.mk_size(e), u.mk_size(y));
|
||||
m_rewriter(ineq);
|
||||
add_unit("size", e, ineq);
|
||||
}
|
||||
else if (u.is_map(e, x, y)) {
|
||||
ineq = a.mk_le(u.mk_size(e), u.mk_size(y));
|
||||
m_rewriter(ineq);
|
||||
add_unit("size", e, ineq);
|
||||
}
|
||||
else if (u.is_range(e, x, y)) {
|
||||
ineq = a.mk_eq(u.mk_size(e), m.mk_ite(a.mk_le(x, y), a.mk_add(a.mk_sub(y, x), a.mk_int(1)), a.mk_int(0)));
|
||||
m_rewriter(ineq);
|
||||
add_unit("size", e, ineq);
|
||||
}
|
||||
}
|
||||
|
||||
void finite_set_axioms::size_lb_axiom(expr* e) {
|
||||
arith_util a(m);
|
||||
expr_ref ineq(m);
|
||||
ineq = a.mk_le(a.mk_int(0), u.mk_size(e));
|
||||
m_rewriter(ineq);
|
||||
add_unit("size-lb", e, ineq);
|
||||
}
|
||||
|
||||
void finite_set_axioms::subset_axiom(expr* a) {
|
||||
expr *b = nullptr, *c = nullptr;
|
||||
if (!u.is_subset(a, b, c))
|
||||
|
|
@ -367,7 +393,7 @@ void finite_set_axioms::extensionality_axiom(expr *a, expr* b) {
|
|||
expr_ref diff_in_a(u.mk_in(diff_ab, a), m);
|
||||
expr_ref diff_in_b(u.mk_in(diff_ab, b), m);
|
||||
|
||||
// (a != b) => (x in diff_ab != x in diff_ba)
|
||||
// (a != b) => (x in diff_ab != x in diff_ba)
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "extensionality", a, b);
|
||||
ax->clause.push_back(a_eq_b);
|
||||
ax->clause.push_back(m.mk_not(diff_in_a));
|
||||
|
|
|
|||
|
|
@ -46,6 +46,10 @@ class finite_set_axioms {
|
|||
|
||||
std::function<void(theory_axiom *)> m_add_clause;
|
||||
|
||||
void add_unit(char const* name, expr* x, expr *e);
|
||||
|
||||
void add_binary(char const *name, expr *x, expr *y, expr *f1, expr *f2);
|
||||
|
||||
public:
|
||||
|
||||
finite_set_axioms(ast_manager &m) : m(m), u(m), m_rewriter(m) {}
|
||||
|
|
@ -86,8 +90,8 @@ public:
|
|||
// a := set.range(lo, hi)
|
||||
// (not (set.in (- lo 1) a))
|
||||
// (not (set.in (+ hi 1) a))
|
||||
// (set.in lo a)
|
||||
// (set.in hi a)
|
||||
// lo <= hi => (set.in lo a)
|
||||
// lo <= hi => (set.in hi a)
|
||||
void in_range_axiom(expr *a);
|
||||
|
||||
// a := set.map(f, b)
|
||||
|
|
@ -106,9 +110,20 @@ public:
|
|||
// (a) <=> (set.intersect(b, c) = b)
|
||||
void subset_axiom(expr *a);
|
||||
|
||||
// a := set.singleton(b)
|
||||
// set.size(a) = 1
|
||||
void size_singleton_axiom(expr *a);
|
||||
|
||||
// set.size(empty) = 0
|
||||
// set.size(set.singleton(b)) = 1
|
||||
// set.size(a u b) <= set.size(a) + set.size(b)
|
||||
// set.size(a n b) <= min(set.size(a), set.size(b))
|
||||
// set.size(a \ b) <= set.size(a)
|
||||
// set.size(set.map(f, b)) <= set.size(b)
|
||||
// set.size(set.filter(p, b)) <= set.size(b)
|
||||
// set.size([l..u]) = if(l <= u, u - l + 1, 0)
|
||||
void size_ub_axiom(expr *a);
|
||||
|
||||
// 0 <= set.size(e)
|
||||
void size_lb_axiom(expr *e);
|
||||
|
||||
|
||||
// a != b => set.in (set.diff(a, b) a) != set.in (set.diff(a, b) b)
|
||||
void extensionality_axiom(expr *a, expr *b);
|
||||
|
|
|
|||
|
|
@ -47,78 +47,87 @@ br_status finite_set_rewriter::mk_app_core(func_decl * f, unsigned num_args, exp
|
|||
}
|
||||
|
||||
br_status finite_set_rewriter::mk_union(unsigned num_args, expr * const * args, expr_ref & result) {
|
||||
VERIFY(num_args == 2);
|
||||
// Idempotency: set.union(x, x) -> x
|
||||
if (num_args == 2 && args[0] == args[1]) {
|
||||
if (args[0] == args[1]) {
|
||||
result = args[0];
|
||||
return BR_DONE;
|
||||
}
|
||||
|
||||
// Identity: set.union(x, empty) -> x or set.union(empty, x) -> x
|
||||
if (num_args == 2) {
|
||||
if (u.is_empty(args[0])) {
|
||||
result = args[1];
|
||||
return BR_DONE;
|
||||
}
|
||||
if (u.is_empty(args[1])) {
|
||||
if (u.is_empty(args[0])) {
|
||||
result = args[1];
|
||||
return BR_DONE;
|
||||
}
|
||||
if (u.is_empty(args[1])) {
|
||||
result = args[0];
|
||||
return BR_DONE;
|
||||
}
|
||||
|
||||
