mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 09:34:08 +00:00
mini IC3 sample
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
78950fde17
commit
0232383191
50
examples/python/data/horn1.smt2
Normal file
50
examples/python/data/horn1.smt2
Normal file
|
@ -0,0 +1,50 @@
|
|||
(declare-rel Goal (Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool))
|
||||
(declare-rel Invariant (Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool))
|
||||
(declare-var A Bool)
|
||||
(declare-var B Bool)
|
||||
(declare-var C Bool)
|
||||
(declare-var D Bool)
|
||||
(declare-var E Bool)
|
||||
(declare-var F Bool)
|
||||
(declare-var G Bool)
|
||||
(declare-var H Bool)
|
||||
(declare-var I Bool)
|
||||
(declare-var J Bool)
|
||||
(declare-var K Bool)
|
||||
(declare-var L Bool)
|
||||
(declare-var M Bool)
|
||||
(declare-var N Bool)
|
||||
(declare-var O Bool)
|
||||
(declare-var P Bool)
|
||||
(declare-var Q Bool)
|
||||
(declare-var R Bool)
|
||||
(declare-var S Bool)
|
||||
(declare-var T Bool)
|
||||
(declare-var U Bool)
|
||||
(declare-var V Bool)
|
||||
(declare-var W Bool)
|
||||
(declare-var X Bool)
|
||||
(rule (=> (not (or L K J I H G F E D C B A)) (Invariant L K J I H G F E D C B A)))
|
||||
(rule (let ((a!1 (and (Invariant X W V U T S R Q P O N M)
|
||||
(=> (not (and true)) (not F))
|
||||
(=> (not (and true)) (not E))
|
||||
(=> (not (and W)) (not D))
|
||||
(=> (not (and W)) (not C))
|
||||
(=> (not (and U)) (not B))
|
||||
(=> (not (and U)) (not A))
|
||||
(= L (xor F X))
|
||||
(= K (xor E W))
|
||||
(= J (xor D V))
|
||||
(= I (xor C U))
|
||||
(= H (xor B T))
|
||||
(= G (xor A S))
|
||||
(=> D (not E))
|
||||
(=> C (not E))
|
||||
(=> B (not C))
|
||||
(=> A (not C))
|
||||
((_ at-most 5) L K J I H G))))
|
||||
(=> a!1 (Invariant L K J I H G F E D C B A))))
|
||||
(rule (=> (and (Invariant L K J I H G F E D C B A) L (not K) J (not I) H G)
|
||||
(Goal L K J I H G F E D C B A)))
|
||||
|
||||
(query Goal)
|
44
examples/python/data/horn2.smt2
Normal file
44
examples/python/data/horn2.smt2
Normal file
|
@ -0,0 +1,44 @@
|
|||
(declare-rel Invariant (Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool))
|
||||
(declare-rel Goal (Bool Bool Bool Bool Bool Bool Bool Bool Bool Bool))
|
||||
(declare-var A Bool)
|
||||
(declare-var B Bool)
|
||||
(declare-var C Bool)
|
||||
(declare-var D Bool)
|
||||
(declare-var E Bool)
|
||||
(declare-var F Bool)
|
||||
(declare-var G Bool)
|
||||
(declare-var H Bool)
|
||||
(declare-var I Bool)
|
||||
(declare-var J Bool)
|
||||
(declare-var K Bool)
|
||||
(declare-var L Bool)
|
||||
(declare-var M Bool)
|
||||
(declare-var N Bool)
|
||||
(declare-var O Bool)
|
||||
(declare-var P Bool)
|
||||
(declare-var Q Bool)
|
||||
(declare-var R Bool)
|
||||
(declare-var S Bool)
|
||||
(declare-var T Bool)
|
||||
(rule (=> (not (or J I H G F E D C B A)) (Invariant J I H G F E D C B A)))
|
||||
(rule (let ((a!1 (and (Invariant T S R Q P O N M L K)
|
||||
(=> (not (and true)) (not E))
|
||||
(=> (not (and T)) (not D))
|
||||
(=> (not (and S)) (not C))
|
||||
(=> (not (and R)) (not B))
|
||||
(=> (not (and Q)) (not A))
|
||||
(= J (xor E T))
|
||||
(= I (xor D S))
|
||||
(= H (xor C R))
|
||||
(= G (xor B Q))
|
||||
(= F (xor A P))
|
||||
(=> D (not E))
|
||||
(=> C (not D))
|
||||
(=> B (not C))
|
||||
(=> A (not B))
|
||||
