3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 01:24:08 +00:00

Interpolation API: infrastructure fixes and .NET API

Signed-off-by: Christoph M. Wintersteiger <cwinter@microsoft.com>
This commit is contained in:
Christoph M. Wintersteiger 2014-10-08 21:01:27 +01:00
parent 4370d40dd8
commit b03a9d3f0a
15 changed files with 1223 additions and 949 deletions

View file

@ -75,7 +75,7 @@ def init_project_def():
# dll_name='foci2',
# export_files=['foci2stub.cpp'])
# add_lib('interp', ['solver','foci2'])
API_files = ['z3_api.h', 'z3_algebraic.h', 'z3_polynomial.h', 'z3_rcf.h']
API_files = ['z3_api.h', 'z3_algebraic.h', 'z3_polynomial.h', 'z3_rcf.h', 'z3_interp.h']
add_lib('api', ['portfolio', 'user_plugin', 'smtparser', 'realclosure', 'interp'],
includes2install=['z3.h', 'z3_v1.h', 'z3_macros.h'] + API_files)
add_exe('shell', ['api', 'sat', 'extra_cmds'], exe_name='z3')

View file

@ -123,6 +123,7 @@ SYMBOL = 9
PRINT_MODE = 10
ERROR_CODE = 11
DOUBLE = 12
UINT_PTR = 13
FIRST_OBJ_ID = 100
@ -131,28 +132,28 @@ def is_obj(ty):
Type2Str = { VOID : 'void', VOID_PTR : 'void*', INT : 'int', UINT : 'unsigned', INT64 : '__int64', UINT64 : '__uint64', DOUBLE : 'double',
STRING : 'Z3_string', STRING_PTR : 'Z3_string_ptr', BOOL : 'Z3_bool', SYMBOL : 'Z3_symbol',
PRINT_MODE : 'Z3_ast_print_mode', ERROR_CODE : 'Z3_error_code',
PRINT_MODE : 'Z3_ast_print_mode', ERROR_CODE : 'Z3_error_code', UINT_PTR : 'unsigned*'
}
Type2PyStr = { VOID_PTR : 'ctypes.c_void_p', INT : 'ctypes.c_int', UINT : 'ctypes.c_uint', INT64 : 'ctypes.c_longlong',
UINT64 : 'ctypes.c_ulonglong', DOUBLE : 'ctypes.c_double',
STRING : 'ctypes.c_char_p', STRING_PTR : 'ctypes.POINTER(ctypes.c_char_p)', BOOL : 'ctypes.c_bool', SYMBOL : 'Symbol',
PRINT_MODE : 'ctypes.c_uint', ERROR_CODE : 'ctypes.c_uint',
PRINT_MODE : 'ctypes.c_uint', ERROR_CODE : 'ctypes.c_uint', UINT_PTR : 'ctypes.POINTER(ctypes.c_uint)'
}
# Mapping to .NET types
Type2Dotnet = { VOID : 'void', VOID_PTR : 'IntPtr', INT : 'int', UINT : 'uint', INT64 : 'Int64', UINT64 : 'UInt64', DOUBLE : 'double',
STRING : 'string', STRING_PTR : 'byte**', BOOL : 'int', SYMBOL : 'IntPtr',
PRINT_MODE : 'uint', ERROR_CODE : 'uint' }
PRINT_MODE : 'uint', ERROR_CODE : 'uint', UINT_PTR : 'uint[]'}
# Mapping to Java types
Type2Java = { VOID : 'void', VOID_PTR : 'long', INT : 'int', UINT : 'int', INT64 : 'long', UINT64 : 'long', DOUBLE : 'double',
STRING : 'String', STRING_PTR : 'StringPtr',
BOOL : 'boolean', SYMBOL : 'long', PRINT_MODE : 'int', ERROR_CODE : 'int' }
BOOL : 'boolean', SYMBOL : 'long', PRINT_MODE : 'int', ERROR_CODE : 'int', UINT_PTR : 'int[]'}
Type2JavaW = { VOID : 'void', VOID_PTR : 'jlong', INT : 'jint', UINT : 'jint', INT64 : 'jlong', UINT64 : 'jlong', DOUBLE : 'jdouble',
STRING : 'jstring', STRING_PTR : 'jobject',
BOOL : 'jboolean', SYMBOL : 'jlong', PRINT_MODE : 'jint', ERROR_CODE : 'jint' }
BOOL : 'jboolean', SYMBOL : 'jlong', PRINT_MODE : 'jint', ERROR_CODE : 'jint', UINT_PTR : 'jlong'}
next_type_id = FIRST_OBJ_ID
@ -259,7 +260,7 @@ def param2dotnet(p):
if k == INOUT_ARRAY:
return "[In, Out] %s[]" % type2dotnet(param_type(p))
if k == OUT_ARRAY:
return "[Out] %s[]" % type2dotnet(param_type(p))
return "[Out] out %s[]" % type2dotnet(param_type(p))
else:
return type2dotnet(param_type(p))
@ -466,6 +467,8 @@ def mk_dotnet_wrappers():
dotnet.write('out ');
else:
dotnet.write('ref ')
elif param_kind(param) == OUT_ARRAY:
dotnet.write('out ');
dotnet.write('a%d' % i)
i = i + 1
dotnet.write(');\n');
@ -953,20 +956,33 @@ def def_API(name, result, params):
log_c.write(" Au(a%s);\n" % sz)
exe_c.write("in.get_uint_array(%s)" % i)
else:
error ("unsupported parameter for %s, %s" % (name, p))
error ("unsupported parameter for %s, %s" % (ty, name, p))
elif kind == OUT_ARRAY:
sz = param_array_capacity_pos(p)
log_c.write(" for (unsigned i = 0; i < a%s; i++) { " % sz)
sz_p = params[sz]
sz_p_k = param_kind(sz_p)
tstr = type2str(ty)
if sz_p_k == OUT or sz_p_k == INOUT:
sz_e = ("(*a%s)" % sz)
tstr = tstr + '*'
else:
sz_e = ("a%s" % sz)
log_c.write(" for (unsigned i = 0; i < %s; i++) { " % sz_e)
if is_obj(ty):
log_c.write("P(0);")
log_c.write(" }\n")
log_c.write(" Ap(a%s);\n" % sz)
exe_c.write("reinterpret_cast<%s*>(in.get_obj_array(%s))" % (type2str(ty), i))
log_c.write(" Ap(%s);\n" % sz_e)
exe_c.write("reinterpret_cast<%s*>(in.get_obj_array(%s))" % (tstr, i))
elif ty == UINT:
log_c.write("U(0);")
log_c.write(" }\n")
log_c.write(" Au(a%s);\n" % sz)
log_c.write(" Au(%s);\n" % sz_e)
exe_c.write("in.get_uint_array(%s)" % i)
elif ty == UINT_PTR:
log_c.write("P(0);")
log_c.write(" }\n")
log_c.write(" Ap(%s);\n" % sz_e)
exe_c.write("reinterpret_cast<%s>(in.get_obj_array(%s))" % (tstr, i))
else:
error ("unsupported parameter for %s, %s" % (name, p))
else:

View file

@ -208,7 +208,7 @@ extern "C" {
MK_BINARY(Z3_mk_xor, mk_c(c)->get_basic_fid(), OP_XOR, SKIP);
MK_NARY(Z3_mk_and, mk_c(c)->get_basic_fid(), OP_AND, SKIP);
MK_NARY(Z3_mk_or, mk_c(c)->get_basic_fid(), OP_OR, SKIP);
MK_UNARY(Z3_mk_interp, mk_c(c)->get_basic_fid(), OP_INTERP, SKIP);
MK_UNARY(Z3_mk_interpolant, mk_c(c)->get_basic_fid(), OP_INTERP, SKIP);
Z3_ast mk_ite_core(Z3_context c, Z3_ast t1, Z3_ast t2, Z3_ast t3) {
expr * result = mk_c(c)->m().mk_ite(to_expr(t1), to_expr(t2), to_expr(t3));

File diff suppressed because it is too large Load diff

View file

@ -50,7 +50,7 @@ namespace Microsoft.Z3
IntPtr constructor = IntPtr.Zero;
IntPtr tester = IntPtr.Zero;
IntPtr[] accessors = new IntPtr[n];
Native.Z3_query_constructor(Context.nCtx, NativeObject, n, ref constructor, ref tester, accessors);
Native.Z3_query_constructor(Context.nCtx, NativeObject, n, ref constructor, ref tester, out accessors);
return new FuncDecl(Context, constructor);
}
}
@ -66,7 +66,7 @@ namespace Microsoft.Z3
IntPtr constructor = IntPtr.Zero;
IntPtr tester = IntPtr.Zero;
IntPtr[] accessors = new IntPtr[n];
Native.Z3_query_constructor(Context.nCtx, NativeObject, n, ref constructor, ref tester, accessors);
Native.Z3_query_constructor(Context.nCtx, NativeObject, n, ref constructor, ref tester, out accessors);
return new FuncDecl(Context, tester);
}
}
@ -82,7 +82,7 @@ namespace Microsoft.Z3
IntPtr constructor = IntPtr.Zero;
IntPtr tester = IntPtr.Zero;
IntPtr[] accessors = new IntPtr[n];
Native.Z3_query_constructor(Context.nCtx, NativeObject, n, ref constructor, ref tester, accessors);
Native.Z3_query_constructor(Context.nCtx, NativeObject, n, ref constructor, ref tester, out accessors);
FuncDecl[] t = new FuncDecl[n];
for (uint i = 0; i < n; i++)
t[i] = new FuncDecl(Context, accessors[i]);

View file

@ -424,7 +424,7 @@ namespace Microsoft.Z3
n_constr[i] = cla[i].NativeObject;
}
IntPtr[] n_res = new IntPtr[n];
Native.Z3_mk_datatypes(nCtx, n, Symbol.ArrayToNative(names), n_res, n_constr);
Native.Z3_mk_datatypes(nCtx, n, Symbol.ArrayToNative(names), out n_res, n_constr);
DatatypeSort[] res = new DatatypeSort[n];
for (uint i = 0; i < n; i++)
res[i] = new DatatypeSort(this, n_res[i]);

View file

@ -88,7 +88,7 @@ namespace Microsoft.Z3
IntPtr[] n_constdecls = new IntPtr[n];
IntPtr[] n_testers = new IntPtr[n];
NativeObject = Native.Z3_mk_enumeration_sort(ctx.nCtx, name.NativeObject, (uint)n,
Symbol.ArrayToNative(enumNames), n_constdecls, n_testers);
Symbol.ArrayToNative(enumNames), out n_constdecls, out n_testers);
}
#endregion
};

View file

@ -323,6 +323,14 @@ namespace Microsoft.Z3
#endregion
#region Interpolation
/// <summary>
/// Indicates whether the term is marked for interpolation.
/// </summary>
/// <remarks></remarks>
public bool IsInterpolant { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_INTERP; } }
#endregion
#region Arithmetic Terms
/// <summary>
/// Indicates whether the term is of integer sort.
@ -791,7 +799,7 @@ namespace Microsoft.Z3
/// </summary>
/// <remarks>A label literal has a set of string parameters. It takes no arguments.</remarks>
public bool IsLabelLit { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LABEL_LIT; } }
#endregion
#endregion
#region Proof Terms
/// <summary>