// Absorption: set.union(x, set.intersect(x, y)) -> x
|
||||
expr *a1, *a2;
|
||||
if (u.is_intersect(args[1], a1, a2)) {
|
||||
if (args[0] == a1 || args[0] == a2) {
|
||||
result = args[0];
|
||||
return BR_DONE;
|
||||
}
|
||||
|
||||
// Absorption: set.union(x, set.intersect(x, y)) -> x
|
||||
expr* a1, *a2;
|
||||
if (u.is_intersect(args[1], a1, a2)) {
|
||||
if (args[0] == a1 || args[0] == a2) {
|
||||
result = args[0];
|
||||
return BR_DONE;
|
||||
}
|
||||
}
|
||||
|
||||
// Absorption: set.union(set.intersect(x, y), x) -> x
|
||||
if (u.is_intersect(args[0], a1, a2)) {
|
||||
if (args[1] == a1 || args[1] == a2) {
|
||||
result = args[1];
|
||||
return BR_DONE;
|
||||
}
|
||||
}
|
||||
|
||||
// Absorption: set.union(set.intersect(x, y), x) -> x
|
||||
if (u.is_intersect(args[0], a1, a2)) {
|
||||
if (args[1] == a1 || args[1] == a2) {
|
||||
result = args[1];
|
||||
return BR_DONE;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
return BR_FAILED;
|
||||
}
|
||||
|
||||
br_status finite_set_rewriter::mk_intersect(unsigned num_args, expr * const * args, expr_ref & result) {
|
||||
if (num_args != 2)
|
||||
return BR_FAILED;
|
||||
|
||||
// Idempotency: set.intersect(x, x) -> x
|
||||
if (num_args == 2 && args[0] == args[1]) {
|
||||
if (args[0] == args[1]) {
|
||||
result = args[0];
|
||||
return BR_DONE;
|
||||
}
|
||||
|
||||
// Annihilation: set.intersect(x, empty) -> empty or set.intersect(empty, x) -> empty
|
||||
if (num_args == 2) {
|
||||
if (u.is_empty(args[0])) {
|
||||
if (u.is_empty(args[0])) {
|
||||
result = args[0];
|
||||
return BR_DONE;
|
||||
}
|
||||
if (u.is_empty(args[1])) {
|
||||
result = args[1];
|
||||
return BR_DONE;
|
||||
}
|
||||
|
||||
// Absorption: set.intersect(x, set.union(x, y)) -> x
|
||||
expr *a1, *a2;
|
||||
if (u.is_union(args[1], a1, a2)) {
|
||||
if (args[0] == a1 || args[0] == a2) {
|
||||
result = args[0];
|
||||
return BR_DONE;
|
||||
}
|
||||
if (u.is_empty(args[1])) {
|
||||
}
|
||||
|
||||
// Absorption: set.intersect(set.union(x, y), x) -> x
|
||||
if (u.is_union(args[0], a1, a2)) {
|
||||
if (args[1] == a1 || args[1] == a2) {
|
||||
result = args[1];
|
||||
return BR_DONE;
|
||||
}
|
||||
|
||||
// Absorption: set.intersect(x, set.union(x, y)) -> x
|
||||
expr* a1, *a2;
|
||||
if (u.is_union(args[1], a1, a2)) {
|
||||
if (args[0] == a1 || args[0] == a2) {
|
||||
result = args[0];
|
||||
return BR_DONE;
|
||||
}
|
||||
}
|
||||
|
||||
// Absorption: set.intersect(set.union(x, y), x) -> x
|
||||
if (u.is_union(args[0], a1, a2)) {
|
||||
if (args[1] == a1 || args[1] == a2) {
|
||||
result = args[1];
|
||||
return BR_DONE;
|
||||
}
|
||||
}
|
||||
}
|
||||
expr *l1, *l2, *u1, *u2;
|
||||
if (u.is_range(args[0], l1, u1) && u.is_range(args[1], l2, u2)) {
|
||||
arith_util a(m);
|
||||
auto max_l = m.mk_ite(a.mk_ge(l1, l2), l1, l2);
|
||||
auto min_u = m.mk_ite(a.mk_ge(u1, u2), u2, u1);
|
||||
result = u.mk_range(max_l, min_u);
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
|
||||
return BR_FAILED;
|
||||
|
|
|
|||
|
|
@ -122,12 +122,12 @@ namespace smt {
|
|||
}
|
||||
|
||||
/*
|
||||
* Merge the equivalence classes of two variables.
|
||||
* Merge the equivalence classes of two variables.
|
||||
* parent_in := vector of (set.in x S) terms where S is in the equivalence class of r.
|
||||
* parent_setops := vector of (set.op S T) where S or T is in the equivalence class of r.
|
||||
* setops := vector of (set.op S T) where (set.op S T) is in the equivalence class of r.
|
||||
*
|
||||
*/
|
||||
*/
|
||||
void theory_finite_set::merge_eh(theory_var root, theory_var other, theory_var, theory_var) {
|
||||
// r is the new root
|
||||
TRACE(finite_set, tout << "merging v" << root << " v" << other << "\n"; display_var(tout, root);
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue