mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 01:24:08 +00:00
Interpolation API: infrastructure fixes and .NET API
Signed-off-by: Christoph M. Wintersteiger <cwinter@microsoft.com>
This commit is contained in:
parent
4370d40dd8
commit
b03a9d3f0a
|
@ -75,7 +75,7 @@ def init_project_def():
|
|||
# dll_name='foci2',
|
||||
# export_files=['foci2stub.cpp'])
|
||||
# add_lib('interp', ['solver','foci2'])
|
||||
API_files = ['z3_api.h', 'z3_algebraic.h', 'z3_polynomial.h', 'z3_rcf.h']
|
||||
API_files = ['z3_api.h', 'z3_algebraic.h', 'z3_polynomial.h', 'z3_rcf.h', 'z3_interp.h']
|
||||
add_lib('api', ['portfolio', 'user_plugin', 'smtparser', 'realclosure', 'interp'],
|
||||
includes2install=['z3.h', 'z3_v1.h', 'z3_macros.h'] + API_files)
|
||||
add_exe('shell', ['api', 'sat', 'extra_cmds'], exe_name='z3')
|
||||
|
|
|
@ -123,6 +123,7 @@ SYMBOL = 9
|
|||
PRINT_MODE = 10
|
||||
ERROR_CODE = 11
|
||||
DOUBLE = 12
|
||||
UINT_PTR = 13
|
||||
|
||||
FIRST_OBJ_ID = 100
|
||||
|
||||
|
@ -131,28 +132,28 @@ def is_obj(ty):
|
|||
|
||||
Type2Str = { VOID : 'void', VOID_PTR : 'void*', INT : 'int', UINT : 'unsigned', INT64 : '__int64', UINT64 : '__uint64', DOUBLE : 'double',
|
||||
STRING : 'Z3_string', STRING_PTR : 'Z3_string_ptr', BOOL : 'Z3_bool', SYMBOL : 'Z3_symbol',
|
||||
PRINT_MODE : 'Z3_ast_print_mode', ERROR_CODE : 'Z3_error_code',
|
||||
PRINT_MODE : 'Z3_ast_print_mode', ERROR_CODE : 'Z3_error_code', UINT_PTR : 'unsigned*'
|
||||
}
|
||||
|
||||
Type2PyStr = { VOID_PTR : 'ctypes.c_void_p', INT : 'ctypes.c_int', UINT : 'ctypes.c_uint', INT64 : 'ctypes.c_longlong',
|
||||
UINT64 : 'ctypes.c_ulonglong', DOUBLE : 'ctypes.c_double',
|
||||
STRING : 'ctypes.c_char_p', STRING_PTR : 'ctypes.POINTER(ctypes.c_char_p)', BOOL : 'ctypes.c_bool', SYMBOL : 'Symbol',
|
||||
PRINT_MODE : 'ctypes.c_uint', ERROR_CODE : 'ctypes.c_uint',
|
||||
PRINT_MODE : 'ctypes.c_uint', ERROR_CODE : 'ctypes.c_uint', UINT_PTR : 'ctypes.POINTER(ctypes.c_uint)'
|
||||
}
|
||||
|
||||
# Mapping to .NET types
|
||||
Type2Dotnet = { VOID : 'void', VOID_PTR : 'IntPtr', INT : 'int', UINT : 'uint', INT64 : 'Int64', UINT64 : 'UInt64', DOUBLE : 'double',
|
||||
STRING : 'string', STRING_PTR : 'byte**', BOOL : 'int', SYMBOL : 'IntPtr',
|
||||
PRINT_MODE : 'uint', ERROR_CODE : 'uint' }
|
||||
PRINT_MODE : 'uint', ERROR_CODE : 'uint', UINT_PTR : 'uint[]'}
|
||||
|
||||
# Mapping to Java types
|
||||
Type2Java = { VOID : 'void', VOID_PTR : 'long', INT : 'int', UINT : 'int', INT64 : 'long', UINT64 : 'long', DOUBLE : 'double',
|
||||
STRING : 'String', STRING_PTR : 'StringPtr',
|
||||
BOOL : 'boolean', SYMBOL : 'long', PRINT_MODE : 'int', ERROR_CODE : 'int' }
|
||||
BOOL : 'boolean', SYMBOL : 'long', PRINT_MODE : 'int', ERROR_CODE : 'int', UINT_PTR : 'int[]'}
|
||||
|
||||
Type2JavaW = { VOID : 'void', VOID_PTR : 'jlong', INT : 'jint', UINT : 'jint', INT64 : 'jlong', UINT64 : 'jlong', DOUBLE : 'jdouble',
|
||||
STRING : 'jstring', STRING_PTR : 'jobject',
|
||||
BOOL : 'jboolean', SYMBOL : 'jlong', PRINT_MODE : 'jint', ERROR_CODE : 'jint' }
|
||||
BOOL : 'jboolean', SYMBOL : 'jlong', PRINT_MODE : 'jint', ERROR_CODE : 'jint', UINT_PTR : 'jlong'}
|
||||
|
||||
|
||||
next_type_id = FIRST_OBJ_ID
|
||||
|
@ -259,7 +260,7 @@ def param2dotnet(p):
|
|||
if k == INOUT_ARRAY:
|
||||
return "[In, Out] %s[]" % type2dotnet(param_type(p))
|
||||
if k == OUT_ARRAY:
|
||||
return "[Out] %s[]" % type2dotnet(param_type(p))
|
||||
return "[Out] out %s[]" % type2dotnet(param_type(p))
|
||||
else:
|
||||
return type2dotnet(param_type(p))
|
||||
|
||||
|
@ -466,6 +467,8 @@ def mk_dotnet_wrappers():
|
|||
dotnet.write('out ');
|
||||
else:
|
||||
dotnet.write('ref ')
|
||||
elif param_kind(param) == OUT_ARRAY:
|
||||
dotnet.write('out ');
|
||||
dotnet.write('a%d' % i)
|
||||
i = i + 1
|
||||
dotnet.write(');\n');
|
||||
|
@ -953,20 +956,33 @@ def def_API(name, result, params):
|
|||
log_c.write(" Au(a%s);\n" % sz)
|
||||
exe_c.write("in.get_uint_array(%s)" % i)
|
||||
else:
|
||||
error ("unsupported parameter for %s, %s" % (name, p))
|
||||
error ("unsupported parameter for %s, %s" % (ty, name, p))
|
||||
elif kind == OUT_ARRAY:
|
||||
sz = param_array_capacity_pos(p)
|
||||
log_c.write(" for (unsigned i = 0; i < a%s; i++) { " % sz)
|
||||
sz_p = params[sz]
|
||||
sz_p_k = param_kind(sz_p)
|
||||
tstr = type2str(ty)
|
||||
if sz_p_k == OUT or sz_p_k == INOUT:
|
||||
sz_e = ("(*a%s)" % sz)
|
||||
tstr = tstr + '*'
|
||||
else:
|
||||
sz_e = ("a%s" % sz)
|
||||
log_c.write(" for (unsigned i = 0; i < %s; i++) { " % sz_e)
|
||||
if is_obj(ty):
|
||||
log_c.write("P(0);")
|
||||
log_c.write(" }\n")
|
||||
log_c.write(" Ap(a%s);\n" % sz)
|
||||
exe_c.write("reinterpret_cast<%s*>(in.get_obj_array(%s))" % (type2str(ty), i))
|
||||
log_c.write(" Ap(%s);\n" % sz_e)
|
||||
exe_c.write("reinterpret_cast<%s*>(in.get_obj_array(%s))" % (tstr, i))
|
||||
elif ty == UINT:
|
||||
log_c.write("U(0);")
|
||||
log_c.write(" }\n")
|
||||
log_c.write(" Au(a%s);\n" % sz)
|
||||
log_c.write(" Au(%s);\n" % sz_e)
|
||||
exe_c.write("in.get_uint_array(%s)" % i)
|
||||
elif ty == UINT_PTR:
|
||||
log_c.write("P(0);")
|
||||
log_c.write(" }\n")
|
||||
log_c.write(" Ap(%s);\n" % sz_e)
|
||||
exe_c.write("reinterpret_cast<%s>(in.get_obj_array(%s))" % (tstr, i))
|
||||
else:
|
||||
error ("unsupported parameter for %s, %s" % (name, p))
|
||||
else:
|
||||
|
|
|
@ -208,7 +208,7 @@ extern "C" {
|
|||
MK_BINARY(Z3_mk_xor, mk_c(c)->get_basic_fid(), OP_XOR, SKIP);
|
||||
MK_NARY(Z3_mk_and, mk_c(c)->get_basic_fid(), OP_AND, SKIP);
|
||||
MK_NARY(Z3_mk_or, mk_c(c)->get_basic_fid(), OP_OR, SKIP);
|
||||
MK_UNARY(Z3_mk_interp, mk_c(c)->get_basic_fid(), OP_INTERP, SKIP);
|
||||
MK_UNARY(Z3_mk_interpolant, mk_c(c)->get_basic_fid(), OP_INTERP, SKIP);
|
||||
|
||||