View file

@ -0,0 +1,206 @@
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Diagnostics.Contracts;
using System.Runtime.InteropServices;
namespace Microsoft.Z3
{
/// <summary>
/// The InterpolationContext is suitable for generation of interpolants.
/// </summary>
/// <remarks>For more information on interpolation please refer
/// too the C/C++ API, which is well documented.</remarks>
[ContractVerification(true)]
class InterpolationContext : Context
{
/// <summary>
/// Constructor.
/// </summary>
public InterpolationContext() : base() { }
/// <summary>
/// Constructor.
/// </summary>
/// <remarks><seealso cref="Context.Context(Dictionary&lt;string, string&gt;)"/></remarks>
public InterpolationContext(Dictionary<string, string> settings) : base(settings) { }
#region Terms
/// <summary>
/// Create an expression that marks a formula position for interpolation.
/// </summary>
public BoolExpr MkInterpolant(BoolExpr a)
{
Contract.Requires(a != null);
Contract.Ensures(Contract.Result<BoolExpr>() != null);
CheckContextMatch(a);
return new BoolExpr(this, Native.Z3_mk_interpolant(nCtx, a.NativeObject));
}
#endregion
/// <summary>
/// Computes an interpolant.
/// </summary>
/// <remarks>For more information on interpolation please refer
/// too the function Z3_get_interpolant in the C/C++ API, which is
/// well documented.</remarks>
Expr[] GetInterpolant(Expr pf, Expr pat, Params p)
{
Contract.Requires(pf != null);
Contract.Requires(pat != null);
Contract.Requires(p != null);
Contract.Ensures(Contract.Result<Expr>() != null);
CheckContextMatch(pf);
CheckContextMatch(pat);
CheckContextMatch(p);
ASTVector seq = new ASTVector(this, Native.Z3_get_interpolant(nCtx, pf.NativeObject, pat.NativeObject, p.NativeObject));
uint n = seq.Size;
Expr[] res = new Expr[n];
for (uint i = 0; i < n; i++)
res[i] = Expr.Create(this, seq[i].NativeObject);
return res;
}
/// <summary>
/// Computes an interpolant.
/// </summary>
/// <remarks>For more information on interpolation please refer
/// too the function Z3_compute_interpolant in the C/C++ API, which is
/// well documented.</remarks>
Z3_lbool ComputeInterpolant(Expr pat, Params p, out ASTVector interp, out Model model)
{
Contract.Requires(pat != null);
Contract.Requires(p != null);
Contract.Ensures(Contract.ValueAtReturn(out interp) != null);
Contract.Ensures(Contract.ValueAtReturn(out model) != null);
CheckContextMatch(pat);
CheckContextMatch(p);
IntPtr i = IntPtr.Zero, m = IntPtr.Zero;
int r = Native.Z3_compute_interpolant(nCtx, pat.NativeObject, p.NativeObject, ref i, ref m);
interp = new ASTVector(this, i);
model = new Model(this, m);
return (Z3_lbool)r;
}
/// <summary>
/// Computes an interpolant.
/// </summary>
/// <remarks>For more information on interpolation please refer
/// too the function Z3_compute_interpolant in the C/C++ API, which is
/// well documented.</remarks>
Z3_lbool Interpolate(Expr[] cnsts, uint[] parents, Params options, bool incremental, Expr[] theory, out Expr[] interps, out Model model)
{
Contract.Requires(cnsts != null);
Contract.Requires(parents != null);
Contract.Requires(cnsts.Length == parents.Length);
Contract.Ensures(Contract.ValueAtReturn(out interps) != null);
Contract.Ensures(Contract.ValueAtReturn(out model) != null);
CheckContextMatch(cnsts);
CheckContextMatch(theory);
uint sz = (uint)cnsts.Length;
IntPtr[] ni = new IntPtr[sz - 1];
IntPtr nm = IntPtr.Zero;
IntPtr z = IntPtr.Zero;
int r = Native.Z3_interpolate(nCtx,
sz, Expr.ArrayToNative(cnsts), parents,
options.NativeObject,
out ni,
ref nm,
ref z, // Z3_lterals are deprecated.
(uint)(incremental ? 1 : 0),
(uint)theory.Length, Expr.ArrayToNative(theory));
interps = new Expr[sz - 1];
for (uint i = 0; i < sz - 1; i++)
interps[i] = Expr.Create(this, ni[i]);
model = new Model(this, nm);
return (Z3_lbool)r;
}
/// <summary>
/// Return a string summarizing cumulative time used for interpolation.
/// </summary>
/// <remarks>For more information on interpolation please refer
/// too the function Z3_interpolation_profile in the C/C++ API, which is
/// well documented.</remarks>
public string InterpolationProfile()
{
return Native.Z3_interpolation_profile(nCtx);
}
/// <summary>
/// Checks the correctness of an interpolant.
/// </summary>
/// <remarks>For more information on interpolation please refer
/// too the function Z3_check_interpolant in the C/C++ API, which is
/// well documented.</remarks>
public int CheckInterpolant(Expr[] cnsts, uint[] parents, Expr[] interps, out string error, Expr[] theory)
{
Contract.Requires(cnsts.Length == parents.Length);
Contract.Requires(cnsts.Length == interps.Length+1);
IntPtr n_err_str;
int r = Native.Z3_check_interpolant(nCtx,
(uint)cnsts.Length,
Expr.ArrayToNative(cnsts),
parents,
Expr.ArrayToNative(interps),
out n_err_str,
(uint)theory.Length,
Expr.ArrayToNative(theory));
error = Marshal.PtrToStringAnsi(n_err_str);
return r;
}
/// <summary>
/// Reads an interpolation problem from a file.
/// </summary>
/// <remarks>For more information on interpolation please refer
/// too the function Z3_read_interpolation_problem in the C/C++ API, which is
/// well documented.</remarks>
public int ReadInterpolationProblem(string filename, out Expr[] cnsts, out uint[] parents, out string error, out Expr[] theory)
{
uint num = 0, num_theory = 0;
IntPtr[] n_cnsts;
IntPtr[] n_theory;
IntPtr n_err_str;
uint[][] n_parents;
int r = Native.Z3_read_interpolation_problem(nCtx, ref num, out n_cnsts, out n_parents, filename, out n_err_str, ref num_theory, out n_theory);
error = Marshal.PtrToStringAnsi(n_err_str);
cnsts = new Expr[num];
parents = new uint[num];
theory = new Expr[num_theory];
for (int i = 0; i < num; i++)
{
cnsts[i] = Expr.Create(this, n_cnsts[i]);
parents[i] = n_parents[0][i];
}
for (int i = 0; i < num_theory; i++)
theory[i] = Expr.Create(this, n_theory[i]);
return r;
}
/// <summary>
/// Writes an interpolation problem to a file.
/// </summary>
/// <remarks>For more information on interpolation please refer
/// too the function Z3_write_interpolation_problem in the C/C++ API, which is
/// well documented.</remarks>
public void WriteInterpolationProblem(string filename, Expr[] cnsts, int[] parents, string error, Expr[] theory)
{
Contract.Requires(cnsts.Length == parents.Length);
}
}
}

