mirror of
https://github.com/Z3Prover/z3
synced 2025-04-28 19:35:50 +00:00
wip - updates to proof logging and self-checking
move self-checking functionality to inside sat/smt so it can be used on-line and not just off-line. when self-validation fails, use vs, not clause, to check. It allows self-validation without checking and maintaining RUP validation. new options sat.smt.proof.check_rup, sat.smt.proof.check for online validation. z3 sat.smt.proof.check=true sat.euf=true /v:1 sat.smt.proof.check_rup=true /st file.smt2 sat.smt.proof=p.smt2
This commit is contained in:
parent
993ff40826
commit
ac1552d194
40 changed files with 539 additions and 419 deletions
|
@ -1,479 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2022 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
arith_proof_checker.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Plugin for checking arithmetic lemmas
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2022-08-28
|
||||
|
||||
Notes:
|
||||
|
||||
The module assumes a limited repertoire of arithmetic proof rules.
|
||||
|
||||
- farkas - inequalities, equalities and disequalities with coefficients
|
||||
- implied-eq - last literal is a disequality. The literals before imply the complementary equality.
|
||||
- bound - last literal is a bound. It is implied by prior literals.
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
||||
#include "util/obj_pair_set.h"
|
||||
#include "ast/ast_trail.h"
|
||||
#include "ast/ast_util.h"
|
||||
#include "ast/arith_decl_plugin.h"
|
||||
#include "sat/smt/euf_proof_checker.h"
|
||||
#include <iostream>
|
||||
|
||||
|
||||
namespace arith {
|
||||
|
||||
class proof_checker : public euf::proof_checker_plugin {
|
||||
struct row {
|
||||
obj_map<expr, rational> m_coeffs;
|
||||
rational m_coeff;
|
||||
void reset() {
|
||||
m_coeffs.reset();
|
||||
m_coeff = 0;
|
||||
}
|
||||
};
|
||||
|
||||
ast_manager& m;
|
||||
arith_util a;
|
||||
vector<std::pair<rational, expr*>> m_todo;
|
||||
bool m_strict = false;
|
||||
row m_ineq;
|
||||
row m_conseq;
|
||||
vector<row> m_eqs;
|
||||
symbol m_farkas;
|
||||
symbol m_implied_eq;
|
||||
symbol m_bound;
|
||||
|
||||
void add(row& r, expr* v, rational const& coeff) {
|
||||
rational coeff1;
|
||||
if (coeff.is_zero())
|
||||
return;
|
||||
if (r.m_coeffs.find(v, coeff1)) {
|
||||
coeff1 += coeff;
|
||||
if (coeff1.is_zero())
|
||||
r.m_coeffs.erase(v);
|
||||
else
|
||||
r.m_coeffs[v] = coeff1;
|
||||
}
|
||||
else
|
||||
r.m_coeffs.insert(v, coeff);
|
||||
}
|
||||
|
||||
void mul(row& r, rational const& coeff) {
|
||||
if (coeff == 1)
|
||||
return;
|
||||
for (auto & [v, c] : r.m_coeffs)
|
||||
c *= coeff;
|
||||
r.m_coeff *= coeff;
|
||||
}
|
||||
|
||||
// dst <- dst + mul*src
|
||||
void add(row& dst, row const& src, rational const& mul) {
|
||||
for (auto const& [v, c] : src.m_coeffs)
|
||||
add(dst, v, c*mul);
|
||||
dst.m_coeff += mul*src.m_coeff;
|
||||
}
|
||||
|
||||
// dst <- X*dst + Y*src
|
||||
// where
|
||||
// X = lcm(a,b)/b, Y = -lcm(a,b)/a if v is integer
|
||||
// X = 1/b, Y = -1/a if v is real
|
||||
//
|
||||
void resolve(expr* v, row& dst, rational const& A, row const& src) {
|
||||
rational B, x, y;
|
||||
if (!dst.m_coeffs.find(v, B))
|
||||
return;
|
||||
if (a.is_int(v)) {
|
||||
rational lc = lcm(abs(A), abs(B));
|
||||
x = lc / abs(B);
|
||||
y = lc / abs(A);
|
||||
}
|
||||
else {
|
||||
x = rational(1) / abs(B);
|
||||
y = rational(1) / abs(A);
|
||||
}
|
||||
if (A < 0 && B < 0)
|
||||
y.neg();
|
||||
if (A > 0 && B > 0)
|
||||
y.neg();
|
||||
mul(dst, x);
|
||||
add(dst, src, y);
|
||||
}
|
||||
|
||||
void cut(row& r) {
|
||||
if (r.m_coeffs.empty())
|
||||
return;
|
||||
auto const& [v, coeff] = *r.m_coeffs.begin();
|
||||
if (!a.is_int(v))
|
||||
return;
|
||||
rational lc = denominator(r.m_coeff);