Z3_ast mk_ite_core(Z3_context c, Z3_ast t1, Z3_ast t2, Z3_ast t3) {
|
||||
expr * result = mk_c(c)->m().mk_ite(to_expr(t1), to_expr(t2), to_expr(t3));
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -50,7 +50,7 @@ namespace Microsoft.Z3
|
|||
IntPtr constructor = IntPtr.Zero;
|
||||
IntPtr tester = IntPtr.Zero;
|
||||
IntPtr[] accessors = new IntPtr[n];
|
||||
Native.Z3_query_constructor(Context.nCtx, NativeObject, n, ref constructor, ref tester, accessors);
|
||||
Native.Z3_query_constructor(Context.nCtx, NativeObject, n, ref constructor, ref tester, out accessors);
|
||||
return new FuncDecl(Context, constructor);
|
||||
}
|
||||
}
|
||||
|
@ -66,7 +66,7 @@ namespace Microsoft.Z3
|
|||
IntPtr constructor = IntPtr.Zero;
|
||||
IntPtr tester = IntPtr.Zero;
|
||||
IntPtr[] accessors = new IntPtr[n];
|
||||
Native.Z3_query_constructor(Context.nCtx, NativeObject, n, ref constructor, ref tester, accessors);
|
||||
Native.Z3_query_constructor(Context.nCtx, NativeObject, n, ref constructor, ref tester, out accessors);
|
||||
return new FuncDecl(Context, tester);
|
||||
}
|
||||
}
|
||||
|
@ -82,7 +82,7 @@ namespace Microsoft.Z3
|
|||
IntPtr constructor = IntPtr.Zero;
|
||||
IntPtr tester = IntPtr.Zero;
|
||||
IntPtr[] accessors = new IntPtr[n];
|
||||
Native.Z3_query_constructor(Context.nCtx, NativeObject, n, ref constructor, ref tester, accessors);
|
||||
Native.Z3_query_constructor(Context.nCtx, NativeObject, n, ref constructor, ref tester, out accessors);
|
||||
FuncDecl[] t = new FuncDecl[n];
|
||||
for (uint i = 0; i < n; i++)
|
||||
t[i] = new FuncDecl(Context, accessors[i]);
|
||||
|
|
|
@ -424,7 +424,7 @@ namespace Microsoft.Z3
|
|||
n_constr[i] = cla[i].NativeObject;
|
||||
}
|
||||
IntPtr[] n_res = new IntPtr[n];
|
||||
Native.Z3_mk_datatypes(nCtx, n, Symbol.ArrayToNative(names), n_res, n_constr);
|
||||
Native.Z3_mk_datatypes(nCtx, n, Symbol.ArrayToNative(names), out n_res, n_constr);
|
||||
DatatypeSort[] res = new DatatypeSort[n];
|
||||
for (uint i = 0; i < n; i++)
|
||||
res[i] = new DatatypeSort(this, n_res[i]);
|
||||
|
|
|
@ -88,7 +88,7 @@ namespace Microsoft.Z3
|
|||
IntPtr[] n_constdecls = new IntPtr[n];
|
||||
IntPtr[] n_testers = new IntPtr[n];
|
||||
NativeObject = Native.Z3_mk_enumeration_sort(ctx.nCtx, name.NativeObject, (uint)n,
|
||||
Symbol.ArrayToNative(enumNames), n_constdecls, n_testers);
|
||||
Symbol.ArrayToNative(enumNames), out n_constdecls, out n_testers);
|
||||
}
|
||||
#endregion
|
||||
};
|
||||
|
|
|
@ -323,6 +323,14 @@ namespace Microsoft.Z3
|
|||
|
||||
#endregion
|
||||
|
||||
#region Interpolation
|
||||
/// <summary>
|
||||
/// Indicates whether the term is marked for interpolation.
|
||||
/// </summary>
|
||||
/// <remarks></remarks>
|
||||
public bool IsInterpolant { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_INTERP; } }
|
||||
#endregion
|
||||
|
||||
#region Arithmetic Terms
|
||||
/// <summary>
|
||||
/// Indicates whether the term is of integer sort.
|
||||
|
@ -791,7 +799,7 @@ namespace Microsoft.Z3
|
|||
/// </summary>
|
||||
/// <remarks>A label literal has a set of string parameters. It takes no arguments.</remarks>
|
||||
public bool IsLabelLit { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LABEL_LIT; } }
|
||||
#endregion
|
||||
#endregion
|
||||
|
||||
#region Proof Terms
|
||||
/// <summary>
|
||||
|
|
206
src/api/dotnet/InterpolationContext.cs
Normal file
206
src/api/dotnet/InterpolationContext.cs
Normal file
|
@ -0,0 +1,206 @@
|
|||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Diagnostics.Contracts;
|
||||
using System.Runtime.InteropServices;
|
||||
|
||||
namespace Microsoft.Z3
|
||||
{
|
||||
/// <summary>
|
||||
/// The InterpolationContext is suitable for generation of interpolants.
|
||||
/// </summary>
|
||||
/// <remarks>For more information on interpolation please refer
|
||||
/// too the C/C++ API, which is well documented.</remarks>
|
||||
[ContractVerification(true)]
|
||||
class InterpolationContext : Context
|
||||
{
|
||||
|
||||
/// <summary>
|
||||
/// Constructor.
|
||||
/// </summary>
|
||||
public InterpolationContext() : base() { }
|
||||
|
||||
/// <summary>
|
||||
/// Constructor.
|
||||
/// </summary>
|
||||
/// <remarks><seealso cref="Context.Context(Dictionary<string, string>)"/></remarks>
|
||||
public InterpolationContext(Dictionary<string, string> settings) : base(settings) { }
|
||||
|
||||
#region Terms
|
||||
/// <summary>
|
||||
/// Create an expression that marks a formula position for interpolation.
|
||||
/// </summary>
|
||||
public BoolExpr MkInterpolant(BoolExpr a)
|
||||
{
|
||||
Contract.Requires(a != null);
|
||||
Contract.Ensures(Contract.Result<BoolExpr>() != null);
|
||||
|
||||
CheckContextMatch(a);
|
||||
return new BoolExpr(this, Native.Z3_mk_interpolant(nCtx, a.NativeObject));
|
||||
}
|
||||
#endregion
|
||||
|
||||
/// <summary>
|
||||
/// Computes an interpolant.
|
||||
/// </summary>
|
||||
/// <remarks>For more information on interpolation please refer
|
||||
/// too the function Z3_get_interpolant in the C/C++ API, which is
|
||||
/// well documented.</remarks>
|
||||
Expr[] GetInterpolant(Expr pf, Expr pat, Params p)
|
||||
{
|
||||
Contract.Requires(pf != null);
|
||||
Contract.Requires(pat != null);
|
||||
Contract.Requires(p != null);
|
||||
Contract.Ensures(Contract.Result<Expr>() != null);
|
||||
|
||||
CheckContextMatch(pf);
|
||||
CheckContextMatch(pat);
|
||||
CheckContextMatch(p);
|
||||
|
||||
ASTVector seq = new ASTVector(this, Native.Z3_get_interpolant(nCtx, pf.NativeObject, pat.NativeObject, p.NativeObject));
|
||||
uint n = seq.Size;
|
||||
Expr[] res = new Expr[n];
|
||||
for (uint i = 0; i < n; i++)
|
||||
res[i] = Expr.Create(this, seq[i].NativeObject);
|
||||
return res;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Computes an interpolant.
|
||||
/// </summary>
|
||||
/// <remarks>For more information on interpolation please refer
|
||||
/// too the function Z3_compute_interpolant in the C/C++ API, which is
|
||||
/// well documented.</remarks>
|
||||
Z3_lbool ComputeInterpolant(Expr pat, Params p, out ASTVector interp, out Model model)
|
||||
{
|
||||
Contract.Requires(pat != null);
|
||||
Contract.Requires(p != null);
|
||||
Contract.Ensures(Contract.ValueAtReturn(out interp) != null);
|
||||
Contract.Ensures(Contract.ValueAtReturn(out model) != null);
|
||||
|
||||
CheckContextMatch(pat);
|
||||
CheckContextMatch(p);
|
||||
|
||||
IntPtr i = IntPtr.Zero, m = IntPtr.Zero;
|
||||
int r = Native.Z3_compute_interpolant(nCtx, pat.NativeObject, p.NativeObject, ref i, ref m);
|
||||
interp = new ASTVector(this, i);
|
||||
model = new Model(this, m);
|
||||
return (Z3_lbool)r;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Computes an interpolant.
|
||||
/// </summary>
|
||||
/// <remarks>For more information on interpolation please refer
|
||||
/// too the function Z3_compute_interpolant in the C/C++ API, which is
|
||||
/// well documented.</remarks>
|
||||
Z3_lbool Interpolate(Expr[] cnsts, uint[] parents, Params options, bool incremental, Expr[] theory, out Expr[] interps, out Model model)
|
||||
{
|
||||
Contract.Requires(cnsts != null);
|
||||
Contract.Requires(parents != null);
|
||||
Contract.Requires(cnsts.Length == parents.Length);
|
||||
Contract.Ensures(Contract.ValueAtReturn(out interps) != null);
|
||||
Contract.Ensures(Contract.ValueAtReturn(out model) != null);
|
||||
|
||||
CheckContextMatch(cnsts);
|
||||
CheckContextMatch(theory);
|
||||
|
||||
uint sz = (uint)cnsts.Length;
|
||||
|
||||
IntPtr[] ni = new IntPtr[sz - 1];
|
||||
IntPtr nm = IntPtr.Zero;
|
||||
IntPtr z = IntPtr.Zero;
|
||||
|
||||
int r = Native.Z3_interpolate(nCtx,
|
||||
sz, Expr.ArrayToNative(cnsts), parents,
|
||||
options.NativeObject,
|
||||
out ni,
|
||||
ref nm,
|
||||
ref z, // Z3_lterals are deprecated.
|
||||
(uint)(incremental ? 1 : 0),
|
||||
(uint)theory.Length, Expr.ArrayToNative(theory));
|
||||
|
||||
interps = new Expr[sz - 1];
|
||||
for (uint i = 0; i < sz - 1; i++)
|
||||
interps[i] = Expr.Create(this, ni[i]);
|
||||
|
||||
model = new Model(this, nm);
|
||||
|
||||
return (Z3_lbool)r;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Return a string summarizing cumulative time used for interpolation.
|
||||
/// </summary>
|
||||
/// <remarks>For more information on interpolation please refer
|
||||
/// too the function Z3_interpolation_profile in the C/C++ API, which is
|
||||
/// well documented.</remarks>
|
||||
public string InterpolationProfile()
|
||||
{
|
||||
return Native.Z3_interpolation_profile(nCtx);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Checks the correctness of an interpolant.
|
||||
/// </summary>
|
||||
/// <remarks>For more information on interpolation please refer
|
||||
/// too the function Z3_check_interpolant in the C/C++ API, which is
|
||||
/// well documented.</remarks>
|
||||
public int CheckInterpolant(Expr[] cnsts, uint[] parents, Expr[] interps, out string error, Expr[] theory)
|
||||
{
|
||||
Contract.Requires(cnsts.Length == parents.Length);
|
||||
Contract.Requires(cnsts.Length == interps.Length+1);
|
||||
IntPtr n_err_str;
|
||||
int r = Native.Z3_check_interpolant(nCtx,
|
||||
(uint)cnsts.Length,
|
||||
Expr.ArrayToNative(cnsts),
|
||||
parents,
|
||||
Expr.ArrayToNative(interps),
|
||||
out n_err_str,
|
||||
(uint)theory.Length,
|
||||
Expr.ArrayToNative(theory));
|
||||
error = Marshal.PtrToStringAnsi(n_err_str);
|
||||
return r;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Reads an interpolation problem from a file.
|
||||
/// </summary>
|
||||
/// <remarks>For more information on interpolation please refer
|
||||
/// too the function Z3_read_interpolation_problem in the C/C++ API, which is
|
||||
/// well documented.</remarks>
|
||||
public int ReadInterpolationProblem(string filename, out Expr[] cnsts, out uint[] parents, out string error, out Expr[] theory)
|
||||
{
|
||||
uint num = 0, num_theory = 0;
|
||||
IntPtr[] n_cnsts;
|
||||
IntPtr[] n_theory;
|
||||
IntPtr n_err_str;
|
||||
uint[][] n_parents;
|
||||
int r = Native.Z3_read_interpolation_problem(nCtx, ref num, out n_cnsts, out n_parents, filename, out n_err_str, ref num_theory, out n_theory);
|
||||
error = Marshal.PtrToStringAnsi(n_err_str);
|
||||
cnsts = new Expr[num];
|
||||
parents = new uint[num];
|
||||
theory = new Expr[num_theory];
|
||||
for (int i = 0; i < num; i++)
|
||||
{
|
||||
cnsts[i] = Expr.Create(this, n_cnsts[i]);
|
||||
parents[i] = n_parents[0][i];
|
||||
}
|
||||
for (int i = 0; i < num_theory; i++)
|
||||
theory[i] = Expr.Create(this, n_theory[i]);
|
||||
return r;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Writes an interpolation problem to a file.
|
||||
/// </summary>
|
||||
/// <remarks>For more information on interpolation please refer
|
||||
/// too the function Z3_write_interpolation_problem in the C/C++ API, which is
|
||||
/// well documented.</remarks>
|
||||
public void WriteInterpolationProblem(string filename, Expr[] cnsts, int[] parents, string error, Expr[] theory)
|
||||
{
|
||||
Contract.Requires(cnsts.Length == parents.Length);
|
||||
}
|
||||
}
|
||||
}
|
|
@ -19,12 +19,12 @@
|
|||
<DebugSymbols>true</DebugSymbols>
|
||||
<DebugType>full</DebugType>
|
||||
<Optimize>false</Optimize>
|
||||
<OutputPath>..\Debug\</OutputPath>
|
||||
<OutputPath>..\..\..\..\..\cwinter\bugs\z3bugs\Debug\</OutputPath>
|
||||
<DefineConstants>DEBUG;TRACE</DefineConstants>
|
||||
<ErrorReport>prompt</ErrorReport>
|
||||
<WarningLevel>4</WarningLevel>
|
||||
<AllowUnsafeBlocks>true</AllowUnsafeBlocks>
|
||||
<DocumentationFile>..\Debug\Microsoft.Z3.XML</DocumentationFile>
|
||||
<DocumentationFile>C:\cwinter\bugs\z3bugs\Debug\Microsoft.Z3.XML</DocumentationFile>
|
||||
<CodeContractsEnableRuntimeChecking>False</CodeContractsEnableRuntimeChecking>
|
||||
<CodeContractsRuntimeOnlyPublicSurface>False</CodeContractsRuntimeOnlyPublicSurface>
|
||||
<CodeContractsRuntimeThrowOnFailure>True</CodeContractsRuntimeThrowOnFailure>
|
||||
|
@ -254,7 +254,7 @@
|
|||
</PropertyGroup>
|
||||
<PropertyGroup Condition="'$(Configuration)|$(Platform)' == 'Debug|x86'">
|
||||
<DebugSymbols>true</DebugSymbols>
|
||||
<OutputPath>bin\x86\Debug\</OutputPath>
|
||||
<OutputPath>..\..\..\..\..\cwinter\bugs\z3bugs\Debug\</OutputPath>
|
||||
<DefineConstants>DEBUG;TRACE</DefineConstants>
|
||||
<AllowUnsafeBlocks>true</AllowUnsafeBlocks>
|
||||
<DebugType>full</DebugType>
|
||||
|
@ -266,7 +266,7 @@
|
|||
<CodeAnalysisRuleSet>MinimumRecommendedRules.ruleset</CodeAnalysisRuleSet>
|
||||
<CodeAnalysisRuleSetDirectories>;C:\Program Files (x86)\Microsoft Visual Studio 10.0\Team Tools\Static Analysis Tools\\Rule Sets</CodeAnalysisRuleSetDirectories>
|
||||
<CodeAnalysisRuleDirectories>;C:\Program Files (x86)\Microsoft Visual Studio 10.0\Team Tools\Static Analysis Tools\FxCop\\Rules</CodeAnalysisRuleDirectories>
|
||||
<DocumentationFile>bin\x86\Debug\Microsoft.Z3.XML</DocumentationFile>
|
||||
<DocumentationFile>C:\cwinter\bugs\z3bugs\Debug\Microsoft.Z3.XML</DocumentationFile>
|
||||
</PropertyGroup>
|
||||
<PropertyGroup Condition="'$(Configuration)|$(Platform)' == 'Release|x86'">
|
||||
<OutputPath>bin\x86\Release\</OutputPath>
|
||||
|
@ -352,6 +352,7 @@
|
|||
<Compile Include="FuncDecl.cs" />
|
||||
<Compile Include="FuncInterp.cs" />
|
||||
<Compile Include="Goal.cs" />
|
||||
<Compile Include="InterpolationContext.cs" />
|
||||
<Compile Include="IntExpr.cs" />
|
||||
<Compile Include="IntNum.cs" />
|
||||
<Compile Include="IntSort.cs" />
|
||||
|
|
|
@ -74,9 +74,10 @@ namespace Microsoft.Z3
|
|||
Contract.Requires(name != null);
|
||||
|
||||
IntPtr t = IntPtr.Zero;
|
||||
IntPtr[] f;
|
||||
NativeObject = Native.Z3_mk_tuple_sort(ctx.nCtx, name.NativeObject, numFields,
|
||||
Symbol.ArrayToNative(fieldNames), AST.ArrayToNative(fieldSorts),
|
||||
ref t, new IntPtr[numFields]);
|
||||
ref t, out f);
|
||||
}
|
||||
#endregion
|
||||
};
|
||||
|
|
|
@ -7253,19 +7253,19 @@ def parse_smt2_file(f, sorts={}, decls={}, ctx=None):
|
|||
dsz, dnames, ddecls = _dict2darray(decls, ctx)
|
||||
return _to_expr_ref(Z3_parse_smtlib2_file(ctx.ref(), f, ssz, snames, ssorts, dsz, dnames, ddecls), ctx)
|
||||
|
||||
def Interp(a,ctx=None):
|
||||
def Interpolant(a,ctx=None):
|
||||
"""Create an interpolation operator.
|
||||
|
||||
The argument is an interpolation pattern (see tree_interpolant).
|
||||
|
||||
>>> x = Int('x')
|
||||
>>> print Interp(x>0)
|
||||
>>> print Interpolant(x>0)
|
||||
interp(x > 0)
|
||||
"""
|
||||
ctx = _get_ctx(_ctx_from_ast_arg_list([a], ctx))
|
||||
s = BoolSort(ctx)
|
||||
a = s.cast(a)
|
||||
return BoolRef(Z3_mk_interp(ctx.ref(), a.as_ast()), ctx)
|
||||
return BoolRef(Z3_mk_interpolant(ctx.ref(), a.as_ast()), ctx)
|
||||
|
||||
def tree_interpolant(pat,p=None,ctx=None):
|
||||
"""Compute interpolant for a tree of formulas.
|
||||
|
@ -7304,10 +7304,10 @@ def tree_interpolant(pat,p=None,ctx=None):
|
|||
|
||||
>>> x = Int('x')
|
||||
>>> y = Int('y')
|
||||
>>> print tree_interpolant(And(Interp(x < 0), Interp(y > 2), x == y))
|
||||
>>> print tree_interpolant(And(Interpolant(x < 0), Interpolant(y > 2), x == y))
|
||||
[Not(x >= 0), Not(y <= 2)]
|
||||
|
||||
>>> g = And(Interp(x<0),x<2)
|
||||
>>> g = And(Interpolant(x<0),x<2)
|
||||
>>> try:
|
||||
... print tree_interpolant(g).sexpr()
|
||||
... except ModelRef as m:
|
||||
|
@ -7346,7 +7346,7 @@ def binary_interpolant(a,b,p=None,ctx=None):
|
|||
print binary_interpolant(x<0,x>2)
|
||||
Not(x >= 0)
|
||||
"""
|
||||
f = And(Interp(a),b)
|
||||
f = And(Interpolant(a),b)
|
||||
return tree_interpolant(f,p,ctx)[0]
|
||||
|
||||
def sequence_interpolant(v,p=None,ctx=None):
|
||||
|
@ -7375,6 +7375,6 @@ def sequence_interpolant(v,p=None,ctx=None):
|
|||
"""
|
||||
f = v[0]
|
||||
for i in range(1,len(v)):
|
||||
f = And(Interp(f),v[i])
|
||||
f = And(Interpolant(f),v[i])
|
||||
return tree_interpolant(f,p,ctx)
|
||||
|
||||
|
|
|
@ -27,6 +27,7 @@ Notes:
|
|||
#include"z3_algebraic.h"
|
||||
#include"z3_polynomial.h"
|
||||
#include"z3_rcf.h"
|
||||
#include"z3_interp.h"
|
||||
|
||||
#undef __in
|
||||
#undef __out
|
||||
|
|
318
src/api/z3_api.h
318
src/api/z3_api.h
|
@ -2116,17 +2116,7 @@ END_MLAPI_EXCLUDE
|
|||
def_API('Z3_mk_not', AST, (_in(CONTEXT), _in(AST)))
|
||||
*/
|
||||
Z3_ast Z3_API Z3_mk_not(__in Z3_context c, __in Z3_ast a);
|
||||
|
||||
/**
|
||||
\brief \mlh mk_interp c a \endmlh
|
||||
Create an AST node marking a formula position for interpolation.
|
||||
|
||||
The node \c a must have Boolean sort.
|
||||
|
||||
def_API('Z3_mk_interp', AST, (_in(CONTEXT), _in(AST)))
|
||||
*/
|
||||
Z3_ast Z3_API Z3_mk_interp(__in Z3_context c, __in Z3_ast a);
|
||||
|
||||
/**
|
||||
\brief \mlh mk_ite c t1 t2 t2 \endmlh
|
||||
Create an AST node representing an if-then-else: <tt>ite(t1, t2,
|
||||
|
@ -7700,314 +7690,6 @@ END_MLAPI_EXCLUDE
|
|||
Z3_ast Z3_API Z3_get_context_assignment(__in Z3_context c);
|
||||
|
||||
/*@}*/
|
||||
|
||||
/**
|
||||
@name Interpolation
|
||||
*/
|
||||
/*@{*/
|
||||
|
||||
/** \brief This function generates a Z3 context suitable for generation of
|
||||
interpolants. Formulas can be generated as abstract syntx trees in
|
||||
this context using the Z3 C API.
|
||||
|
||||
Interpolants are also generated as AST's in this context.