View file

@ -19,12 +19,12 @@
<DebugSymbols>true</DebugSymbols>
<DebugType>full</DebugType>
<Optimize>false</Optimize>
<OutputPath>..\Debug\</OutputPath>
<OutputPath>..\..\..\..\..\cwinter\bugs\z3bugs\Debug\</OutputPath>
<DefineConstants>DEBUG;TRACE</DefineConstants>
<ErrorReport>prompt</ErrorReport>
<WarningLevel>4</WarningLevel>
<AllowUnsafeBlocks>true</AllowUnsafeBlocks>
<DocumentationFile>..\Debug\Microsoft.Z3.XML</DocumentationFile>
<DocumentationFile>C:\cwinter\bugs\z3bugs\Debug\Microsoft.Z3.XML</DocumentationFile>
<CodeContractsEnableRuntimeChecking>False</CodeContractsEnableRuntimeChecking>
<CodeContractsRuntimeOnlyPublicSurface>False</CodeContractsRuntimeOnlyPublicSurface>
<CodeContractsRuntimeThrowOnFailure>True</CodeContractsRuntimeThrowOnFailure>
@ -254,7 +254,7 @@
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)' == 'Debug|x86'">
<DebugSymbols>true</DebugSymbols>
<OutputPath>bin\x86\Debug\</OutputPath>
<OutputPath>..\..\..\..\..\cwinter\bugs\z3bugs\Debug\</OutputPath>
<DefineConstants>DEBUG;TRACE</DefineConstants>
<AllowUnsafeBlocks>true</AllowUnsafeBlocks>
<DebugType>full</DebugType>
@ -266,7 +266,7 @@
<CodeAnalysisRuleSet>MinimumRecommendedRules.ruleset</CodeAnalysisRuleSet>
<CodeAnalysisRuleSetDirectories>;C:\Program Files (x86)\Microsoft Visual Studio 10.0\Team Tools\Static Analysis Tools\\Rule Sets</CodeAnalysisRuleSetDirectories>
<CodeAnalysisRuleDirectories>;C:\Program Files (x86)\Microsoft Visual Studio 10.0\Team Tools\Static Analysis Tools\FxCop\\Rules</CodeAnalysisRuleDirectories>
<DocumentationFile>bin\x86\Debug\Microsoft.Z3.XML</DocumentationFile>
<DocumentationFile>C:\cwinter\bugs\z3bugs\Debug\Microsoft.Z3.XML</DocumentationFile>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)' == 'Release|x86'">
<OutputPath>bin\x86\Release\</OutputPath>
@ -352,6 +352,7 @@
<Compile Include="FuncDecl.cs" />
<Compile Include="FuncInterp.cs" />
<Compile Include="Goal.cs" />
<Compile Include="InterpolationContext.cs" />
<Compile Include="IntExpr.cs" />
<Compile Include="IntNum.cs" />
<Compile Include="IntSort.cs" />

View file

@ -74,9 +74,10 @@ namespace Microsoft.Z3
Contract.Requires(name != null);
IntPtr t = IntPtr.Zero;
IntPtr[] f;
NativeObject = Native.Z3_mk_tuple_sort(ctx.nCtx, name.NativeObject, numFields,
Symbol.ArrayToNative(fieldNames), AST.ArrayToNative(fieldSorts),
ref t, new IntPtr[numFields]);
ref t, out f);
}
#endregion
};

View file

@ -7253,19 +7253,19 @@ def parse_smt2_file(f, sorts={}, decls={}, ctx=None):
dsz, dnames, ddecls = _dict2darray(decls, ctx)
return _to_expr_ref(Z3_parse_smtlib2_file(ctx.ref(), f, ssz, snames, ssorts, dsz, dnames, ddecls), ctx)
def Interp(a,ctx=None):
def Interpolant(a,ctx=None):
"""Create an interpolation operator.
The argument is an interpolation pattern (see tree_interpolant).
>>> x = Int('x')
>>> print Interp(x>0)
>>> print Interpolant(x>0)
interp(x > 0)
"""
ctx = _get_ctx(_ctx_from_ast_arg_list([a], ctx))
s = BoolSort(ctx)
a = s.cast(a)
return BoolRef(Z3_mk_interp(ctx.ref(), a.as_ast()), ctx)
return BoolRef(Z3_mk_interpolant(ctx.ref(), a.as_ast()), ctx)
def tree_interpolant(pat,p=None,ctx=None):
"""Compute interpolant for a tree of formulas.
@ -7304,10 +7304,10 @@ def tree_interpolant(pat,p=None,ctx=None):
>>> x = Int('x')
>>> y = Int('y')
>>> print tree_interpolant(And(Interp(x < 0), Interp(y > 2), x == y))
>>> print tree_interpolant(And(Interpolant(x < 0), Interpolant(y > 2), x == y))
[Not(x >= 0), Not(y <= 2)]
>>> g = And(Interp(x<0),x<2)
>>> g = And(Interpolant(x<0),x<2)
>>> try:
... print tree_interpolant(g).sexpr()
... except ModelRef as m:
@ -7346,7 +7346,7 @@ def binary_interpolant(a,b,p=None,ctx=None):
print binary_interpolant(x<0,x>2)
Not(x >= 0)
"""
f = And(Interp(a),b)
f = And(Interpolant(a),b)
return tree_interpolant(f,p,ctx)[0]
def sequence_interpolant(v,p=None,ctx=None):
@ -7375,6 +7375,6 @@ def sequence_interpolant(v,p=None,ctx=None):
"""
f = v[0]
for i in range(1,len(v)):
f = And(Interp(f),v[i])
f = And(Interpolant(f),v[i])
return tree_interpolant(f,p,ctx)

View file

@ -27,6 +27,7 @@ Notes:
#include"z3_algebraic.h"
#include"z3_polynomial.h"
#include"z3_rcf.h"
#include"z3_interp.h"
#undef __in
#undef __out