|
||||
for (auto const& [v, coeff] : r.m_coeffs)
|
||||
lc = lcm(lc, denominator(coeff));
|
||||
if (lc != 1) {
|
||||
r.m_coeff *= lc;
|
||||
for (auto & [v, coeff] : r.m_coeffs)
|
||||
coeff *= lc;
|
||||
}
|
||||
rational g(0);
|
||||
for (auto const& [v, coeff] : r.m_coeffs)
|
||||
g = gcd(coeff, g);
|
||||
if (g == 1)
|
||||
return;
|
||||
rational m = mod(r.m_coeff, g);
|
||||
if (m == 0)
|
||||
return;
|
||||
r.m_coeff += g - m;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief populate m_coeffs, m_coeff based on mul*e
|
||||
*/
|
||||
void linearize(row& r, rational const& mul, expr* e) {
|
||||
SASSERT(m_todo.empty());
|
||||
m_todo.push_back({ mul, e });
|
||||
rational coeff1;
|
||||
expr* e1, *e2;
|
||||
for (unsigned i = 0; i < m_todo.size(); ++i) {
|
||||
auto [coeff, e] = m_todo[i];
|
||||
if (a.is_mul(e, e1, e2) && is_numeral(e1, coeff1))
|
||||
m_todo.push_back({coeff*coeff1, e2});
|
||||
else if (a.is_mul(e, e1, e2) && is_numeral(e2, coeff1))
|
||||
m_todo.push_back({ coeff * coeff1, e1 });
|
||||
else if (a.is_add(e))
|
||||
for (expr* arg : *to_app(e))
|
||||
m_todo.push_back({coeff, arg});
|
||||
else if (a.is_uminus(e, e1))
|
||||
m_todo.push_back({-coeff, e1});
|
||||
else if (a.is_sub(e, e1, e2)) {
|
||||
m_todo.push_back({coeff, e1});
|
||||
m_todo.push_back({-coeff, e2});
|
||||
}
|
||||
else if (is_numeral(e, coeff1))
|
||||
r.m_coeff += coeff*coeff1;
|
||||
else
|
||||
add(r, e, coeff);
|
||||
}
|
||||
m_todo.reset();
|
||||
}
|
||||
|
||||
bool is_numeral(expr* e, rational& n) {
|
||||
if (a.is_numeral(e, n))
|
||||
return true;
|
||||
if (a.is_uminus(e, e) && a.is_numeral(e, n))
|
||||
return n.neg(), true;
|
||||
return false;
|
||||
}
|
||||
|
||||
bool check_ineq(row& r) {
|
||||
if (r.m_coeffs.empty() && r.m_coeff > 0)
|
||||
return true;
|
||||
if (r.m_coeffs.empty() && m_strict && r.m_coeff == 0)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
// triangulate equalities, substitute results into m_ineq, m_conseq.
|
||||
// check consistency of equalities (they may be inconsisent)
|
||||
bool reduce_eq() {
|
||||
for (unsigned i = 0; i < m_eqs.size(); ++i) {
|
||||
auto& r = m_eqs[i];
|
||||
if (r.m_coeffs.empty() && r.m_coeff != 0)
|
||||
return false;
|
||||
if (r.m_coeffs.empty())
|
||||
continue;
|
||||
auto [v, coeff] = *r.m_coeffs.begin();
|
||||
for (unsigned j = i + 1; j < m_eqs.size(); ++j)
|
||||
resolve(v, m_eqs[j], coeff, r);
|
||||
resolve(v, m_ineq, coeff, r);
|
||||
resolve(v, m_conseq, coeff, r);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool add_literal(row& r, rational const& coeff, expr* e, bool sign) {
|
||||
expr* e1, *e2 = nullptr;
|
||||
if ((a.is_le(e, e1, e2) || a.is_ge(e, e2, e1)) && !sign) {
|
||||
linearize(r, coeff, e1);
|
||||
linearize(r, -coeff, e2);
|
||||
}
|
||||
else if ((a.is_lt(e, e1, e2) || a.is_gt(e, e2, e1)) && sign) {
|
||||
linearize(r, coeff, e2);
|
||||
linearize(r, -coeff, e1);
|
||||
}
|
||||
else if ((a.is_le(e, e1, e2) || a.is_ge(e, e2, e1)) && sign) {
|
||||
linearize(r, coeff, e2);
|
||||
linearize(r, -coeff, e1);
|
||||
if (a.is_int(e1))
|
||||
r.m_coeff += coeff;
|
||||
else
|
||||
m_strict = true;
|
||||
}
|
||||
else if ((a.is_lt(e, e1, e2) || a.is_gt(e, e2, e1)) && !sign) {
|
||||
linearize(r, coeff, e1);
|
||||
linearize(r, -coeff, e2);
|
||||
if (a.is_int(e1))
|
||||
r.m_coeff += coeff;
|
||||
else
|
||||
m_strict = true;
|
||||
}
|
||||
else
|
||||
return false;
|
||||
// display_row(std::cout << coeff << " * " << (sign?"~":"") << mk_pp(e, m) << "\n", r) << "\n";
|
||||
return true;
|
||||
}
|
||||
|
||||
bool check_farkas() {
|
||||
if (check_ineq(m_ineq))
|
||||
return true;
|
||||
if (!reduce_eq())
|
||||
return true;
|
||||
if (check_ineq(m_ineq))
|
||||
return true;
|
||||
|
||||
// convert to expression, maybe follows from a cut.