|
||||
|
||||
If cfg is non-null, it will be used as the base configuration
|
||||
for the Z3 context. This makes it possible to set Z3 options
|
||||
to be used during interpolation. This feature should be used
|
||||
with some caution however, as it may be that certain Z3 options
|
||||
are incompatible with interpolation.
|
||||
|
||||
def_API('Z3_mk_interpolation_context', CONTEXT, (_in(CONFIG),))
|
||||
|
||||
*/
|
||||
|
||||
Z3_context Z3_API Z3_mk_interpolation_context(__in Z3_config cfg);
|
||||
|
||||
/** Compute an interpolant from a refutation. This takes a proof of
|
||||
"false" from a set of formulas C, and an interpolation
|
||||
pattern. The pattern pat is a formula combining the formulas in C
|
||||
using logical conjunction and the "interp" operator (see
|
||||
#Z3_mk_interp). This interp operator is logically the identity
|
||||
operator. It marks the sub-formulas of the pattern for which interpolants should
|
||||
be computed. The interpolant is a map sigma from marked subformulas to
|
||||
formulas, such that, for each marked subformula phi of pat (where phi sigma
|
||||
is phi with sigma(psi) substituted for each subformula psi of phi such that
|
||||
psi in dom(sigma)):
|
||||
|
||||
1) phi sigma implies sigma(phi), and
|
||||
|
||||
2) sigma(phi) is in the common uninterpreted vocabulary between
|
||||
the formulas of C occurring in phi and those not occurring in
|
||||
phi
|
||||
|
||||
and moreover pat sigma implies false. In the simplest case
|
||||
an interpolant for the pattern "(and (interp A) B)" maps A
|
||||
to an interpolant for A /\ B.
|
||||
|
||||
The return value is a vector of formulas representing sigma. The
|
||||
vector contains sigma(phi) for each marked subformula of pat, in
|
||||
pre-order traversal. This means that subformulas of phi occur before phi
|
||||
in the vector. Also, subformulas that occur multiply in pat will
|
||||
occur multiply in the result vector.
|
||||
|
||||
In particular, calling Z3_get_interpolant on a pattern of the
|
||||
form (interp ... (interp (and (interp A_1) A_2)) ... A_N) will
|
||||
result in a sequence interpolant for A_1, A_2,... A_N.
|
||||
|
||||
Neglecting interp markers, the pattern must be a conjunction of
|
||||
formulas in C, the set of premises of the proof. Otherwise an
|
||||
error is flagged.
|
||||
|
||||
Any premises of the proof not present in the pattern are
|
||||
treated as "background theory". Predicate and function symbols
|
||||
occurring in the background theory are treated as interpreted and
|
||||
thus always allowed in the interpolant.
|
||||
|
||||
Interpolant may not necessarily be computable from all
|
||||
proofs. To be sure an interpolant can be computed, the proof
|
||||
must be generated by an SMT solver for which interpoaltion is
|
||||
supported, and the premises must be expressed using only
|
||||
theories and operators for which interpolation is supported.
|
||||
|
||||
Currently, the only SMT solver that is supported is the legacy
|
||||
SMT solver. Such a solver is available as the default solver in
|
||||
#Z3_context objects produced by #Z3_mk_interpolation_context.
|
||||
Currently, the theories supported are equality with
|
||||
uninterpreted functions, linear integer arithmetic, and the
|
||||
theory of arrays (in SMT-LIB terms, this is AUFLIA).
|
||||
Quantifiers are allowed. Use of any other operators (including
|
||||
"labels") may result in failure to compute an interpolant from a
|
||||
proof.
|
||||
|
||||
Parameters:
|
||||
|
||||
\param c logical context.
|
||||
\param pf a refutation from premises (assertions) C
|
||||
\param pat an interpolation pattern over C
|
||||
\param p parameters
|
||||
|
||||
def_API('Z3_get_interpolant', AST_VECTOR, (_in(CONTEXT), _in(AST), _in(AST), _in(PARAMS)))
|
||||
*/
|
||||
|
||||
Z3_ast_vector Z3_API Z3_get_interpolant(__in Z3_context c, __in Z3_ast pf, __in Z3_ast pat, __in Z3_params p);
|
||||
|
||||
/* Compute an interpolant for an unsatisfiable conjunction of formulas.
|
||||
|
||||
This takes as an argument an interpolation pattern as in
|
||||
#Z3_get_interpolant. This is a conjunction, some subformulas of
|
||||
which are marked with the "interp" operator (see #Z3_mk_interp).
|
||||
|
||||
The conjunction is first checked for unsatisfiability. The result
|
||||
of this check is returned in the out parameter "status". If the result
|
||||
is unsat, an interpolant is computed from the refutation as in #Z3_get_interpolant
|
||||
and returned as a vector of formulas. Otherwise the return value is
|
||||
an empty formula.
|
||||
|
||||
See #Z3_get_interpolant for a discussion of supported theories.
|
||||
|
||||
The advantage of this function over #Z3_get_interpolant is that
|
||||
it is not necessary to create a suitable SMT solver and generate
|
||||
a proof. The disadvantage is that it is not possible to use the
|
||||
solver incrementally.
|
||||
|
||||
Parameters:
|
||||
|
||||
\param c logical context.
|
||||
\param pat an interpolation pattern
|
||||
\param p parameters for solver creation
|
||||
\param status returns the status of the sat check
|
||||
\param model returns model if satisfiable
|
||||
|
||||
Return value: status of SAT check
|
||||
|
||||
def_API('Z3_compute_interpolant', INT, (_in(CONTEXT), _in(AST), _in(PARAMS), _out(AST_VECTOR), _out(MODEL)))
|
||||
*/
|
||||
|
||||
Z3_lbool Z3_API Z3_compute_interpolant(__in Z3_context c, __in Z3_ast pat, __in Z3_params p, __out Z3_ast_vector *interp, __out Z3_model *model);
|
||||
|
||||
|
||||
/** Constant reprepresenting a root of a formula tree for tree interpolation */
|
||||
#define IZ3_ROOT SHRT_MAX
|
||||
|
||||
/** This function uses Z3 to determine satisfiability of a set of
|
||||
constraints. If UNSAT, an interpolant is returned, based on the
|
||||
refutation generated by Z3. If SAT, a model is returned.
|
||||
|
||||
If "parents" is non-null, computes a tree interpolant. The tree is
|
||||
defined by the array "parents". This array maps each formula in
|
||||
the tree to its parent, where formulas are indicated by their
|
||||
integer index in "cnsts". The parent of formula n must have index
|
||||
greater than n. The last formula is the root of the tree. Its
|
||||
parent entry should be the constant IZ3_ROOT.
|
||||
|
||||
If "parents" is null, computes a sequence interpolant.
|
||||
|
||||
\param ctx The Z3 context. Must be generated by iz3_mk_context
|
||||
\param num The number of constraints in the sequence
|
||||
\param cnsts Array of constraints (AST's in context ctx)
|
||||
\param parents The parents vector defining the tree structure
|
||||
\param options Interpolation options (may be NULL)
|
||||
\param interps Array to return interpolants (size at least num-1, may be NULL)
|
||||
\param model Returns a Z3 model if constraints SAT (may be NULL)
|
||||
\param labels Returns relevant labels if SAT (may be NULL)
|
||||
\param incremental
|
||||
|
||||
VERY IMPORTANT: All the Z3 formulas in cnsts must be in Z3
|
||||
context ctx. The model and interpolants returned are also
|
||||
in this context.
|
||||
|
||||
The return code is as in Z3_check_assumptions, that is,
|
||||
|
||||
Z3_L_FALSE = constraints UNSAT (interpolants returned)
|
||||
Z3_L_TRUE = constraints SAT (model returned)
|
||||
Z3_L_UNDEF = Z3 produced no result, or interpolation not possible
|
||||
|
||||
Currently, this function supports integer and boolean variables,
|
||||
as well as arrays over these types, with linear arithmetic,
|
||||
uninterpreted functions and quantifiers over integers (that is
|
||||
AUFLIA). Interpolants are produced in AUFLIA. However, some
|
||||
uses of array operations may cause quantifiers to appear in the
|
||||
interpolants even when there are no quantifiers in the input formulas.