View file

@ -2116,17 +2116,7 @@ END_MLAPI_EXCLUDE
def_API('Z3_mk_not', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_not(__in Z3_context c, __in Z3_ast a);
/**
\brief \mlh mk_interp c a \endmlh
Create an AST node marking a formula position for interpolation.
The node \c a must have Boolean sort.
def_API('Z3_mk_interp', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_interp(__in Z3_context c, __in Z3_ast a);
/**
\brief \mlh mk_ite c t1 t2 t2 \endmlh
Create an AST node representing an if-then-else: <tt>ite(t1, t2,
@ -7700,314 +7690,6 @@ END_MLAPI_EXCLUDE
Z3_ast Z3_API Z3_get_context_assignment(__in Z3_context c);
/*@}*/
/**
@name Interpolation
*/
/*@{*/
/** \brief This function generates a Z3 context suitable for generation of
interpolants. Formulas can be generated as abstract syntx trees in
this context using the Z3 C API.
Interpolants are also generated as AST's in this context.
If cfg is non-null, it will be used as the base configuration
for the Z3 context. This makes it possible to set Z3 options
to be used during interpolation. This feature should be used
with some caution however, as it may be that certain Z3 options
are incompatible with interpolation.
def_API('Z3_mk_interpolation_context', CONTEXT, (_in(CONFIG),))
*/
Z3_context Z3_API Z3_mk_interpolation_context(__in Z3_config cfg);
/** Compute an interpolant from a refutation. This takes a proof of
"false" from a set of formulas C, and an interpolation
pattern. The pattern pat is a formula combining the formulas in C
using logical conjunction and the "interp" operator (see
#Z3_mk_interp). This interp operator is logically the identity
operator. It marks the sub-formulas of the pattern for which interpolants should
be computed. The interpolant is a map sigma from marked subformulas to
formulas, such that, for each marked subformula phi of pat (where phi sigma
is phi with sigma(psi) substituted for each subformula psi of phi such that
psi in dom(sigma)):
1) phi sigma implies sigma(phi), and
2) sigma(phi) is in the common uninterpreted vocabulary between
the formulas of C occurring in phi and those not occurring in
phi
and moreover pat sigma implies false. In the simplest case
an interpolant for the pattern "(and (interp A) B)" maps A
to an interpolant for A /\ B.
The return value is a vector of formulas representing sigma. The
vector contains sigma(phi) for each marked subformula of pat, in
pre-order traversal. This means that subformulas of phi occur before phi
in the vector. Also, subformulas that occur multiply in pat will
occur multiply in the result vector.
In particular, calling Z3_get_interpolant on a pattern of the
form (interp ... (interp (and (interp A_1) A_2)) ... A_N) will
result in a sequence interpolant for A_1, A_2,... A_N.
Neglecting interp markers, the pattern must be a conjunction of
formulas in C, the set of premises of the proof. Otherwise an
error is flagged.
Any premises of the proof not present in the pattern are
treated as "background theory". Predicate and function symbols
occurring in the background theory are treated as interpreted and
thus always allowed in the interpolant.
Interpolant may not necessarily be computable from all
proofs. To be sure an interpolant can be computed, the proof
must be generated by an SMT solver for which interpoaltion is
supported, and the premises must be expressed using only
theories and operators for which interpolation is supported.
Currently, the only SMT solver that is supported is the legacy
SMT solver. Such a solver is available as the default solver in
#Z3_context objects produced by #Z3_mk_interpolation_context.
Currently, the theories supported are equality with
uninterpreted functions, linear integer arithmetic, and the
theory of arrays (in SMT-LIB terms, this is AUFLIA).
Quantifiers are allowed. Use of any other operators (including
"labels") may result in failure to compute an interpolant from a
proof.
Parameters:
\param c logical context.
\param pf a refutation from premises (assertions) C
\param pat an interpolation pattern over C
\param p parameters
def_API('Z3_get_interpolant', AST_VECTOR, (_in(CONTEXT), _in(AST), _in(AST), _in(PARAMS)))
*/
Z3_ast_vector Z3_API Z3_get_interpolant(__in Z3_context c, __in Z3_ast pf, __in Z3_ast pat, __in Z3_params p);
/* Compute an interpolant for an unsatisfiable conjunction of formulas.
This takes as an argument an interpolation pattern as in
#Z3_get_interpolant. This is a conjunction, some subformulas of
which are marked with the "interp" operator (see #Z3_mk_interp).
The conjunction is first checked for unsatisfiability. The result
of this check is returned in the out parameter "status". If the result
is unsat, an interpolant is computed from the refutation as in #Z3_get_interpolant
and returned as a vector of formulas. Otherwise the return value is
an empty formula.
See #Z3_get_interpolant for a discussion of supported theories.
The advantage of this function over #Z3_get_interpolant is that
it is not necessary to create a suitable SMT solver and generate
a proof. The disadvantage is that it is not possible to use the
solver incrementally.
Parameters:
\param c logical context.
\param pat an interpolation pattern
\param p parameters for solver creation
\param status returns the status of the sat check
\param model returns model if satisfiable
Return value: status of SAT check
def_API('Z3_compute_interpolant', INT, (_in(CONTEXT), _in(AST), _in(PARAMS), _out(AST_VECTOR), _out(MODEL)))
*/
Z3_lbool Z3_API Z3_compute_interpolant(__in Z3_context c, __in Z3_ast pat, __in Z3_params p, __out Z3_ast_vector *interp, __out Z3_model *model);
/** Constant reprepresenting a root of a formula tree for tree interpolation */
#define IZ3_ROOT SHRT_MAX
/** This function uses Z3 to determine satisfiability of a set of
constraints. If UNSAT, an interpolant is returned, based on the
refutation generated by Z3. If SAT, a model is returned.
If "parents" is non-null, computes a tree interpolant. The tree is
defined by the array "parents". This array maps each formula in
the tree to its parent, where formulas are indicated by their
integer index in "cnsts". The parent of formula n must have index
greater than n. The last formula is the root of the tree. Its