((_ at-most 3) J I H G F))))
|
||||
(=> a!1 (Invariant J I H G F E D C B A))))
|
||||
(rule (=> (and (Invariant J I H G F E D C B A) (not J) (not I) (not H) (not G) F)
|
||||
(Goal J I H G F E D C B A)))
|
||||
|
||||
(query Goal)
|
363
examples/python/mini_ic3.py
Normal file
363
examples/python/mini_ic3.py
Normal file
|
@ -0,0 +1,363 @@
|
|||
from z3 import *
|
||||
import heapq
|
||||
|
||||
|
||||
# Simplistic (and fragile) converter from
|
||||
# a class of Horn clauses corresponding to
|
||||
# a transition system into a transition system
|
||||
# representation as <init, trans, goal>
|
||||
# It assumes it is given three Horn clauses
|
||||
# of the form:
|
||||
# init(x) => Invariant(x)
|
||||
# Invariant(x) and trans(x,x') => Invariant(x')
|
||||
# Invariant(x) and goal(x) => Goal(x)
|
||||
# where Invariant and Goal are uninterpreted predicates
|
||||
|
||||
class Horn2Transitions:
|
||||
def __init__(self):
|
||||
self.trans = True
|
||||
self.init = True
|
||||
self.goal = True
|
||||
self.index = 0
|
||||
|
||||
def parse(self, file):
|
||||
fp = Fixedpoint()
|
||||
goals = fp.parse_file(file)
|
||||
for r in fp.get_rules():
|
||||
if not is_quantifier(r):
|
||||
continue
|
||||
b = r.body()
|
||||
if not is_implies(b):
|
||||
continue
|
||||
f = b.arg(0)
|
||||
g = b.arg(1)
|
||||
if self.is_goal(f, g):
|
||||
continue
|
||||
if self.is_transition(f, g):
|
||||
continue
|
||||
if self.is_init(f, g):
|
||||
continue
|
||||
|
||||
def is_pred(self, p, name):
|
||||
return is_app(p) and p.decl().name() == name
|
||||
|
||||
def is_goal(self, body, head):
|
||||
if not self.is_pred(head, "Goal"):
|
||||
return False
|
||||
pred, inv = self.is_body(body)
|
||||
if pred is None:
|
||||
return False
|
||||
self.goal = self.subst_vars("x", inv, pred)
|
||||
return True
|
||||
|
||||
def is_body(self, body):
|
||||
if not is_and(body):
|
||||
return None, None
|
||||
fmls = [f for f in body.children() if self.is_inv(f) is None]
|
||||
inv = None
|
||||
for f in body.children():
|
||||
if self.is_inv(f) is not None:
|
||||
inv = f;
|
||||
break
|
||||
return And(fmls), inv
|
||||
|
||||
def is_inv(self, f):
|
||||
if self.is_pred(f, "Invariant"):
|
||||
return f
|
||||
return None
|
||||
|
||||
def is_transition(self, body, head):
|
||||
pred, inv0 = self.is_body(body)
|
||||
if pred is None:
|
||||
return False
|
||||
inv1 = self.is_inv(head)
|
||||
if inv1 is None:
|
||||
return False
|
||||
pred = self.subst_vars("x", inv0, pred)
|
||||
self.xs = self.vars
|
||||
pred = self.subst_vars("xn", inv1, pred)
|
||||
self.xns = self.vars
|
||||
self.trans = pred
|
||||
return True
|
||||
|
||||
def is_init(self, body, head):
|
||||
for f in body.children():
|
||||
if self.is_inv(f) is not None:
|
||||
return False
|
||||
inv = self.is_inv(head)
|
||||
if inv is None:
|
||||
return False
|
||||
self.init = self.subst_vars("x", inv, body)
|
||||
return True
|
||||
|
||||
def subst_vars(self, prefix, inv, fml):
|
||||
subst = self.mk_subst(prefix, inv)
|
||||
self.vars = [ v for (k,v) in subst ]
|
||||
return substitute(fml, subst)
|
||||
|
||||
def mk_subst(self, prefix, inv):
|
||||
self.index = 0
|
||||
return [(f, self.mk_bool(prefix)) for f in inv.children()]
|
||||
|
||||
def mk_bool(self, prefix):
|
||||
self.index += 1
|
||||
return Bool("%s%d" % (prefix, self.index))