|
||||
Although quantifiers may appear in the input formulas, Z3 may give up in
|
||||
this case, returning Z3_L_UNDEF.
|
||||
|
||||
If "incremental" is true, cnsts must contain exactly the set of
|
||||
formulas that are currently asserted in the context. If false,
|
||||
there must be no formulas currently asserted in the context.
|
||||
Setting "incremental" to true makes it posisble to incrementally
|
||||
add and remove constraints from the context until the context
|
||||
becomes UNSAT, at which point an interpolant is computed. Caution
|
||||
must be used, however. Before popping the context, if you wish to
|
||||
keep the interolant formulas, you *must* preserve them by using
|
||||
Z3_persist_ast. Also, if you want to simplify the interpolant
|
||||
formulas using Z3_simplify, you must first pop all of the
|
||||
assertions in the context (or use a different context). Otherwise,
|
||||
the formulas will be simplified *relative* to these constraints,
|
||||
which is almost certainly not what you want.
|
||||
|
||||
|
||||
Current limitations on tree interpolants. In a tree interpolation
|
||||
problem, each constant (0-ary function symbol) must occur only
|
||||
along one path from root to leaf. Function symbols (of arity > 0)
|
||||
are considered to have global scope (i.e., may appear in any
|
||||
interpolant formula).
|
||||
|
||||
|
||||
*/
|
||||
|
||||
|
||||
Z3_lbool Z3_API Z3_interpolate(__in Z3_context ctx,
|
||||
__in int num,
|
||||
__in_ecount(num) Z3_ast *cnsts,
|
||||
__in_ecount(num) unsigned *parents,
|
||||
__in Z3_params options,
|
||||
__out_ecount(num-1) Z3_ast *interps,
|
||||
__out Z3_model *model,
|
||||
__out Z3_literals *labels,
|
||||
__in int incremental,
|
||||
__in int num_theory,
|
||||
__in_ecount(num_theory) Z3_ast *theory);
|
||||
|
||||
/** Return a string summarizing cumulative time used for
|
||||
interpolation. This string is purely for entertainment purposes
|
||||
and has no semantics.
|
||||
|
||||
\param ctx The context (currently ignored)
|
||||
|
||||
def_API('Z3_interpolation_profile', STRING, (_in(CONTEXT),))
|
||||
*/
|
||||
|
||||
Z3_string Z3_API Z3_interpolation_profile(__in Z3_context ctx);
|
||||
|
||||
/**
|
||||
\brief Read an interpolation problem from file.
|
||||
|
||||
\param ctx The Z3 context. This resets the error handler of ctx.
|
||||
\param filename The file name to read.
|
||||
\param num Returns length of sequence.
|
||||
\param cnsts Returns sequence of formulas (do not free)
|
||||
\param parents Returns the parents vector (or NULL for sequence)
|
||||
\param error Returns an error message in case of failure (do not free the string)
|
||||
|
||||
Returns true on success.
|
||||
|
||||
File formats: Currently two formats are supported, based on
|
||||
SMT-LIB2. For sequence interpolants, the sequence of constraints is
|
||||
represented by the sequence of "assert" commands in the file.
|
||||
|
||||
For tree interpolants, one symbol of type bool is associated to
|
||||
each vertex of the tree. For each vertex v there is an "assert"
|
||||
of the form:
|
||||
|
||||
(implies (and c1 ... cn f) v)
|
||||
|
||||
where c1 .. cn are the children of v (which must precede v in the file)
|
||||
and f is the formula assiciated to node v. The last formula in the
|
||||
file is the root vertex, and is represented by the predicate "false".
|
||||
|
||||
A solution to a tree interpolation problem can be thought of as a
|
||||
valuation of the vertices that makes all the implications true
|
||||
where each value is represented using the common symbols between
|
||||
the formulas in the subtree and the remainder of the formulas.
|
||||
|
||||
*/
|
||||
|
||||
|
||||
int Z3_API Z3_read_interpolation_problem(__in Z3_context ctx,
|
||||
__out int *num,
|
||||
__out_ecount(*num) Z3_ast **cnsts,
|
||||
__out_ecount(*num) int **parents,
|
||||
__in const char *filename,
|
||||
__out const char **error,
|
||||
__out int *num_theory,
|
||||
__out_ecount(*num_theory) Z3_ast **theory);
|
||||
|
||||
|
||||
|
||||
/** Check the correctness of an interpolant. The Z3 context must
|
||||
have no constraints asserted when this call is made. That means
|
||||
that after interpolating, you must first fully pop the Z3
|
||||
context before calling this. See Z3_interpolate for meaning of parameters.
|
||||
|
||||
\param ctx The Z3 context. Must be generated by Z3_mk_interpolation_context
|
||||
\param num The number of constraints in the sequence
|
||||
\param cnsts Array of constraints (AST's in context ctx)
|
||||
\param parents The parents vector (or NULL for sequence)
|
||||
\param interps The interpolant to check
|
||||
\param error Returns an error message if interpolant incorrect (do not free the string)
|
||||
|
||||
Return value is Z3_L_TRUE if interpolant is verified, Z3_L_FALSE if
|
||||
incorrect, and Z3_L_UNDEF if unknown.
|
||||
|
||||
*/
|
||||
|
||||
int Z3_API Z3_check_interpolant(Z3_context ctx, int num, Z3_ast *cnsts, int *parents, Z3_ast *interps, const char **error,
|
||||
int num_theory, Z3_ast *theory);
|
||||
|
||||
/** Write an interpolation problem to file suitable for reading with
|
||||
Z3_read_interpolation_problem. The output file is a sequence
|
||||
of SMT-LIB2 format commands, suitable for reading with command-line Z3
|
||||
or other interpolating solvers.
|
||||
|
||||
\param ctx The Z3 context. Must be generated by z3_mk_interpolation_context
|
||||
\param num The number of constraints in the sequence
|
||||
\param cnsts Array of constraints
|
||||
\param parents The parents vector (or NULL for sequence)
|
||||
\param filename The file name to write
|
||||
|
||||
*/
|
||||
|
||||
void Z3_API Z3_write_interpolation_problem(Z3_context ctx,
|
||||
int num,
|
||||
Z3_ast *cnsts,
|
||||
int *parents,
|
||||
const char *filename,
|
||||
int num_theory,
|
||||
Z3_ast *theory);
|
||||
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
|
359
src/api/z3_interp.h
Normal file
359
src/api/z3_interp.h
Normal file
|
@ -0,0 +1,359 @@
|
|||
/*++
|
||||
Copyright (c) 2014 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
z3_interp.h
|
||||
|
||||
Abstract:
|
||||
|
||||
API for interpolation
|
||||
|
||||
Author:
|
||||
|
||||
Kenneth McMillan (kenmcmil)
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
#ifndef _Z3_INTERPOLATION_H_
|
||||
#define _Z3_INTERPOLATION_H_
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif // __cplusplus
|
||||
|
||||
/**
|
||||
@name Interpolation
|
||||
*/
|
||||
/*@{*/
|
||||
|
||||
/**
|
||||
\brief \mlh mk_interp c a \endmlh
|
||||
Create an AST node marking a formula position for interpolation.
|
||||
|
||||
The node \c a must have Boolean sort.
|
||||
|
||||
def_API('Z3_mk_interpolant', AST, (_in(CONTEXT), _in(AST)))
|
||||
*/
|
||||
Z3_ast Z3_API Z3_mk_interpolant(__in Z3_context c, __in Z3_ast a);
|
||||
|
||||
|
||||
/** \brief This function generates a Z3 context suitable for generation of
|
||||
interpolants. Formulas can be generated as abstract syntax trees in
|
||||
this context using the Z3 C API.
|
||||
|
||||
Interpolants are also generated as AST's in this context.
|
||||
|
||||
If cfg is non-null, it will be used as the base configuration
|
||||
for the Z3 context. This makes it possible to set Z3 options
|
||||
to be used during interpolation. This feature should be used
|
||||
with some caution however, as it may be that certain Z3 options
|
||||
are incompatible with interpolation.