parent entry should be the constant IZ3_ROOT.
If "parents" is null, computes a sequence interpolant.
\param ctx The Z3 context. Must be generated by iz3_mk_context
\param num The number of constraints in the sequence
\param cnsts Array of constraints (AST's in context ctx)
\param parents The parents vector defining the tree structure
\param options Interpolation options (may be NULL)
\param interps Array to return interpolants (size at least num-1, may be NULL)
\param model Returns a Z3 model if constraints SAT (may be NULL)
\param labels Returns relevant labels if SAT (may be NULL)
\param incremental
VERY IMPORTANT: All the Z3 formulas in cnsts must be in Z3
context ctx. The model and interpolants returned are also
in this context.
The return code is as in Z3_check_assumptions, that is,
Z3_L_FALSE = constraints UNSAT (interpolants returned)
Z3_L_TRUE = constraints SAT (model returned)
Z3_L_UNDEF = Z3 produced no result, or interpolation not possible
Currently, this function supports integer and boolean variables,
as well as arrays over these types, with linear arithmetic,
uninterpreted functions and quantifiers over integers (that is
AUFLIA). Interpolants are produced in AUFLIA. However, some
uses of array operations may cause quantifiers to appear in the
interpolants even when there are no quantifiers in the input formulas.
Although quantifiers may appear in the input formulas, Z3 may give up in
this case, returning Z3_L_UNDEF.
If "incremental" is true, cnsts must contain exactly the set of
formulas that are currently asserted in the context. If false,
there must be no formulas currently asserted in the context.
Setting "incremental" to true makes it posisble to incrementally
add and remove constraints from the context until the context
becomes UNSAT, at which point an interpolant is computed. Caution
must be used, however. Before popping the context, if you wish to
keep the interolant formulas, you *must* preserve them by using
Z3_persist_ast. Also, if you want to simplify the interpolant
formulas using Z3_simplify, you must first pop all of the
assertions in the context (or use a different context). Otherwise,
the formulas will be simplified *relative* to these constraints,
which is almost certainly not what you want.
Current limitations on tree interpolants. In a tree interpolation
problem, each constant (0-ary function symbol) must occur only
along one path from root to leaf. Function symbols (of arity > 0)
are considered to have global scope (i.e., may appear in any
interpolant formula).
*/
Z3_lbool Z3_API Z3_interpolate(__in Z3_context ctx,
__in int num,
__in_ecount(num) Z3_ast *cnsts,
__in_ecount(num) unsigned *parents,
__in Z3_params options,
__out_ecount(num-1) Z3_ast *interps,
__out Z3_model *model,
__out Z3_literals *labels,
__in int incremental,
__in int num_theory,
__in_ecount(num_theory) Z3_ast *theory);
/** Return a string summarizing cumulative time used for
interpolation. This string is purely for entertainment purposes
and has no semantics.
\param ctx The context (currently ignored)
def_API('Z3_interpolation_profile', STRING, (_in(CONTEXT),))
*/
Z3_string Z3_API Z3_interpolation_profile(__in Z3_context ctx);
/**
\brief Read an interpolation problem from file.
\param ctx The Z3 context. This resets the error handler of ctx.
\param filename The file name to read.
\param num Returns length of sequence.
\param cnsts Returns sequence of formulas (do not free)
\param parents Returns the parents vector (or NULL for sequence)
\param error Returns an error message in case of failure (do not free the string)
Returns true on success.
File formats: Currently two formats are supported, based on
SMT-LIB2. For sequence interpolants, the sequence of constraints is
represented by the sequence of "assert" commands in the file.
For tree interpolants, one symbol of type bool is associated to
each vertex of the tree. For each vertex v there is an "assert"
of the form:
(implies (and c1 ... cn f) v)
where c1 .. cn are the children of v (which must precede v in the file)
and f is the formula assiciated to node v. The last formula in the
file is the root vertex, and is represented by the predicate "false".
A solution to a tree interpolation problem can be thought of as a
valuation of the vertices that makes all the implications true
where each value is represented using the common symbols between
the formulas in the subtree and the remainder of the formulas.
*/
int Z3_API Z3_read_interpolation_problem(__in Z3_context ctx,
__out int *num,
__out_ecount(*num) Z3_ast **cnsts,
__out_ecount(*num) int **parents,
__in const char *filename,
__out const char **error,
__out int *num_theory,
__out_ecount(*num_theory) Z3_ast **theory);
/** Check the correctness of an interpolant. The Z3 context must
have no constraints asserted when this call is made. That means
that after interpolating, you must first fully pop the Z3
context before calling this. See Z3_interpolate for meaning of parameters.
\param ctx The Z3 context. Must be generated by Z3_mk_interpolation_context
\param num The number of constraints in the sequence
\param cnsts Array of constraints (AST's in context ctx)
\param parents The parents vector (or NULL for sequence)
\param interps The interpolant to check
\param error Returns an error message if interpolant incorrect (do not free the string)
Return value is Z3_L_TRUE if interpolant is verified, Z3_L_FALSE if
incorrect, and Z3_L_UNDEF if unknown.
*/
int Z3_API Z3_check_interpolant(Z3_context ctx, int num, Z3_ast *cnsts, int *parents, Z3_ast *interps, const char **error,
int num_theory, Z3_ast *theory);
/** Write an interpolation problem to file suitable for reading with
Z3_read_interpolation_problem. The output file is a sequence
of SMT-LIB2 format commands, suitable for reading with command-line Z3
or other interpolating solvers.
\param ctx The Z3 context. Must be generated by z3_mk_interpolation_context
\param num The number of constraints in the sequence
\param cnsts Array of constraints
\param parents The parents vector (or NULL for sequence)
\param filename The file name to write
*/
void Z3_API Z3_write_interpolation_problem(Z3_context ctx,
int num,
Z3_ast *cnsts,
int *parents,
const char *filename,
int num_theory,
Z3_ast *theory);
#endif