|
||||
return false;
|
||||
}
|
||||
|
||||
//
|
||||
// farkas coefficient is computed for m_conseq
|
||||
// after all inequalities in ineq have been added up
|
||||
//
|
||||
bool check_bound() {
|
||||
if (!reduce_eq())
|
||||
return true;
|
||||
if (check_ineq(m_conseq))
|
||||
return true;
|
||||
if (m_ineq.m_coeffs.empty() ||
|
||||
m_conseq.m_coeffs.empty())
|
||||
return false;
|
||||
cut(m_ineq);
|
||||
auto const& [v, coeff1] = *m_ineq.m_coeffs.begin();
|
||||
rational coeff2;
|
||||
if (!m_conseq.m_coeffs.find(v, coeff2))
|
||||
return false;
|
||||
add(m_conseq, m_ineq, abs(coeff2/coeff1));
|
||||
if (check_ineq(m_conseq))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
std::ostream& display_row(std::ostream& out, row const& r) {
|
||||
bool first = true;
|
||||
for (auto const& [v, coeff] : r.m_coeffs) {
|
||||
if (!first)
|
||||
out << " + ";
|
||||
if (coeff != 1)
|
||||
out << coeff << " * ";
|
||||
out << mk_pp(v, m);
|
||||
first = false;
|
||||
}
|
||||
if (r.m_coeff != 0)
|
||||
out << " + " << r.m_coeff;
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
void display_eq(std::ostream& out, row const& r) {
|
||||
display_row(out, r);
|
||||
out << " = 0\n";
|
||||
}
|
||||
|
||||
void display_ineq(std::ostream& out, row const& r) {
|
||||
display_row(out, r);
|
||||
if (m_strict)
|
||||
out << " < 0\n";
|
||||
else
|
||||
out << " <= 0\n";
|
||||
}
|
||||
|
||||
row& fresh(vector<row>& rows) {
|
||||
rows.push_back(row());
|
||||
return rows.back();
|
||||
}
|
||||
|
||||
public:
|
||||
proof_checker(ast_manager& m):
|
||||
m(m),
|
||||
a(m),
|
||||
m_farkas("farkas"),
|
||||
m_implied_eq("implied-eq"),
|
||||
m_bound("bound") {}
|
||||
|
||||
void reset() {
|
||||
m_ineq.reset();
|
||||
m_conseq.reset();
|
||||
m_eqs.reset();
|
||||
m_strict = false;
|
||||
}
|
||||
|
||||
bool add_ineq(rational const& coeff, expr* e, bool sign) {
|
||||
return add_literal(m_ineq, abs(coeff), e, sign);
|
||||
}
|
||||
|
||||
bool add_conseq(rational const& coeff, expr* e, bool sign) {
|
||||
return add_literal(m_conseq, abs(coeff), e, sign);
|
||||
}
|
||||
|
||||
void add_eq(expr* a, expr* b) {
|
||||
row& r = fresh(m_eqs);
|
||||
linearize(r, rational(1), a);
|
||||
linearize(r, rational(-1), b);
|
||||
}
|
||||
|
||||
bool check() {
|
||||
if (m_conseq.m_coeffs.empty())
|
||||
return check_farkas();
|
||||
else
|
||||
return check_bound();
|
||||
}
|
||||
|
||||
std::ostream& display(std::ostream& out) {
|
||||
for (auto & r : m_eqs)
|
||||
display_eq(out, r);
|
||||
display_ineq(out, m_ineq);
|
||||
if (!m_conseq.m_coeffs.empty())
|
||||
display_ineq(out, m_conseq);
|
||||
return out;
|
||||
}
|
||||
|
||||
expr_ref_vector clause(app* jst) override {
|
||||
expr_ref_vector result(m);
|
||||
for (expr* arg : *jst)
|
||||
if (m.is_bool(arg))
|
||||
result.push_back(mk_not(m, arg));
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
Add implied equality as an inequality
|
||||
*/
|
||||
bool add_implied_ineq(bool sign, app* jst) {
|
||||
unsigned n = jst->get_num_args();
|
||||
if (n < 2)
|
||||
return false;
|
||||
expr* arg1 = jst->get_arg(n - 2);
|
||||
expr* arg2 = jst->get_arg(n - 1);
|
||||
rational coeff;
|
||||
if (!a.is_numeral(arg1, coeff))