|
||||
|
||||
def_API('Z3_mk_interpolation_context', CONTEXT, (_in(CONFIG),))
|
||||
|
||||
*/
|
||||
|
||||
Z3_context Z3_API Z3_mk_interpolation_context(__in Z3_config cfg);
|
||||
|
||||
/** Compute an interpolant from a refutation. This takes a proof of
|
||||
"false" from a set of formulas C, and an interpolation
|
||||
pattern. The pattern pat is a formula combining the formulas in C
|
||||
using logical conjunction and the "interp" operator (see
|
||||
#Z3_mk_interpolant). This interp operator is logically the identity
|
||||
operator. It marks the sub-formulas of the pattern for which interpolants should
|
||||
be computed. The interpolant is a map sigma from marked subformulas to
|
||||
formulas, such that, for each marked subformula phi of pat (where phi sigma
|
||||
is phi with sigma(psi) substituted for each subformula psi of phi such that
|
||||
psi in dom(sigma)):
|
||||
|
||||
1) phi sigma implies sigma(phi), and
|
||||
|
||||
2) sigma(phi) is in the common uninterpreted vocabulary between
|
||||
the formulas of C occurring in phi and those not occurring in
|
||||
phi
|
||||
|
||||
and moreover pat sigma implies false. In the simplest case
|
||||
an interpolant for the pattern "(and (interp A) B)" maps A
|
||||
to an interpolant for A /\ B.
|
||||
|
||||
The return value is a vector of formulas representing sigma. The
|
||||
vector contains sigma(phi) for each marked subformula of pat, in
|
||||
pre-order traversal. This means that subformulas of phi occur before phi
|
||||
in the vector. Also, subformulas that occur multiply in pat will
|
||||
occur multiply in the result vector.
|
||||
|
||||
In particular, calling Z3_get_interpolant on a pattern of the
|
||||
form (interp ... (interp (and (interp A_1) A_2)) ... A_N) will
|
||||
result in a sequence interpolant for A_1, A_2,... A_N.
|
||||
|
||||
Neglecting interp markers, the pattern must be a conjunction of
|
||||
formulas in C, the set of premises of the proof. Otherwise an
|
||||
error is flagged.
|
||||
|
||||
Any premises of the proof not present in the pattern are
|
||||
treated as "background theory". Predicate and function symbols
|
||||
occurring in the background theory are treated as interpreted and
|
||||
thus always allowed in the interpolant.
|
||||
|
||||
Interpolant may not necessarily be computable from all
|
||||
proofs. To be sure an interpolant can be computed, the proof
|
||||
must be generated by an SMT solver for which interpoaltion is
|
||||
supported, and the premises must be expressed using only
|
||||
theories and operators for which interpolation is supported.
|
||||
|
||||
Currently, the only SMT solver that is supported is the legacy
|
||||
SMT solver. Such a solver is available as the default solver in
|
||||
#Z3_context objects produced by #Z3_mk_interpolation_context.
|
||||
Currently, the theories supported are equality with
|
||||
uninterpreted functions, linear integer arithmetic, and the
|
||||
theory of arrays (in SMT-LIB terms, this is AUFLIA).
|
||||
Quantifiers are allowed. Use of any other operators (including
|
||||
"labels") may result in failure to compute an interpolant from a
|
||||
proof.
|
||||
|
||||
Parameters:
|
||||
|
||||
\param c logical context.
|
||||
\param pf a refutation from premises (assertions) C
|
||||
\param pat an interpolation pattern over C
|
||||
\param p parameters
|
||||
|
||||
def_API('Z3_get_interpolant', AST_VECTOR, (_in(CONTEXT), _in(AST), _in(AST), _in(PARAMS)))
|
||||
*/
|
||||
|
||||
Z3_ast_vector Z3_API Z3_get_interpolant(__in Z3_context c, __in Z3_ast pf, __in Z3_ast pat, __in Z3_params p);
|
||||
|
||||
/* Compute an interpolant for an unsatisfiable conjunction of formulas.
|
||||
|
||||
This takes as an argument an interpolation pattern as in
|
||||
#Z3_get_interpolant. This is a conjunction, some subformulas of
|
||||
which are marked with the "interp" operator (see #Z3_mk_interpolant).
|
||||
|
||||
The conjunction is first checked for unsatisfiability. The result
|
||||
of this check is returned in the out parameter "status". If the result
|
||||
is unsat, an interpolant is computed from the refutation as in #Z3_get_interpolant
|
||||
and returned as a vector of formulas. Otherwise the return value is
|
||||
an empty formula.
|
||||
|
||||
See #Z3_get_interpolant for a discussion of supported theories.
|
||||
|
||||
The advantage of this function over #Z3_get_interpolant is that
|
||||
it is not necessary to create a suitable SMT solver and generate
|
||||
a proof. The disadvantage is that it is not possible to use the
|
||||
solver incrementally.
|
||||
|
||||
Parameters:
|
||||
|
||||
\param c logical context.
|
||||
\param pat an interpolation pattern
|
||||
\param p parameters for solver creation
|
||||
\param status returns the status of the sat check
|
||||
\param model returns model if satisfiable
|
||||
|
||||
Return value: status of SAT check
|
||||
|
||||
def_API('Z3_compute_interpolant', INT, (_in(CONTEXT), _in(AST), _in(PARAMS), _out(AST_VECTOR), _out(MODEL)))
|
||||
*/
|
||||
|
||||
Z3_lbool Z3_API Z3_compute_interpolant(__in Z3_context c,
|
||||
__in Z3_ast pat,
|
||||
__in Z3_params p,
|
||||
__out Z3_ast_vector *interp,
|
||||
__out Z3_model *model);
|
||||
|
||||
|
||||
/** Constant reprepresenting a root of a formula tree for tree interpolation */
|
||||
#define IZ3_ROOT SHRT_MAX
|
||||
|
||||
/** This function uses Z3 to determine satisfiability of a set of
|
||||
constraints. If UNSAT, an interpolant is returned, based on the
|
||||
refutation generated by Z3. If SAT, a model is returned.
|
||||
|
||||
If "parents" is non-null, computes a tree interpolant. The tree is
|
||||
defined by the array "parents". This array maps each formula in
|
||||
the tree to its parent, where formulas are indicated by their
|
||||
integer index in "cnsts". The parent of formula n must have index
|
||||
greater than n. The last formula is the root of the tree. Its
|
||||
parent entry should be the constant IZ3_ROOT.
|
||||
|
||||
If "parents" is null, computes a sequence interpolant.
|
||||
|
||||
\param ctx The Z3 context. Must be generated by iz3_mk_context
|
||||
\param num The number of constraints in the sequence
|
||||
\param cnsts Array of constraints (AST's in context ctx)
|
||||
\param parents The parents vector defining the tree structure
|
||||
\param options Interpolation options (may be NULL)
|
||||
\param interps Array to return interpolants (size at least num-1, may be NULL)
|
||||
\param model Returns a Z3 model if constraints SAT (may be NULL)
|
||||
\param labels Returns relevant labels if SAT (may be NULL)
|
||||
\param incremental
|
||||
|
||||
VERY IMPORTANT: All the Z3 formulas in cnsts must be in Z3
|
||||
context ctx. The model and interpolants returned are also
|
||||
in this context.
|
||||
|
||||
The return code is as in Z3_check_assumptions, that is,
|
||||
|
||||
Z3_L_FALSE = constraints UNSAT (interpolants returned)
|
||||
Z3_L_TRUE = constraints SAT (model returned)
|
||||
Z3_L_UNDEF = Z3 produced no result, or interpolation not possible
|
||||
|
||||
Currently, this function supports integer and boolean variables,
|
||||
as well as arrays over these types, with linear arithmetic,
|
||||
uninterpreted functions and quantifiers over integers (that is
|
||||
AUFLIA). Interpolants are produced in AULIA. However, some
|
||||
uses of array operations may cause quantifiers to appear in the
|
||||
interpolants even when there are no quantifiers in the input formulas.