359
src/api/z3_interp.h Normal file
View file

@ -0,0 +1,359 @@
/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
z3_interp.h
Abstract:
API for interpolation
Author:
Kenneth McMillan (kenmcmil)
Notes:
--*/
#ifndef _Z3_INTERPOLATION_H_
#define _Z3_INTERPOLATION_H_
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
/**
@name Interpolation
*/
/*@{*/
/**
\brief \mlh mk_interp c a \endmlh
Create an AST node marking a formula position for interpolation.
The node \c a must have Boolean sort.
def_API('Z3_mk_interpolant', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_interpolant(__in Z3_context c, __in Z3_ast a);
/** \brief This function generates a Z3 context suitable for generation of
interpolants. Formulas can be generated as abstract syntax trees in
this context using the Z3 C API.
Interpolants are also generated as AST's in this context.
If cfg is non-null, it will be used as the base configuration
for the Z3 context. This makes it possible to set Z3 options
to be used during interpolation. This feature should be used
with some caution however, as it may be that certain Z3 options
are incompatible with interpolation.
def_API('Z3_mk_interpolation_context', CONTEXT, (_in(CONFIG),))
*/
Z3_context Z3_API Z3_mk_interpolation_context(__in Z3_config cfg);
/** Compute an interpolant from a refutation. This takes a proof of
"false" from a set of formulas C, and an interpolation
pattern. The pattern pat is a formula combining the formulas in C
using logical conjunction and the "interp" operator (see
#Z3_mk_interpolant). This interp operator is logically the identity
operator. It marks the sub-formulas of the pattern for which interpolants should
be computed. The interpolant is a map sigma from marked subformulas to
formulas, such that, for each marked subformula phi of pat (where phi sigma
is phi with sigma(psi) substituted for each subformula psi of phi such that
psi in dom(sigma)):
1) phi sigma implies sigma(phi), and
2) sigma(phi) is in the common uninterpreted vocabulary between
the formulas of C occurring in phi and those not occurring in
phi
and moreover pat sigma implies false. In the simplest case
an interpolant for the pattern "(and (interp A) B)" maps A
to an interpolant for A /\ B.
The return value is a vector of formulas representing sigma. The
vector contains sigma(phi) for each marked subformula of pat, in
pre-order traversal. This means that subformulas of phi occur before phi
in the vector. Also, subformulas that occur multiply in pat will
occur multiply in the result vector.
In particular, calling Z3_get_interpolant on a pattern of the
form (interp ... (interp (and (interp A_1) A_2)) ... A_N) will
result in a sequence interpolant for A_1, A_2,... A_N.
Neglecting interp markers, the pattern must be a conjunction of
formulas in C, the set of premises of the proof. Otherwise an
error is flagged.
Any premises of the proof not present in the pattern are
treated as "background theory". Predicate and function symbols
occurring in the background theory are treated as interpreted and
thus always allowed in the interpolant.
Interpolant may not necessarily be computable from all
proofs. To be sure an interpolant can be computed, the proof
must be generated by an SMT solver for which interpoaltion is
supported, and the premises must be expressed using only
theories and operators for which interpolation is supported.
Currently, the only SMT solver that is supported is the legacy
SMT solver. Such a solver is available as the default solver in
#Z3_context objects produced by #Z3_mk_interpolation_context.
Currently, the theories supported are equality with
uninterpreted functions, linear integer arithmetic, and the
theory of arrays (in SMT-LIB terms, this is AUFLIA).
Quantifiers are allowed. Use of any other operators (including
"labels") may result in failure to compute an interpolant from a
proof.
Parameters:
\param c logical context.
\param pf a refutation from premises (assertions) C
\param pat an interpolation pattern over C
\param p parameters
def_API('Z3_get_interpolant', AST_VECTOR, (_in(CONTEXT), _in(AST), _in(AST), _in(PARAMS)))
*/
Z3_ast_vector Z3_API Z3_get_interpolant(__in Z3_context c, __in Z3_ast pf, __in Z3_ast pat, __in Z3_params p);
/* Compute an interpolant for an unsatisfiable conjunction of formulas.
This takes as an argument an interpolation pattern as in
#Z3_get_interpolant. This is a conjunction, some subformulas of
which are marked with the "interp" operator (see #Z3_mk_interpolant).
The conjunction is first checked for unsatisfiability. The result
of this check is returned in the out parameter "status". If the result
is unsat, an interpolant is computed from the refutation as in #Z3_get_interpolant
and returned as a vector of formulas. Otherwise the return value is
an empty formula.
See #Z3_get_interpolant for a discussion of supported theories.
The advantage of this function over #Z3_get_interpolant is that
it is not necessary to create a suitable SMT solver and generate
a proof. The disadvantage is that it is not possible to use the
solver incrementally.
Parameters:
\param c logical context.
\param pat an interpolation pattern
\param p parameters for solver creation
\param status returns the status of the sat check
\param model returns model if satisfiable
Return value: status of SAT check
def_API('Z3_compute_interpolant', INT, (_in(CONTEXT), _in(AST), _in(PARAMS), _out(AST_VECTOR), _out(MODEL)))
*/
Z3_lbool Z3_API Z3_compute_interpolant(__in Z3_context c,
__in Z3_ast pat,
__in Z3_params p,
__out Z3_ast_vector *interp,
__out Z3_model *model);
/** Constant reprepresenting a root of a formula tree for tree interpolation */
#define IZ3_ROOT SHRT_MAX
/** This function uses Z3 to determine satisfiability of a set of
constraints. If UNSAT, an interpolant is returned, based on the
refutation generated by Z3. If SAT, a model is returned.
If "parents" is non-null, computes a tree interpolant. The tree is
defined by the array "parents". This array maps each formula in
the tree to its parent, where formulas are indicated by their
integer index in "cnsts". The parent of formula n must have index
greater than n. The last formula is the root of the tree. Its
parent entry should be the constant IZ3_ROOT.
If "parents" is null, computes a sequence interpolant.
\param ctx The Z3 context. Must be generated by iz3_mk_context
\param num The number of constraints in the sequence
\param cnsts Array of constraints (AST's in context ctx)
\param parents The parents vector defining the tree structure
\param options Interpolation options (may be NULL)
\param interps Array to return interpolants (size at least num-1, may be NULL)
\param model Returns a Z3 model if constraints SAT (may be NULL)
