3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 09:34:08 +00:00

adding quipie

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2018-09-15 21:55:49 -07:00
parent 0232383191
commit 98dfd82765

View file

@ -133,8 +133,9 @@ class State:
self.solver = s
def add(self, clause):
self.R |= { clause }
self.solver.add(clause)
if clause not in self.R:
self.R |= { clause }
self.solver.add(clause)
class Goal:
def __init__(self, cube, parent, level):
@ -142,9 +143,30 @@ class Goal:
self.cube = cube
self.parent = parent
# push a goal on a heap
def push_heap(heap, goal):
heapq.heappush(heap, (goal.level, goal))
def is_seq(f):
return isinstance(f, list) or isinstance(f, tuple) or isinstance(f, AstVector)
# Check if the initial state is bad
def check_disjoint(a, b):
s = fd_solver()
s.add(a)
s.add(b)
return unsat == s.check()
# Remove clauses that are subsumed
def prune(R):
removed = set([])
s = fd_solver()
for f1 in R:
s.push()
for f2 in R:
if f2 not in removed:
s.add(Not(f2) if f1.eq(f2) else f2)
if s.check() == unsat:
removed |= { f1 }
s.pop()
return R - removed
class MiniIC3:
def __init__(self, init, trans, goal, x0, xn):
@ -166,40 +188,19 @@ class MiniIC3:
self.s_good.add(Not(self.bad))
def next(self, f):
if isinstance(f, list) or isinstance(f, tuple) or isinstance(f, AstVector):
if is_seq(f):
return [self.next(f1) for f1 in f]
return substitute(f, zip(self.x0, self.xn))
def prev(self, f):
if isinstance(f, list) or isinstance(f, tuple) or isinstance(f, AstVector):
if is_seq(f):
return [self.prev(f1) for f1 in f]
return substitute(f, zip(self.xn, self.x0))
def add_solver(self):
s = fd_solver()
s.add(self.trans)
self.states += [State(s)]
# Check if the initial state is bad
def check_init(self):
s = fd_solver()
s.add(self.bad)
s.add(self.init)
return unsat == s.check()
# Remove clauses that are subsumed
def prune(self, i):
removed = set([])
s = fd_solver()
for f1 in self.states[i].R:
s.push()
for f2 in self.states[i].R:
if f2 not in removed:
s.add(Not(f2) if f1.eq(f2) else f2)
if s.check() == unsat:
removed |= { f1 }
s.pop()
self.states[i].R = self.states[i].R - removed
self.states += [State(s)]
def R(self, i):
return And(self.states[i].R)
@ -209,8 +210,7 @@ class MiniIC3:
i = 1
while i + 1 < len(self.states):
if not (self.states[i].R - self.states[i+1].R):
self.prune(i)
return self.R(i)
return And(prune(self.states[i].R))
i += 1
return None
@ -259,8 +259,7 @@ class MiniIC3:
# Add a clause to levels 0 until i
def assert_clause(self, i, clause):
for j in range(i + 1):
if clause not in self.states[j].R:
self.states[j].add(clause)
self.states[j].add(clause)
# minimize cube that is core of Dual solver.
# this assumes that props & cube => Trans
@ -271,10 +270,14 @@ class MiniIC3:
assert core
return [c for c in core if c in set(cube)]
# push a goal on a heap
def push_heap(self, goal):
heapq.heappush(self.goals, (goal.level, goal))
# A state s0 and level f0 such that
# not(s0) is f0-1 inductive
def ic3_blocked(self, s0, f0):
push_heap(self.goals, Goal(self.next(s0), None, f0))
self.push_heap(Goal(self.next(s0), None, f0))
while self.goals:
f, g = heapq.heappop(self.goals)
sys.stdout.write("%d." % f)
@ -287,10 +290,10 @@ class MiniIC3:
if is_sat == unsat:
self.block_cube(f, self.prev(cube))
if f < f0:
push_heap(self.goals, Goal(g.cube, g.parent, f + 1))
self.push_heap(Goal(g.cube, g.parent, f + 1))
elif is_sat == sat:
push_heap(self.goals, Goal(cube, g, f - 1))
push_heap(self.goals, g)
self.push_heap(Goal(cube, g, f - 1))
self.push_heap(g)
else:
return is_sat
print("")
@ -322,7 +325,7 @@ class MiniIC3:
return cube, f, is_sat
def run(self):
if not self.check_init():
if not check_disjoint(self.init, self.bad):
return "goal is reached in initial state"
level = 0
while True:
@ -361,3 +364,76 @@ def test(file):
test("data/horn1.smt2")
test("data/horn2.smt2")
"""
# TBD: Quip variant of IC3
must = True
may = False
class QGoal:
def __init__(self, cube, parent, level, must):
self.level = level
self.cube = cube
self.parent = parent
self.must = must
class Quipie(MiniIC3):
# prev & tras -> r', such that r' intersects with cube
def add_reachable(self, prev, cube):
s = fd_solver()
s.add(self.trans)
s.add(prev)
s.add(Or(cube))
is_sat = s.check()
assert is_sat == sat
m = s.model();
result = [self.prev(lit) for lit in cube if is_true(m.eval(lit))]
# ? result = self.values2literals(m, cube)
assert result
self.reachable.add(result)
# A state s0 and level f0 such that
# not(s0) is f0-1 inductive
def quipie_blocked(self, s0, f0):
self.push_heap(QGoal(self.next(s0), None, f0, must))
while self.goals:
f, g = heapq.heappop(self.goals)
sys.stdout.write("%d." % f)
sys.stdout.flush()
if f == 0:
if g.must:
print("")
return g
self.add_reachable(self.init, p.parent.cube)
continue
# TBD
return None
def run(self):
if not check_disjoint(self.init, self.bad):
return "goal is reached in initial state"
level = 0
while True:
inv = self.is_valid()
if inv is not None:
return inv
is_sat, cube = self.unfold()
if is_sat == unsat:
level += 1
print("Unfold %d" % level)
sys.stdout.flush()
self.add_solver()
elif is_sat == sat:
cex = self.quipie_blocked(cube, level)
if cex is not None:
return cex
else:
return is_sat
"""