|
||||
|
||||
# Produce a finite domain solver.
|
||||
# The theory QF_FD covers bit-vector formulas
|
||||
# and pseudo-Boolean constraints.
|
||||
# By default cardinality and pseudo-Boolean
|
||||
# constraints are converted to clauses. To override
|
||||
# this default for cardinality constraints
|
||||
# we set sat.cardinality.solver to True
|
||||
|
||||
def fd_solver():
|
||||
s = SolverFor("QF_FD")
|
||||
s.set("sat.cardinality.solver", True)
|
||||
return s
|
||||
|
||||
|
||||
# negate, avoid double negation
|
||||
def negate(f):
|
||||
if is_not(f):
|
||||
return f.arg(0)
|
||||
else:
|
||||
return Not(f)
|
||||
|
||||
def cube2clause(cube):
|
||||
return Or([negate(f) for f in cube])
|
||||
|
||||
class State:
|
||||
def __init__(self, s):
|
||||
self.R = set([])
|
||||
self.solver = s
|
||||
|
||||
def add(self, clause):
|
||||
self.R |= { clause }
|
||||
self.solver.add(clause)
|
||||
|
||||
class Goal:
|
||||
def __init__(self, cube, parent, level):
|
||||
self.level = level
|
||||
self.cube = cube
|
||||
self.parent = parent
|
||||
|
||||
# push a goal on a heap
|
||||
def push_heap(heap, goal):
|
||||
heapq.heappush(heap, (goal.level, goal))
|
||||
|
||||
class MiniIC3:
|
||||
def __init__(self, init, trans, goal, x0, xn):
|
||||
self.x0 = x0
|
||||
self.xn = xn
|
||||
self.init = init
|
||||
self.bad = goal
|
||||
self.trans = trans
|
||||
self.min_cube_solver = fd_solver()
|
||||
self.min_cube_solver.add(Not(trans))
|
||||
self.goals = []
|
||||
s = State(fd_solver())
|
||||
s.add(init)
|
||||
s.solver.add(trans)
|
||||
self.states = [s]
|
||||
self.s_bad = fd_solver()
|
||||
self.s_good = fd_solver()
|
||||
self.s_bad.add(self.bad)
|
||||
self.s_good.add(Not(self.bad))
|
||||
|
||||
def next(self, f):
|
||||
if isinstance(f, list) or isinstance(f, tuple) or isinstance(f, AstVector):
|
||||
return [self.next(f1) for f1 in f]
|
||||
return substitute(f, zip(self.x0, self.xn))
|
||||
|
||||
def prev(self, f):
|
||||
if isinstance(f, list) or isinstance(f, tuple) or isinstance(f, AstVector):
|
||||
return [self.prev(f1) for f1 in f]
|
||||
return substitute(f, zip(self.xn, self.x0))
|
||||
|
||||
def add_solver(self):
|
||||
s = fd_solver()
|
||||
s.add(self.trans)
|
||||
self.states += [State(s)]
|
||||
|
||||
# Check if the initial state is bad
|
||||
def check_init(self):
|
||||
s = fd_solver()
|
||||
s.add(self.bad)
|
||||
s.add(self.init)
|
||||
return unsat == s.check()
|
||||
|
||||
# Remove clauses that are subsumed
|
||||
def prune(self, i):
|
||||
removed = set([])
|
||||
s = fd_solver()
|
||||
for f1 in self.states[i].R:
|
||||
s.push()
|
||||
for f2 in self.states[i].R:
|
||||
if f2 not in removed:
|
||||
s.add(Not(f2) if f1.eq(f2) else f2)
|
||||
if s.check() == unsat:
|
||||
removed |= { f1 }
|
||||
s.pop()
|
||||
self.states[i].R = self.states[i].R - removed
|
||||
|
||||
def R(self, i):
|
||||
return And(self.states[i].R)
|
||||
|
||||
# Check if there are two states next to each other that have the same clauses.
|
||||
def is_valid(self):
|
||||
i = 1
|
||||
while i + 1 < len(self.states):
|
||||
if not (self.states[i].R - self.states[i+1].R):
|
||||
self.prune(i)
|
||||
return self.R(i)
|
||||
i += 1
|
||||
return None
|
||||
|
||||
def value2literal(self, m, x):
|
||||
value = m.eval(x)
|
||||
if is_true(value):
|
||||
return x
|
||||
if is_false(value):
|
||||
return Not(x)
|
||||
return None
|
||||
|
||||
def values2literals(self, m, xs):
|
||||
p = [self.value2literal(m, x) for x in xs]
|
||||
return [x for x in p if x is not None]
|
||||
|
||||
def project0(self, m):
|
||||
return self.values2literals(m, self.x0)
|
||||
|
||||
def projectN(self, m):
|
||||
return self.values2literals(m, self.xn)