|
||||
Although quantifiers may appear in the input formulas, Z3 may give up in
|
||||
this case, returning Z3_L_UNDEF.
|
||||
|
||||
If "incremental" is true, cnsts must contain exactly the set of
|
||||
formulas that are currently asserted in the context. If false,
|
||||
there must be no formulas currently asserted in the context.
|
||||
Setting "incremental" to true makes it posisble to incrementally
|
||||
add and remove constraints from the context until the context
|
||||
becomes UNSAT, at which point an interpolant is computed. Caution
|
||||
must be used, however. Before popping the context, if you wish to
|
||||
keep the interolant formulas, you *must* preserve them by using
|
||||
Z3_persist_ast. Also, if you want to simplify the interpolant
|
||||
formulas using Z3_simplify, you must first pop all of the
|
||||
assertions in the context (or use a different context). Otherwise,
|
||||
the formulas will be simplified *relative* to these constraints,
|
||||
which is almost certainly not what you want.
|
||||
|
||||
|
||||
Current limitations on tree interpolants. In a tree interpolation
|
||||
problem, each constant (0-ary function symbol) must occur only
|
||||
along one path from root to leaf. Function symbols (of arity > 0)
|
||||
are considered to have global scope (i.e., may appear in any
|
||||
interpolant formula).
|
||||
|
||||
def_API('Z3_interpolate', BOOL, (_in(CONTEXT), _in(UINT), _in_array(1, AST), _in_array(1, UINT), _in(PARAMS), _out_array(1, AST), _out(MODEL), _out(LITERALS), _in(UINT), _in(UINT), _in_array(9, AST)))
|
||||
*/
|
||||
|
||||
Z3_lbool Z3_API Z3_interpolate(__in Z3_context ctx,
|
||||
__in unsigned num,
|
||||
__in_ecount(num) Z3_ast *cnsts,
|
||||
__in_ecount(num) unsigned *parents,
|
||||
__in Z3_params options,
|
||||
__out_ecount(num - 1) Z3_ast *interps,
|
||||
__out Z3_model *model,
|
||||
__out Z3_literals *labels,
|
||||
__in unsigned incremental,
|
||||
__in unsigned num_theory,
|
||||
__in_ecount(num_theory) Z3_ast *theory);
|
||||
|
||||
/** Return a string summarizing cumulative time used for
|
||||
interpolation. This string is purely for entertainment purposes
|
||||
and has no semantics.
|
||||
|
||||
\param ctx The context (currently ignored)
|
||||
|
||||
|
||||
def_API('Z3_interpolation_profile', STRING, (_in(CONTEXT),))
|
||||
*/
|
||||
|
||||
Z3_string Z3_API Z3_interpolation_profile(__in Z3_context ctx);
|
||||
|
||||
/**
|
||||
\brief Read an interpolation problem from file.
|
||||
|
||||
\param ctx The Z3 context. This resets the error handler of ctx.
|
||||
\param filename The file name to read.
|
||||
\param num Returns length of sequence.
|
||||
\param cnsts Returns sequence of formulas (do not free)
|
||||
\param parents Returns the parents vector (or NULL for sequence)
|
||||
\param error Returns an error message in case of failure (do not free the string)
|
||||
|
||||
Returns true on success.
|
||||
|
||||
File formats: Currently two formats are supported, based on
|
||||
SMT-LIB2. For sequence interpolants, the sequence of constraints is
|
||||
represented by the sequence of "assert" commands in the file.
|
||||
|
||||
For tree interpolants, one symbol of type bool is associated to
|
||||
each vertex of the tree. For each vertex v there is an "assert"
|
||||
of the form:
|
||||
|
||||
(implies (and c1 ... cn f) v)
|
||||
|
||||
where c1 .. cn are the children of v (which must precede v in the file)
|
||||
and f is the formula assiciated to node v. The last formula in the
|
||||
file is the root vertex, and is represented by the predicate "false".
|
||||
|
||||
A solution to a tree interpolation problem can be thought of as a
|
||||
valuation of the vertices that makes all the implications true
|
||||
where each value is represented using the common symbols between
|
||||
the formulas in the subtree and the remainder of the formulas.
|
||||
|
||||
def_API('Z3_read_interpolation_problem', INT, (_in(CONTEXT), _out(UINT), _out_array(1, AST), _out_array(1, UINT_PTR), _in(STRING), _out(STRING), _out(UINT), _out_array(6, AST)))
|
||||
|
||||
*/
|
||||
|
||||
int Z3_API Z3_read_interpolation_problem(__in Z3_context ctx,
|
||||
__out unsigned *num,
|
||||
__out_ecount(*num) Z3_ast **cnsts,
|
||||
__out_ecount(*num) unsigned **parents,
|
||||
__in Z3_string filename,
|
||||
__out Z3_string *error,
|
||||
__out unsigned *num_theory,
|
||||
__out_ecount(*num_theory) Z3_ast **theory);
|
||||
|
||||
|
||||
|
||||
/** Check the correctness of an interpolant. The Z3 context must
|
||||
have no constraints asserted when this call is made. That means
|
||||
that after interpolating, you must first fully pop the Z3
|
||||
context before calling this. See Z3_interpolate for meaning of parameters.
|
||||
|
||||
\param ctx The Z3 context. Must be generated by Z3_mk_interpolation_context
|
||||
\param num The number of constraints in the sequence
|
||||
\param cnsts Array of constraints (AST's in context ctx)
|
||||
\param parents The parents vector (or NULL for sequence)
|
||||
\param interps The interpolant to check
|
||||
\param error Returns an error message if interpolant incorrect (do not free the string)
|
||||
|
||||
Return value is Z3_L_TRUE if interpolant is verified, Z3_L_FALSE if
|
||||
incorrect, and Z3_L_UNDEF if unknown.
|
||||
|
||||
def_API('Z3_check_interpolant', INT, (_in(CONTEXT), _in(UINT), _in_array(1, AST), _in_array(1, UINT), _in_array(1, AST), _out(STRING), _in(UINT), _in_array(6, AST)))
|
||||
*/
|
||||
|
||||
int Z3_API Z3_check_interpolant(__in Z3_context ctx,
|
||||
__in unsigned num,
|
||||
__in_ecount(num) Z3_ast *cnsts,
|
||||
__in_ecount(num) unsigned *parents,
|
||||
__in_ecount(num - 1) Z3_ast *interps,
|
||||
__out Z3_string *error,
|
||||
__in unsigned num_theory,
|
||||
__in_ecount(num_theory) Z3_ast *theory);
|
||||
|
||||
/** Write an interpolation problem to file suitable for reading with
|
||||
Z3_read_interpolation_problem. The output file is a sequence
|
||||
of SMT-LIB2 format commands, suitable for reading with command-line Z3
|
||||
or other interpolating solvers.
|
||||
|
||||
\param ctx The Z3 context. Must be generated by z3_mk_interpolation_context
|
||||
\param num The number of constraints in the sequence
|
||||
\param cnsts Array of constraints
|
||||
\param parents The parents vector (or NULL for sequence)
|
||||
\param filename The file name to write
|
||||
|
||||
def_API('Z3_write_interpolation_problem', VOID, (_in(CONTEXT), _in(UINT), _in_array(1, AST), _in_array(1, UINT), _in(STRING), _in(UINT), _in_array(5, AST)))
|
||||
*/
|
||||
|
||||
void Z3_API Z3_write_interpolation_problem(__in Z3_context ctx,
|
||||
__in unsigned num,
|
||||
__in_ecount(num) Z3_ast *cnsts,
|
||||
__in_ecount(num) unsigned *parents,
|
||||
__in Z3_string filename,
|
||||
__in unsigned num_theory,
|
||||
__in_ecount(num_theory) Z3_ast *theory);
|
||||
|
||||
#ifdef __cplusplus
|
||||
};
|
||||
#endif // __cplusplus
|
||||
|
||||
#endif
|
Loading…
Reference in a new issue