\param labels Returns relevant labels if SAT (may be NULL)
\param incremental
VERY IMPORTANT: All the Z3 formulas in cnsts must be in Z3
context ctx. The model and interpolants returned are also
in this context.
The return code is as in Z3_check_assumptions, that is,
Z3_L_FALSE = constraints UNSAT (interpolants returned)
Z3_L_TRUE = constraints SAT (model returned)
Z3_L_UNDEF = Z3 produced no result, or interpolation not possible
Currently, this function supports integer and boolean variables,
as well as arrays over these types, with linear arithmetic,
uninterpreted functions and quantifiers over integers (that is
AUFLIA). Interpolants are produced in AULIA. However, some
uses of array operations may cause quantifiers to appear in the
interpolants even when there are no quantifiers in the input formulas.
Although quantifiers may appear in the input formulas, Z3 may give up in
this case, returning Z3_L_UNDEF.
If "incremental" is true, cnsts must contain exactly the set of
formulas that are currently asserted in the context. If false,
there must be no formulas currently asserted in the context.
Setting "incremental" to true makes it posisble to incrementally
add and remove constraints from the context until the context
becomes UNSAT, at which point an interpolant is computed. Caution
must be used, however. Before popping the context, if you wish to
keep the interolant formulas, you *must* preserve them by using
Z3_persist_ast. Also, if you want to simplify the interpolant
formulas using Z3_simplify, you must first pop all of the
assertions in the context (or use a different context). Otherwise,
the formulas will be simplified *relative* to these constraints,
which is almost certainly not what you want.
Current limitations on tree interpolants. In a tree interpolation
problem, each constant (0-ary function symbol) must occur only
along one path from root to leaf. Function symbols (of arity > 0)
are considered to have global scope (i.e., may appear in any
interpolant formula).
def_API('Z3_interpolate', BOOL, (_in(CONTEXT), _in(UINT), _in_array(1, AST), _in_array(1, UINT), _in(PARAMS), _out_array(1, AST), _out(MODEL), _out(LITERALS), _in(UINT), _in(UINT), _in_array(9, AST)))
*/
Z3_lbool Z3_API Z3_interpolate(__in Z3_context ctx,
__in unsigned num,
__in_ecount(num) Z3_ast *cnsts,
__in_ecount(num) unsigned *parents,
__in Z3_params options,
__out_ecount(num - 1) Z3_ast *interps,
__out Z3_model *model,
__out Z3_literals *labels,
__in unsigned incremental,
__in unsigned num_theory,
__in_ecount(num_theory) Z3_ast *theory);
/** Return a string summarizing cumulative time used for
interpolation. This string is purely for entertainment purposes
and has no semantics.
\param ctx The context (currently ignored)
def_API('Z3_interpolation_profile', STRING, (_in(CONTEXT),))
*/
Z3_string Z3_API Z3_interpolation_profile(__in Z3_context ctx);
/**
\brief Read an interpolation problem from file.
\param ctx The Z3 context. This resets the error handler of ctx.
\param filename The file name to read.
\param num Returns length of sequence.
\param cnsts Returns sequence of formulas (do not free)
\param parents Returns the parents vector (or NULL for sequence)
\param error Returns an error message in case of failure (do not free the string)
Returns true on success.
File formats: Currently two formats are supported, based on
SMT-LIB2. For sequence interpolants, the sequence of constraints is
represented by the sequence of "assert" commands in the file.
For tree interpolants, one symbol of type bool is associated to
each vertex of the tree. For each vertex v there is an "assert"
of the form:
(implies (and c1 ... cn f) v)
where c1 .. cn are the children of v (which must precede v in the file)
and f is the formula assiciated to node v. The last formula in the
file is the root vertex, and is represented by the predicate "false".
A solution to a tree interpolation problem can be thought of as a
valuation of the vertices that makes all the implications true
where each value is represented using the common symbols between
the formulas in the subtree and the remainder of the formulas.
def_API('Z3_read_interpolation_problem', INT, (_in(CONTEXT), _out(UINT), _out_array(1, AST), _out_array(1, UINT_PTR), _in(STRING), _out(STRING), _out(UINT), _out_array(6, AST)))
*/
int Z3_API Z3_read_interpolation_problem(__in Z3_context ctx,
__out unsigned *num,
__out_ecount(*num) Z3_ast **cnsts,
__out_ecount(*num) unsigned **parents,
__in Z3_string filename,
__out Z3_string *error,
__out unsigned *num_theory,
__out_ecount(*num_theory) Z3_ast **theory);
/** Check the correctness of an interpolant. The Z3 context must
have no constraints asserted when this call is made. That means
that after interpolating, you must first fully pop the Z3
context before calling this. See Z3_interpolate for meaning of parameters.
\param ctx The Z3 context. Must be generated by Z3_mk_interpolation_context
\param num The number of constraints in the sequence
\param cnsts Array of constraints (AST's in context ctx)
\param parents The parents vector (or NULL for sequence)
\param interps The interpolant to check
\param error Returns an error message if interpolant incorrect (do not free the string)
Return value is Z3_L_TRUE if interpolant is verified, Z3_L_FALSE if
incorrect, and Z3_L_UNDEF if unknown.
def_API('Z3_check_interpolant', INT, (_in(CONTEXT), _in(UINT), _in_array(1, AST), _in_array(1, UINT), _in_array(1, AST), _out(STRING), _in(UINT), _in_array(6, AST)))
*/
int Z3_API Z3_check_interpolant(__in Z3_context ctx,
__in unsigned num,
__in_ecount(num) Z3_ast *cnsts,
__in_ecount(num) unsigned *parents,
__in_ecount(num - 1) Z3_ast *interps,
__out Z3_string *error,
__in unsigned num_theory,
__in_ecount(num_theory) Z3_ast *theory);
/** Write an interpolation problem to file suitable for reading with
Z3_read_interpolation_problem. The output file is a sequence
of SMT-LIB2 format commands, suitable for reading with command-line Z3
or other interpolating solvers.
\param ctx The Z3 context. Must be generated by z3_mk_interpolation_context
\param num The number of constraints in the sequence
\param cnsts Array of constraints
\param parents The parents vector (or NULL for sequence)
\param filename The file name to write
def_API('Z3_write_interpolation_problem', VOID, (_in(CONTEXT), _in(UINT), _in_array(1, AST), _in_array(1, UINT), _in(STRING), _in(UINT), _in_array(5, AST)))
*/
void Z3_API Z3_write_interpolation_problem(__in Z3_context ctx,
__in unsigned num,
__in_ecount(num) Z3_ast *cnsts,
__in_ecount(num) unsigned *parents,
__in Z3_string filename,
__in unsigned num_theory,
__in_ecount(num_theory) Z3_ast *theory);
#ifdef __cplusplus
};
#endif // __cplusplus
#endif