|
||||
|
||||
# Determine if there is a cube for the current state
|
||||
# that is potentially reachable.
|
||||
def unfold(self):
|
||||
core = []
|
||||
self.s_bad.push()
|
||||
R = self.R(len(self.states)-1)
|
||||
self.s_bad.add(R)
|
||||
is_sat = self.s_bad.check()
|
||||
if is_sat == sat:
|
||||
m = self.s_bad.model()
|
||||
props = self.project0(m)
|
||||
self.s_good.push()
|
||||
self.s_good.add(R)
|
||||
is_sat2 = self.s_good.check(props)
|
||||
assert is_sat2 == unsat
|
||||
core = self.s_good.unsat_core()
|
||||
self.s_good.pop()
|
||||
self.s_bad.pop()
|
||||
return is_sat, core
|
||||
|
||||
# Block a cube by asserting the clause corresponding to its negation
|
||||
def block_cube(self, i, cube):
|
||||
self.assert_clause(i, cube2clause(cube))
|
||||
|
||||
# Add a clause to levels 0 until i
|
||||
def assert_clause(self, i, clause):
|
||||
for j in range(i + 1):
|
||||
if clause not in self.states[j].R:
|
||||
self.states[j].add(clause)
|
||||
|
||||
# minimize cube that is core of Dual solver.
|
||||
# this assumes that props & cube => Trans
|
||||
def minimize_cube(self, cube, lits):
|
||||
is_sat = self.min_cube_solver.check(lits + [c for c in cube])
|
||||
assert is_sat == unsat
|
||||
core = self.min_cube_solver.unsat_core()
|
||||
assert core
|
||||
return [c for c in core if c in set(cube)]
|
||||
|
||||
# A state s0 and level f0 such that
|
||||
# not(s0) is f0-1 inductive
|
||||
def ic3_blocked(self, s0, f0):
|
||||
push_heap(self.goals, Goal(self.next(s0), None, f0))
|
||||
while self.goals:
|
||||
f, g = heapq.heappop(self.goals)
|
||||
sys.stdout.write("%d." % f)
|
||||
sys.stdout.flush()
|
||||
# Not(g.cube) is f-1 invariant
|
||||
if f == 0:
|
||||
print("")
|
||||
return g
|
||||
cube, f, is_sat = self.is_inductive(f, g.cube)
|
||||
if is_sat == unsat:
|
||||
self.block_cube(f, self.prev(cube))
|
||||
if f < f0:
|
||||
push_heap(self.goals, Goal(g.cube, g.parent, f + 1))
|
||||
elif is_sat == sat:
|
||||
push_heap(self.goals, Goal(cube, g, f - 1))
|
||||
push_heap(self.goals, g)
|
||||
else:
|
||||
return is_sat
|
||||
print("")
|
||||
return None
|
||||
|
||||
# Rudimentary generalization:
|
||||
# If the cube is already unsat with respect to transition relation
|
||||
# extract a core (not necessarily minimal)
|
||||
# otherwise, just return the cube.
|
||||
def generalize(self, cube, f):
|
||||
s = self.states[f - 1].solver
|
||||
if unsat == s.check(cube):
|
||||
return s.unsat_core(), f
|
||||
return cube, f
|
||||
|
||||
# Check if the negation of cube is inductive at level f
|
||||
def is_inductive(self, f, cube):
|
||||
s = self.states[f - 1].solver
|
||||
s.push()
|
||||
s.add(self.prev(Not(And(cube))))
|
||||
is_sat = s.check(cube)
|
||||
if is_sat == sat:
|
||||
m = s.model()
|
||||
s.pop()
|
||||
if is_sat == sat:
|
||||
cube = self.next(self.minimize_cube(self.project0(m), self.projectN(m)))
|
||||
elif is_sat == unsat:
|
||||
cube, f = self.generalize(cube, f)
|
||||
return cube, f, is_sat
|
||||
|
||||
def run(self):
|
||||
if not self.check_init():
|
||||
return "goal is reached in initial state"
|
||||
level = 0
|
||||
while True:
|
||||
inv = self.is_valid()
|
||||
if inv is not None:
|
||||
return inv
|
||||
is_sat, cube = self.unfold()
|
||||
if is_sat == unsat:
|
||||
level += 1
|
||||
print("Unfold %d" % level)
|
||||
sys.stdout.flush()
|
||||
self.add_solver()
|
||||
elif is_sat == sat:
|
||||
cex = self.ic3_blocked(cube, level)
|
||||
if cex is not None:
|
||||
return cex
|
||||
else:
|
||||
return is_sat
|
||||
|
||||
def test(file):
|
||||
h2t = Horn2Transitions()
|
||||
h2t.parse(file)
|
||||
mp = MiniIC3(h2t.init, h2t.trans, h2t.goal, h2t.xs, h2t.xns)
|
||||
result = mp.run()
|
||||
if isinstance(result, Goal):
|
||||
g = result
|
||||
print("Trace")
|
||||
while g:
|
||||
print(g.level, g.cube)
|
||||
g = g.parent
|
||||
return
|
||||
if isinstance(result, ExprRef):
|
||||
print("Invariant:\n%s " % result)
|
||||
return
|
||||
print(result)
|
||||
|
||||
test("data/horn1.smt2")
|
||||
test("data/horn2.smt2")
|
Loading…
Reference in a new issue