|
||||
return false;
|
||||
if (!m.is_not(arg2, arg2))
|
||||
return false;
|
||||
if (!m.is_eq(arg2, arg1, arg2))
|
||||
return false;
|
||||
if (!sign)
|
||||
coeff.neg();
|
||||
auto& r = m_ineq;
|
||||
linearize(r, coeff, arg1);
|
||||
linearize(r, -coeff, arg2);
|
||||
m_strict = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool check(app* jst) override {
|
||||
reset();
|
||||
bool is_bound = jst->get_name() == m_bound;
|
||||
bool is_implied_eq = jst->get_name() == m_implied_eq;
|
||||
bool is_farkas = jst->get_name() == m_farkas;
|
||||
if (!is_farkas && !is_bound && !is_implied_eq) {
|
||||
IF_VERBOSE(0, verbose_stream() << "unhandled inference " << mk_pp(jst, m) << "\n");
|
||||
return false;
|
||||
}
|
||||
bool even = true;
|
||||
rational coeff;
|
||||
expr* x, * y;
|
||||
unsigned j = 0, num_le = 0;
|
||||
|
||||
|
||||
for (expr* arg : *jst) {
|
||||
if (even) {
|
||||
if (!a.is_numeral(arg, coeff)) {
|
||||
IF_VERBOSE(0, verbose_stream() << "not numeral " << mk_pp(jst, m) << "\n");
|
||||
return false;
|
||||
}
|
||||
if (is_implied_eq) {
|
||||
is_implied_eq = false;
|
||||
if (!coeff.is_unsigned()) {
|
||||
IF_VERBOSE(0, verbose_stream() << "not unsigned " << mk_pp(jst, m) << "\n");
|
||||
return false;
|
||||
}
|
||||
num_le = coeff.get_unsigned();
|
||||
if (!add_implied_ineq(false, jst)) {
|
||||
IF_VERBOSE(0, display(verbose_stream() << "did not add implied eq"));
|
||||
return false;
|
||||
}
|
||||
++j;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
else {
|
||||
bool sign = m.is_not(arg, arg);
|
||||
if (a.is_le(arg) || a.is_lt(arg) || a.is_ge(arg) || a.is_gt(arg)) {
|
||||
if (is_bound && j + 1 == jst->get_num_args())
|
||||
add_conseq(coeff, arg, sign);
|
||||
else if (num_le > 0) {
|
||||
add_ineq(coeff, arg, sign);
|
||||
--num_le;
|
||||
if (num_le == 0) {
|
||||
// we processed all the first inequalities,
|
||||
// check that they imply one half of the implied equality.
|
||||
if (!check()) {
|
||||
// we might have added the wrong direction of the implied equality.
|
||||
// so try the opposite inequality.
|
||||
add_implied_ineq(true, jst);
|
||||
add_implied_ineq(true, jst);
|
||||
if (check()) {
|
||||
reset();
|
||||
add_implied_ineq(false, jst);
|
||||
}
|
||||
else {
|
||||
IF_VERBOSE(0, display(verbose_stream() << "failed to check implied eq "));
|
||||
return false;
|
||||
}
|
||||
}
|
||||
else {
|
||||
reset();
|
||||
VERIFY(add_implied_ineq(true, jst));
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
add_ineq(coeff, arg, sign);
|
||||
}
|
||||
else if (m.is_eq(arg, x, y)) {
|
||||
if (sign)
|
||||
return check(); // it should be an implied equality
|
||||
else
|
||||
add_eq(x, y);
|
||||
}
|
||||
else {
|
||||
IF_VERBOSE(0, verbose_stream() << "not a recognized arithmetical relation " << mk_pp(arg, m) << "\n");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
even = !even;
|
||||
++j;
|
||||
}
|
||||
return check();
|
||||
}
|
||||
|
||||
void register_plugins(euf::proof_checker& pc) override {
|
||||
pc.register_plugin(m_farkas, this);
|
||||
pc.register_plugin(m_bound, this);
|
||||
pc.register_plugin(m_implied_eq, this);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue