3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-10-04 23:13:57 +00:00
* reorg sls

* sls

* na

* split into base and plugin

* move sat_params to params directory, add op_def repair options

* move sat_ddfw to sls, initiate sls-bv-plugin

* porting bv-sls

* adding basic plugin

* na

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* add sls-sms solver

* bv updates

* updated dependencies

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* updated dependencies

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* use portable ptr-initializer

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* move definitions to cpp

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* use template<> syntax

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fix compiler errors for gcc

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* Bump docker/build-push-action from 6.0.0 to 6.1.0 (#7265)

Bumps [docker/build-push-action](https://github.com/docker/build-push-action) from 6.0.0 to 6.1.0.
- [Release notes](https://github.com/docker/build-push-action/releases)
- [Commits](https://github.com/docker/build-push-action/compare/v6.0.0...v6.1.0)

---
updated-dependencies:
- dependency-name: docker/build-push-action
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* set clean shutdown for local search and re-enable local search when it parallelizes with PB solver

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* Bump docker/build-push-action from 6.1.0 to 6.2.0 (#7269)

Bumps [docker/build-push-action](https://github.com/docker/build-push-action) from 6.1.0 to 6.2.0.
- [Release notes](https://github.com/docker/build-push-action/releases)
- [Commits](https://github.com/docker/build-push-action/compare/v6.1.0...v6.2.0)

---
updated-dependencies:
- dependency-name: docker/build-push-action
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* Fix a comment for Z3_solver_from_string (#7271)

Z3_solver_from_string accepts a string buffer with solver
assertions, not a string buffer with filename.

* trigger the build with a comment change

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

* remove macro distinction #7270

* fix #7268

* kludge to address #7232, probably superseeded by planned revision to setup/pypi

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* add new ema invariant (#7288)

* Bump docker/build-push-action from 6.2.0 to 6.3.0 (#7280)

Bumps [docker/build-push-action](https://github.com/docker/build-push-action) from 6.2.0 to 6.3.0.
- [Release notes](https://github.com/docker/build-push-action/releases)
- [Commits](https://github.com/docker/build-push-action/compare/v6.2.0...v6.3.0)

---
updated-dependencies:
- dependency-name: docker/build-push-action
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* merge

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fix unit test build

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* remove shared attribute

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* remove stale files

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fix build of unit test

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fixes and rename sls-cc to sls-euf-plugin

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* na

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* testing / debugging arithmetic

* updates to repair logic, mainly arithmetic

* fixes to sls

* evolve sls arith

* bugfixes in sls-arith

* fix typo

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* bug fixes

* Update sls_test.cpp

* fixes

* fixes

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fix build

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* refactor basic plugin and clause generation

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fixes to ite and other

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* updates

* update

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fix division by 0

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* disable fail restart

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* disable tabu when using reset moves

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* update sls_test

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* add factoring

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fixes to semantics

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* re-add tabu override

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* generalize factoring

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fix bug

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* remove restart

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* disable tabu in fallback modes

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* localize impact of factoring

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* delay factoring

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* flatten products

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* perform lookahead update + nested mul

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* disable nested mul

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* disable nested mul, use non-lookahead

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* make reset updates recursive

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* include linear moves

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* include 5% reset probability

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* separate linear update

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* separate linear update remove 20% threshold

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* remove linear opt

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* enable multiplier expansion, enable linear move

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* use unit coefficients for muls

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* disable non-tabu version of find_nl_moves

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* remove coefficient from multiplication definition

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* reorg monomials

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* add smt params to path

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* avoid negative reward

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* use reward as proxy for score

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* use reward as proxy for score

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* use exponential decay with breaks

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* use std::pow

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fixes to bv

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fixes to fixed

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fixup repairs

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* reserve for multiplication

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fixing repair

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* include bounds checks in set random

* na

* fixes to mul

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fix mul inverse

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fixes to handling signed operators

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* logging and fixes

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* gcm

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* peli

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* Add .env to gitignore to prevent environment files from being tracked

* Add m_num_pelis counter to stats in sls_context

* Remove m_num_pelis member from stats struct in sls_context

* Enhance bv_sls_eval with improved repair and logging, refine is_bv_predicate in sls_bv_plugin

* Remove verbose logging in register_term function of sls_basic_plugin and fix formatting in sls_context

* Rename source files for consistency in `src/ast/sls` directory

* Refactor bv_sls files to sls_bv with namespace and class name adjustments

* Remove typename from member declarations in bv_fixed class

* fixing conca

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* Add initial implementation of bit-vector SLS evaluation module in bv_sls_eval.cpp

* Remove bv_sls_eval.cpp as part of code cleanup and refactoring

* Refactor alignment of member variables in bv_plugin of sls namespace

* Rename SLS engine related files to reflect their specific use for bit-vectors

* Refactor SLS engine and evaluator components for bit-vector specifics and adjust memory manager alignment

* Enhance bv_eval with use_current, lookahead strategies, and randomization improvements in SLS module

* Refactor verbose logging and fix logic in range adjustment functions in sls bv modules

* Remove commented verbose output in sls_bv_plugin.cpp during repair process

* Add early return after setting fixed subterms in sls_bv_fixed.cpp

* Remove redundant return statement in sls_bv_fixed.cpp

* fixes to new value propagation

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* Refactor sls bv evaluation and fix logic checks for bit operations

* Add array plugin support and update bv_eval in ast_sls module

* Add array, model value, and user sort plugins to SLS module with enhancements in array propagation logic

* Refactor array_plugin in sls to improve handling of select expressions with multiple arguments

* Enhance array plugin with early termination and propagation verification, and improve euf and user sort plugins with propagation adjustments and debugging enhancements

* Add support for handling 'distinct' expressions in SLS context and user sort plugin

* Remove model value and user sort plugins from SLS theory

* replace user plugin by euf plugin

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* remove extra file

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* Refactor handling of term registration and enhance distinct handling in sls_euf_plugin

* Add TODO list for enhancements in sls_euf_plugin.cpp

* add incremental mode

* updated package

* fix sls build

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* break sls build

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fix build

* break build again

* fix build

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fixes

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fixing incremental

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* avoid units

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fixup handling of disequality propagation

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fx

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* recover shift-weight loop

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* alternate

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* throttle save model

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* allow for alternating

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fix test for new signature of flip

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* bug fixes

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* restore use of value_hash

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fixes

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* adding dt plugin

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* adt

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* dt updates

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* added cycle detection

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* updated sls-datatype

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* Refactor context management, improve datatype handling, and enhance logging in sls plugins.

* axiomatize dt

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* add missing factory plugins to model

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fixup finite domain search

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fixup finite domain search

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fixes

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* redo dfs

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fixing model construction for underspecified operators

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fixes to occurs check

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fixup interpretation building

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* saturate worklist

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* delay distinct axiom

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* adding model-based sls for datatatypes

* update the interface in sls_solver to transfer phase between SAT and SLS

* add value transfer option

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* rename aux functions

* Track shared variables using a unit set

* debugging parallel integration

* fix dirty flag setting

* update log level

* add plugin to smt_context, factor out sls_smt_plugin functionality.

* bug fixes

* fixes

* use common infrastructure for sls-smt

* fix build

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fix build

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* remove declaration of context

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* add virtual destructor

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* build warnings

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* reorder inclusion order to define smt_context before theory_sls

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* change namespace for single threaded

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* check delayed eqs before nla

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* use independent completion flag for sls to avoid conflating with genuine cancelation

* validate sls-arith lemmas

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* bugfixes

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* add intblast to legacy SMT solver

* fixup model generation for theory_intblast

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* na

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* mk_value needs to accept more cases where integer expression doesn't evalate

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* use th-axioms to track origins of assertions

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* add missing operator handling for bitwise operators

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* add missing operator handling for bitwise operators

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* normalizing inequality

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* add virtual destructor

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* rework elim_unconstrained

* fix non-termination

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* use glue as computed without adjustment

* update model generation to fix model bug

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fixes to model construction

* remove package and package lock

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fix build warning

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* use original gai

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

---------

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Sergey Bronnikov <estetus@gmail.com>
Co-authored-by: Lev Nachmanson <levnach@hotmail.com>
Co-authored-by: LiviaSun <33578456+ChuyueSun@users.noreply.github.com>
This commit is contained in:
Nikolaj Bjorner 2024-11-02 12:32:48 -07:00 committed by GitHub
parent ecdfab81a6
commit 91dc02d862
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
120 changed files with 11172 additions and 4148 deletions

View file

@ -15,7 +15,7 @@ z3_add_component(sat
sat_config.cpp
sat_cut_simplifier.cpp
sat_cutset.cpp
sat_ddfw.cpp
sat_ddfw_wrapper.cpp
sat_drat.cpp
sat_elim_eqs.cpp
sat_elim_vars.cpp
@ -43,7 +43,6 @@ z3_add_component(sat
params
PYG_FILES
sat_asymm_branch_params.pyg
sat_params.pyg
sat_scc_params.pyg
sat_simplifier_params.pyg
)

View file

@ -16,9 +16,9 @@ Author:
Revision History:
--*/
#include "params/sat_params.hpp"
#include "sat/sat_config.h"
#include "sat/sat_types.h"
#include "sat/sat_params.hpp"
#include "sat/sat_simplifier_params.hpp"
#include "params/solver_params.hpp"

View file

@ -1,686 +0,0 @@
/*++
Copyright (c) 2019 Microsoft Corporation
Module Name:
sat_ddfw.cpp
Abstract:
DDFW Local search module for clauses
Author:
Nikolaj Bjorner, Marijn Heule 2019-4-23
Notes:
http://www.ict.griffith.edu.au/~johnt/publications/CP2006raouf.pdf
Todo:
- rephase strategy
- experiment with backoff schemes for restarts
- parallel sync
--*/
#include "util/luby.h"
#include "sat/sat_ddfw.h"
#include "sat/sat_solver.h"
#include "sat/sat_params.hpp"
namespace sat {
ddfw::~ddfw() {
for (auto& ci : m_clauses)
m_alloc.del_clause(ci.m_clause);
}
lbool ddfw::check(unsigned sz, literal const* assumptions, parallel* p) {
init(sz, assumptions);
flet<parallel*> _p(m_par, p);
if (m_plugin)
check_with_plugin();
else
check_without_plugin();
remove_assumptions();
log();
return m_min_sz == 0 ? l_true : l_undef;
}
void ddfw::check_without_plugin() {
while (m_limit.inc() && m_min_sz > 0) {
if (should_reinit_weights()) do_reinit_weights();
else if (do_flip<false>());
else if (should_restart()) do_restart();
else if (should_parallel_sync()) do_parallel_sync();
else shift_weights();
}
}
void ddfw::check_with_plugin() {
m_plugin->init_search();
m_steps_since_progress = 0;
unsigned steps = 0;
while (m_min_sz > 0 && m_steps_since_progress++ <= 1500000) {
if (should_reinit_weights()) do_reinit_weights();
else if (steps % 5000 == 0) shift_weights(), m_plugin->on_rescale();
else if (should_restart()) do_restart(), m_plugin->on_restart();
else if (do_flip<true>());
else if (do_literal_flip<true>());
else if (should_parallel_sync()) do_parallel_sync();
else shift_weights(), m_plugin->on_rescale();
++steps;
}
m_plugin->finish_search();
}
void ddfw::log() {
double sec = m_stopwatch.get_current_seconds();
double kflips_per_sec = (m_flips - m_last_flips) / (1000.0 * sec);
if (m_last_flips == 0) {
IF_VERBOSE(1, verbose_stream() << "(sat.ddfw :unsat :models :kflips/sec :flips :restarts :reinits :unsat_vars :shifts";
if (m_par) verbose_stream() << " :par";
verbose_stream() << ")\n");
}
IF_VERBOSE(1, verbose_stream() << "(sat.ddfw "
<< std::setw(07) << m_min_sz
<< std::setw(07) << m_models.size()
<< std::setw(10) << kflips_per_sec
<< std::setw(10) << m_flips
<< std::setw(10) << m_restart_count
<< std::setw(11) << m_reinit_count
<< std::setw(13) << m_unsat_vars.size()
<< std::setw(9) << m_shifts;
if (m_par) verbose_stream() << std::setw(10) << m_parsync_count;
verbose_stream() << ")\n");
m_stopwatch.start();
m_last_flips = m_flips;
}
template<bool uses_plugin>
bool ddfw::do_flip() {
double reward = 0;
bool_var v = pick_var<uses_plugin>(reward);
return apply_flip<uses_plugin>(v, reward);
}
template<bool uses_plugin>
bool ddfw::apply_flip(bool_var v, double reward) {
if (v == null_bool_var)
return false;
if (reward > 0 || (reward == 0 && m_rand(100) <= m_config.m_use_reward_zero_pct)) {
if (uses_plugin && is_external(v))
m_plugin->flip(v);
else
flip(v);
if (m_unsat.size() <= m_min_sz)
save_best_values();
return true;
}
return false;
}
template<bool uses_plugin>
bool_var ddfw::pick_var(double& r) {
double sum_pos = 0;
unsigned n = 1;
bool_var v0 = null_bool_var;
for (bool_var v : m_unsat_vars) {
r = uses_plugin ? plugin_reward(v) : reward(v);
if (r > 0.0)
sum_pos += score(r);
else if (r == 0.0 && sum_pos == 0 && (m_rand() % (n++)) == 0)
v0 = v;
}
if (sum_pos > 0) {
double lim_pos = ((double) m_rand() / (1.0 + m_rand.max_value())) * sum_pos;
for (bool_var v : m_unsat_vars) {
r = uses_plugin && is_external(v) ? m_vars[v].m_last_reward : reward(v);
if (r > 0) {
lim_pos -= score(r);
if (lim_pos <= 0)
return v;
}
}
}
r = 0;
if (v0 != null_bool_var)
return v0;
if (m_unsat_vars.empty())
return null_bool_var;
return m_unsat_vars.elem_at(m_rand(m_unsat_vars.size()));
}
template<bool uses_plugin>
bool ddfw::do_literal_flip() {
double reward = 1;
return apply_flip<uses_plugin>(pick_literal_var<uses_plugin>(), reward);
}
/*
* Pick a random false literal from a satisfied clause such that
* the literal has zero break count and positive reward.
*/
template<bool uses_plugin>
bool_var ddfw::pick_literal_var() {
#if false
unsigned sz = m_clauses.size();
unsigned start = rand();
for (unsigned i = 0; i < 100; ++i) {
unsigned cl = (i + start) % sz;
if (m_unsat.contains(cl))
continue;
for (auto lit : *m_clauses[cl].m_clause) {
if (is_true(lit))
continue;
double r = uses_plugin ? plugin_reward(lit.var()) : reward(lit.var());
if (r < 0)
continue;
//verbose_stream() << "false " << r << " " << lit << "\n";
return lit.var();
}
}
#endif
return null_bool_var;
}
void ddfw::add(unsigned n, literal const* c) {
clause* cls = m_alloc.mk_clause(n, c, false);
unsigned idx = m_clauses.size();
m_clauses.push_back(clause_info(cls, m_config.m_init_clause_weight));
for (literal lit : *cls) {
m_use_list.reserve(2*(lit.var()+1));
m_vars.reserve(lit.var()+1);
m_use_list[lit.index()].push_back(idx);
}
}
/**
* Remove the last clause that was added
*/
void ddfw::del() {
auto& info = m_clauses.back();
for (literal lit : *info.m_clause)
m_use_list[lit.index()].pop_back();
m_alloc.del_clause(info.m_clause);
m_clauses.pop_back();
if (m_unsat.contains(m_clauses.size()))
m_unsat.remove(m_clauses.size());
}
void ddfw::add(solver const& s) {
set_seed(s.get_config().m_random_seed);
for (auto& ci : m_clauses)
m_alloc.del_clause(ci.m_clause);
m_clauses.reset();
m_use_list.reset();
m_num_non_binary_clauses = 0;
unsigned trail_sz = s.init_trail_size();
for (unsigned i = 0; i < trail_sz; ++i) {
add(1, s.m_trail.data() + i);
}
unsigned sz = s.m_watches.size();
for (unsigned l_idx = 0; l_idx < sz; ++l_idx) {
literal l1 = ~to_literal(l_idx);
watch_list const & wlist = s.m_watches[l_idx];
for (watched const& w : wlist) {
if (!w.is_binary_non_learned_clause())
continue;
literal l2 = w.get_literal();
if (l1.index() > l2.index())
continue;
literal ls[2] = { l1, l2 };
add(2, ls);
}
}
for (clause* c : s.m_clauses) {
add(c->size(), c->begin());
}
m_num_non_binary_clauses = s.m_clauses.size();
}
void ddfw::add_assumptions() {
for (unsigned i = 0; i < m_assumptions.size(); ++i)
add(1, m_assumptions.data() + i);
}
void ddfw::remove_assumptions() {
if (m_assumptions.empty())
return;
for (unsigned i = 0; i < m_assumptions.size(); ++i)
del();
init(0, nullptr);
}
void ddfw::init(unsigned sz, literal const* assumptions) {
m_assumptions.reset();
m_assumptions.append(sz, assumptions);
add_assumptions();
for (unsigned v = 0; v < num_vars(); ++v) {
value(v) = (m_rand() % 2) == 0; // m_use_list[lit.index()].size() >= m_use_list[nlit.index()].size();
}
init_clause_data();
flatten_use_list();
m_reinit_count = 0;
m_reinit_next = m_config.m_reinit_base;
m_restart_count = 0;
m_restart_next = m_config.m_restart_base*2;
m_parsync_count = 0;
m_parsync_next = m_config.m_parsync_base;
m_min_sz = m_unsat.size();
m_flips = 0;
m_last_flips = 0;
m_shifts = 0;
m_stopwatch.start();
}
void ddfw::reinit(solver& s, bool_vector const& phase) {
add(s);
add_assumptions();
for (unsigned v = 0; v < phase.size(); ++v) {
value(v) = phase[v];
reward(v) = 0;
make_count(v) = 0;
}
init_clause_data();
flatten_use_list();
}
void ddfw::flatten_use_list() {
m_use_list_index.reset();
m_flat_use_list.reset();
for (auto const& ul : m_use_list) {
m_use_list_index.push_back(m_flat_use_list.size());
m_flat_use_list.append(ul);
}
m_use_list_index.push_back(m_flat_use_list.size());
}
void ddfw::flip(bool_var v) {
++m_flips;
literal lit = literal(v, !value(v));
literal nlit = ~lit;
SASSERT(is_true(lit));
for (unsigned cls_idx : use_list(*this, lit)) {
clause_info& ci = m_clauses[cls_idx];
ci.del(lit);
double w = ci.m_weight;
// cls becomes false: flip any variable in clause to receive reward w
switch (ci.m_num_trues) {
case 0: {
m_unsat.insert_fresh(cls_idx);
clause const& c = get_clause(cls_idx);
for (literal l : c) {
inc_reward(l, w);
inc_make(l);
}
inc_reward(lit, w);
break;
}
case 1:
dec_reward(to_literal(ci.m_trues), w);
break;
default:
break;
}
}
for (unsigned cls_idx : use_list(*this, nlit)) {
clause_info& ci = m_clauses[cls_idx];
double w = ci.m_weight;
// the clause used to have a single true (pivot) literal, now it has two.
// Then the previous pivot is no longer penalized for flipping.
switch (ci.m_num_trues) {
case 0: {
m_unsat.remove(cls_idx);
clause const& c = get_clause(cls_idx);
for (literal l : c) {
dec_reward(l, w);
dec_make(l);
}
dec_reward(nlit, w);
break;
}
case 1:
inc_reward(to_literal(ci.m_trues), w);
break;
default:
break;
}
ci.add(nlit);
}
value(v) = !value(v);
update_reward_avg(v);
}
bool ddfw::should_reinit_weights() {
return m_flips >= m_reinit_next;
}
void ddfw::do_reinit_weights() {
log();
if (m_reinit_count % 2 == 0) {
for (auto& ci : m_clauses)
ci.m_weight += 1;
}
else {
for (auto& ci : m_clauses)
if (ci.is_true())
ci.m_weight = m_config.m_init_clause_weight;
else
ci.m_weight = m_config.m_init_clause_weight + 1;
}
init_clause_data();
++m_reinit_count;
m_reinit_next += m_reinit_count * m_config.m_reinit_base;
}
void ddfw::init_clause_data() {
for (unsigned v = 0; v < num_vars(); ++v) {
make_count(v) = 0;
reward(v) = 0;
}
m_unsat_vars.reset();
m_unsat.reset();
unsigned sz = m_clauses.size();
for (unsigned i = 0; i < sz; ++i) {
auto& ci = m_clauses[i];
clause const& c = get_clause(i);
ci.m_trues = 0;
ci.m_num_trues = 0;
for (literal lit : c)
if (is_true(lit))
ci.add(lit);
switch (ci.m_num_trues) {
case 0:
for (literal lit : c) {
inc_reward(lit, ci.m_weight);
inc_make(lit);
}
m_unsat.insert_fresh(i);
break;
case 1:
dec_reward(to_literal(ci.m_trues), ci.m_weight);
break;
default:
break;
}
}
}
bool ddfw::should_restart() {
return m_flips >= m_restart_next;
}
void ddfw::do_restart() {
reinit_values();
init_clause_data();
m_restart_next += m_config.m_restart_base*get_luby(++m_restart_count);
}
/**
\brief the higher the bias, the lower the probability to deviate from the value of the bias
during a restart.
bias = 0 -> flip truth value with 50%
|bias| = 1 -> toss coin with 25% probability
|bias| = 2 -> toss coin with 12.5% probability
etc
*/
void ddfw::reinit_values() {
for (unsigned i = 0; i < num_vars(); ++i) {
int b = bias(i);
if (0 == (m_rand() % (1 + abs(b))))
value(i) = (m_rand() % 2) == 0;
else
value(i) = bias(i) > 0;
}
}
bool ddfw::should_parallel_sync() {
return m_par != nullptr && m_flips >= m_parsync_next;
}
void ddfw::save_priorities() {
m_probs.reset();
for (unsigned v = 0; v < num_vars(); ++v)
m_probs.push_back(-m_vars[v].m_reward_avg);
}
void ddfw::do_parallel_sync() {
if (m_par->from_solver(*this))
m_par->to_solver(*this);
++m_parsync_count;
m_parsync_next *= 3;
m_parsync_next /= 2;
}
void ddfw::save_model() {
m_model.reserve(num_vars());
for (unsigned i = 0; i < num_vars(); ++i)
m_model[i] = to_lbool(value(i));
save_priorities();
if (m_plugin)
m_plugin->on_save_model();
}
void ddfw::save_best_values() {
if (m_unsat.size() < m_min_sz) {
m_steps_since_progress = 0;
if (m_unsat.size() < 50 || m_min_sz * 10 > m_unsat.size() * 11)
save_model();
}
if (m_unsat.size() < m_min_sz) {
m_models.reset();
// skip saving the first model.
for (unsigned v = 0; v < num_vars(); ++v) {
int& b = bias(v);
if (abs(b) > 3) {
b = b > 0 ? 3 : -3;
}
}
}
unsigned h = value_hash();
unsigned occs = 0;
bool contains = m_models.find(h, occs);
if (!contains) {
for (unsigned v = 0; v < num_vars(); ++v)
bias(v) += value(v) ? 1 : -1;
if (m_models.size() > m_config.m_max_num_models)
m_models.erase(m_models.begin()->m_key);
}
m_models.insert(h, occs + 1);
if (occs > 100) {
m_restart_next = m_flips;
m_models.erase(h);
}
m_min_sz = m_unsat.size();
}
unsigned ddfw::value_hash() const {
unsigned s0 = 0, s1 = 0;
for (auto const& vi : m_vars) {
s0 += vi.m_value;
s1 += s0;
}
return s1;
}
/**
\brief Filter on whether to select a satisfied clause
1. with some probability prefer higher weight to lesser weight.
2. take into account number of trues ?
3. select multiple clauses instead of just one per clause in unsat.
*/
bool ddfw::select_clause(double max_weight, clause_info const& cn, unsigned& n) {
if (cn.m_num_trues == 0 || cn.m_weight + 1e-5 < max_weight)
return false;
if (cn.m_weight > max_weight) {
n = 2;
return true;
}
return (m_rand() % (n++)) == 0;
}
unsigned ddfw::select_max_same_sign(unsigned cf_idx) {
auto& ci = m_clauses[cf_idx];
unsigned cl = UINT_MAX; // clause pointer to same sign, max weight satisfied clause.
clause const& c = *ci.m_clause;
double max_weight = m_init_weight;
unsigned n = 1;
for (literal lit : c) {
for (unsigned cn_idx : use_list(*this, lit)) {
auto& cn = m_clauses[cn_idx];
if (select_clause(max_weight, cn, n)) {
cl = cn_idx;
max_weight = cn.m_weight;
}
}
}
return cl;
}
void ddfw::transfer_weight(unsigned from, unsigned to, double w) {
auto& cf = m_clauses[to];
auto& cn = m_clauses[from];
if (cn.m_weight < w)
return;
cf.m_weight += w;
cn.m_weight -= w;
for (literal lit : get_clause(to))
inc_reward(lit, w);
if (cn.m_num_trues == 1)
inc_reward(to_literal(cn.m_trues), w);
}
unsigned ddfw::select_random_true_clause() {
unsigned num_clauses = m_clauses.size();
unsigned rounds = 100 * num_clauses;
for (unsigned i = 0; i < rounds; ++i) {
unsigned idx = (m_rand() * m_rand()) % num_clauses;
auto & cn = m_clauses[idx];
if (cn.is_true() && cn.m_weight >= m_init_weight)
return idx;
}
return UINT_MAX;
}
// 1% chance to disregard neighbor
inline bool ddfw::disregard_neighbor() {
return false; // rand() % 1000 == 0;
}
double ddfw::calculate_transfer_weight(double w) {
return (w > m_init_weight) ? m_init_weight : 1;
}
void ddfw::shift_weights() {
++m_shifts;
for (unsigned to_idx : m_unsat) {
SASSERT(!m_clauses[to_idx].is_true());
unsigned from_idx = select_max_same_sign(to_idx);
if (from_idx == UINT_MAX || disregard_neighbor())
from_idx = select_random_true_clause();
if (from_idx == UINT_MAX)
continue;
auto & cn = m_clauses[from_idx];
SASSERT(cn.is_true());
double w = calculate_transfer_weight(cn.m_weight);
transfer_weight(from_idx, to_idx, w);
}
// DEBUG_CODE(invariant(););
}
std::ostream& ddfw::display(std::ostream& out) const {
unsigned num_cls = m_clauses.size();
for (unsigned i = 0; i < num_cls; ++i) {
out << get_clause(i) << " ";
auto const& ci = m_clauses[i];
out << ci.m_num_trues << " " << ci.m_weight << "\n";
}
for (unsigned v = 0; v < num_vars(); ++v) {
out << v << ": rw " << reward(v) << "\n";
}
out << "unsat vars: ";
for (bool_var v : m_unsat_vars) {
out << v << " ";
}
out << "\n";
return out;
}
void ddfw::invariant() {
// every variable in unsat vars is in a false clause.
for (bool_var v : m_unsat_vars) {
bool found = false;
for (unsigned cl : m_unsat) {
for (literal lit : get_clause(cl)) {
if (lit.var() == v) { found = true; break; }
}
if (found) break;
}
if (!found) IF_VERBOSE(0, verbose_stream() << "unsat var not found: " << v << "\n"; );
VERIFY(found);
}
for (unsigned v = 0; v < num_vars(); ++v) {
double v_reward = 0;
literal lit(v, !value(v));
for (unsigned j : m_use_list[lit.index()]) {
clause_info const& ci = m_clauses[j];
if (ci.m_num_trues == 1) {
SASSERT(lit == to_literal(ci.m_trues));
v_reward -= ci.m_weight;
}
}
for (unsigned j : m_use_list[(~lit).index()]) {
clause_info const& ci = m_clauses[j];
if (ci.m_num_trues == 0) {
v_reward += ci.m_weight;
}
}
IF_VERBOSE(0, if (v_reward != reward(v)) verbose_stream() << v << " " << v_reward << " " << reward(v) << "\n");
// SASSERT(reward(v) == v_reward);
}
DEBUG_CODE(
for (auto const& ci : m_clauses) {
SASSERT(ci.m_weight > 0);
}
for (unsigned i = 0; i < m_clauses.size(); ++i) {
bool found = false;
for (literal lit : get_clause(i)) {
if (is_true(lit)) found = true;
}
SASSERT(found == !m_unsat.contains(i));
}
// every variable in a false clause is in unsat vars
for (unsigned cl : m_unsat) {
for (literal lit : get_clause(cl)) {
SASSERT(m_unsat_vars.contains(lit.var()));
}
});
}
void ddfw::updt_params(params_ref const& _p) {
sat_params p(_p);
m_config.m_init_clause_weight = p.ddfw_init_clause_weight();
m_config.m_use_reward_zero_pct = p.ddfw_use_reward_pct();
m_config.m_reinit_base = p.ddfw_reinit_base();
m_config.m_restart_base = p.ddfw_restart_base();
}
}

View file

@ -1,300 +0,0 @@
/*++
Copyright (c) 2019 Microsoft Corporation
Module Name:
sat_ddfw.h
Abstract:
DDFW Local search module for clauses
Author:
Nikolaj Bjorner, Marijn Heule 2019-4-23
Notes:
http://www.ict.griffith.edu.au/~johnt/publications/CP2006raouf.pdf
--*/
#pragma once
#include "util/uint_set.h"
#include "util/rlimit.h"
#include "util/params.h"
#include "util/ema.h"
#include "sat/sat_clause.h"
#include "sat/sat_types.h"
namespace arith {
class sls;
}
namespace sat {
class solver;
class parallel;
class local_search_plugin {
public:
virtual ~local_search_plugin() {}
virtual void init_search() = 0;
virtual void finish_search() = 0;
virtual void flip(bool_var v) = 0;
virtual double reward(bool_var v) = 0;
virtual void on_rescale() = 0;
virtual void on_save_model() = 0;
virtual void on_restart() = 0;
};
class ddfw : public i_local_search {
friend class arith::sls;
public:
struct clause_info {
clause_info(clause* cl, double init_weight): m_weight(init_weight), m_clause(cl) {}
double m_weight; // weight of clause
unsigned m_trues = 0; // set of literals that are true
unsigned m_num_trues = 0; // size of true set
clause* m_clause;
bool is_true() const { return m_num_trues > 0; }
void add(literal lit) { ++m_num_trues; m_trues += lit.index(); }
void del(literal lit) { SASSERT(m_num_trues > 0); --m_num_trues; m_trues -= lit.index(); }
};
class use_list {
ddfw& p;
unsigned i;
public:
use_list(ddfw& p, literal lit) :
p(p), i(lit.index()) {}
unsigned const* begin() { return p.m_flat_use_list.data() + p.m_use_list_index[i]; }
unsigned const* end() { return p.m_flat_use_list.data() + p.m_use_list_index[i + 1]; }
unsigned size() const { return p.m_use_list_index[i + 1] - p.m_use_list_index[i]; }
};
protected:
struct config {
config() { reset(); }
unsigned m_use_reward_zero_pct;
unsigned m_init_clause_weight;
unsigned m_max_num_models;
unsigned m_restart_base;
unsigned m_reinit_base;
unsigned m_parsync_base;
double m_itau;
void reset() {
m_init_clause_weight = 8;
m_use_reward_zero_pct = 15;
m_max_num_models = (1 << 10);
m_restart_base = 100333;
m_reinit_base = 10000;
m_parsync_base = 333333;
m_itau = 0.5;
}
};
struct var_info {
bool m_value = false;
double m_reward = 0;
double m_last_reward = 0;
unsigned m_make_count = 0;
int m_bias = 0;
bool m_external = false;
ema m_reward_avg = 1e-5;
};
config m_config;
reslimit m_limit;
clause_allocator m_alloc;
svector<clause_info> m_clauses;
literal_vector m_assumptions;
svector<var_info> m_vars; // var -> info
svector<double> m_probs; // var -> probability of flipping
svector<double> m_scores; // reward -> score
model m_model; // var -> best assignment
unsigned m_init_weight = 2;
vector<unsigned_vector> m_use_list;
unsigned_vector m_flat_use_list;
unsigned_vector m_use_list_index;
indexed_uint_set m_unsat;
indexed_uint_set m_unsat_vars; // set of variables that are in unsat clauses
random_gen m_rand;
unsigned m_num_non_binary_clauses = 0;
unsigned m_restart_count = 0, m_reinit_count = 0, m_parsync_count = 0;
uint64_t m_restart_next = 0, m_reinit_next = 0, m_parsync_next = 0;
uint64_t m_flips = 0, m_last_flips = 0, m_shifts = 0;
unsigned m_min_sz = 0, m_steps_since_progress = 0;
u_map<unsigned> m_models;
stopwatch m_stopwatch;
parallel* m_par;
local_search_plugin* m_plugin = nullptr;
void flatten_use_list();
/**
* TBD: map reward value to a score, possibly through an exponential function, such as
* exp(-tau/r), where tau > 0
*/
inline double score(double r) { return r; }
inline unsigned num_vars() const { return m_vars.size(); }
inline unsigned& make_count(bool_var v) { return m_vars[v].m_make_count; }
inline bool& value(bool_var v) { return m_vars[v].m_value; }
inline bool value(bool_var v) const { return m_vars[v].m_value; }
inline double& reward(bool_var v) { return m_vars[v].m_reward; }
inline double reward(bool_var v) const { return m_vars[v].m_reward; }
inline double plugin_reward(bool_var v) { return is_external(v) ? (m_vars[v].m_last_reward = m_plugin->reward(v)) : reward(v); }
void set_external(bool_var v) { m_vars[v].m_external = true; }
inline bool is_external(bool_var v) const { return m_vars[v].m_external; }
inline int& bias(bool_var v) { return m_vars[v].m_bias; }
unsigned value_hash() const;
inline bool is_true(literal lit) const { return value(lit.var()) != lit.sign(); }
inline clause const& get_clause(unsigned idx) const { return *m_clauses[idx].m_clause; }
inline double get_weight(unsigned idx) const { return m_clauses[idx].m_weight; }
inline bool is_true(unsigned idx) const { return m_clauses[idx].is_true(); }
void update_reward_avg(bool_var v) { m_vars[v].m_reward_avg.update(reward(v)); }
unsigned select_max_same_sign(unsigned cf_idx);
inline void inc_make(literal lit) {
bool_var v = lit.var();
if (make_count(v)++ == 0) m_unsat_vars.insert_fresh(v);
}
inline void dec_make(literal lit) {
bool_var v = lit.var();
if (--make_count(v) == 0) m_unsat_vars.remove(v);
}
inline void inc_reward(literal lit, double w) { reward(lit.var()) += w; }
inline void dec_reward(literal lit, double w) { reward(lit.var()) -= w; }
void check_with_plugin();
void check_without_plugin();
// flip activity
template<bool uses_plugin>
bool do_flip();
template<bool uses_plugin>
bool_var pick_var(double& reward);
template<bool uses_plugin>
bool apply_flip(bool_var v, double reward);
template<bool uses_plugin>
bool do_literal_flip();
template<bool uses_plugin>
bool_var pick_literal_var();
void save_best_values();
void save_model();
void save_priorities();
// shift activity
void shift_weights();
inline double calculate_transfer_weight(double w);
// reinitialize weights activity
bool should_reinit_weights();
void do_reinit_weights();
inline bool select_clause(double max_weight, clause_info const& cn, unsigned& n);
// restart activity
bool should_restart();
void do_restart();
void reinit_values();
unsigned select_random_true_clause();
// parallel integration
bool should_parallel_sync();
void do_parallel_sync();
void log();
void init(unsigned sz, literal const* assumptions);
void init_clause_data();
void invariant();
void add(unsigned sz, literal const* c);
void del();
void add_assumptions();
inline void transfer_weight(unsigned from, unsigned to, double w);
inline bool disregard_neighbor();
public:
ddfw(): m_par(nullptr) {}
~ddfw() override;
void set(local_search_plugin* p) { m_plugin = p; }
lbool check(unsigned sz, literal const* assumptions, parallel* p) override;
void updt_params(params_ref const& p) override;
model const& get_model() const override { return m_model; }
reslimit& rlimit() override { return m_limit; }
void set_seed(unsigned n) override { m_rand.set_seed(n); }
void add(solver const& s) override;
bool get_value(bool_var v) const override { return value(v); }
std::ostream& display(std::ostream& out) const;
// for parallel integration
unsigned num_non_binary_clauses() const override { return m_num_non_binary_clauses; }
void reinit(solver& s, bool_vector const& phase) override;
void collect_statistics(statistics& st) const override {}
double get_priority(bool_var v) const override { return m_probs[v]; }
// access clause information and state of Boolean search
indexed_uint_set& unsat_set() { return m_unsat; }
unsigned num_clauses() const { return m_clauses.size(); }
clause_info& get_clause_info(unsigned idx) { return m_clauses[idx]; }
void remove_assumptions();
void flip(bool_var v);
use_list get_use_list(literal lit) { return use_list(*this, lit); }
};
}

View file

@ -0,0 +1,85 @@
/*++
Copyright (c) 2019 Microsoft Corporation
Module Name:
sat_ddfw_wrapper.cpp
*/
#include "sat/sat_ddfw_wrapper.h"
#include "sat/sat_solver.h"
#include "sat/sat_parallel.h"
namespace sat {
lbool ddfw_wrapper::check(unsigned sz, literal const* assumptions, parallel* p) {
flet<parallel*> _p(m_par, p);
m_ddfw.m_parallel_sync = nullptr;
if (m_par) {
m_ddfw.m_parallel_sync = [&]() -> bool {
if (should_parallel_sync()) {
do_parallel_sync();
return true;
}
else
return false;
};
}
return m_ddfw.check(sz, assumptions);
}
bool ddfw_wrapper::should_parallel_sync() {
return m_par != nullptr && m_ddfw.m_flips >= m_parsync_next;
}
void ddfw_wrapper::do_parallel_sync() {
if (m_par->from_solver(*this))
m_par->to_solver(*this);
++m_parsync_count;
m_parsync_next *= 3;
m_parsync_next /= 2;
}
void ddfw_wrapper::reinit(solver& s, bool_vector const& phase) {
add(s);
m_ddfw.add_assumptions();
for (unsigned v = 0; v < phase.size(); ++v) {
m_ddfw.value(v) = phase[v];
m_ddfw.reward(v) = 0;
m_ddfw.make_count(v) = 0;
}
m_ddfw.init_clause_data();
m_ddfw.flatten_use_list();
}
void ddfw_wrapper::add(solver const& s) {
m_ddfw.set_seed(s.get_config().m_random_seed);
m_ddfw.m_clauses.reset();
m_ddfw.m_use_list.reset();
m_ddfw.m_num_non_binary_clauses = 0;
unsigned trail_sz = s.init_trail_size();
for (unsigned i = 0; i < trail_sz; ++i) {
m_ddfw.add(1, s.m_trail.data() + i);
}
unsigned sz = s.m_watches.size();
for (unsigned l_idx = 0; l_idx < sz; ++l_idx) {
literal l1 = ~to_literal(l_idx);
watch_list const & wlist = s.m_watches[l_idx];
for (watched const& w : wlist) {
if (!w.is_binary_non_learned_clause())
continue;
literal l2 = w.get_literal();
if (l1.index() > l2.index())
continue;
literal ls[2] = { l1, l2 };
m_ddfw.add(2, ls);
}
}
for (clause* c : s.m_clauses)
m_ddfw.add(c->size(), c->begin());
}
}

View file

@ -0,0 +1,89 @@
/*++
Copyright (c) 2019 Microsoft Corporation
Module Name:
sat_ddfw_wrapper.h
--*/
#pragma once
#include "util/uint_set.h"
#include "util/rlimit.h"
#include "util/params.h"
#include "util/ema.h"
#include "util/sat_sls.h"
#include "util/map.h"
#include "ast/sls/sat_ddfw.h"
#include "sat/sat_types.h"
namespace sat {
class solver;
class parallel;
class ddfw_wrapper : public i_local_search {
protected:
ddfw m_ddfw;
parallel* m_par = nullptr;
unsigned m_parsync_count = 0;
uint64_t m_parsync_next = 0;
void do_parallel_sync();
bool should_parallel_sync();
public:
ddfw_wrapper() {}
~ddfw_wrapper() override {}
void set_plugin(local_search_plugin* p) { m_ddfw.set_plugin(p); }
lbool check(unsigned sz, literal const* assumptions, parallel* p) override;
void updt_params(params_ref const& p) override { m_ddfw.updt_params(p); }
model const& get_model() const override { return m_ddfw.get_model(); }
reslimit& rlimit() override { return m_ddfw.rlimit(); }
void set_seed(unsigned n) override { m_ddfw.set_seed(n); }
void add(solver const& s) override;
bool get_value(bool_var v) const override { return m_ddfw.get_value(v); }
std::ostream& display(std::ostream& out) const { return m_ddfw.display(out); }
// for parallel integration
unsigned num_non_binary_clauses() const override { return m_ddfw.num_non_binary_clauses(); }
void reinit(solver& s, bool_vector const& phase) override;
void collect_statistics(statistics& st) const override {}
double get_priority(bool_var v) const override { return m_ddfw.get_priority(v); }
// access clause information and state of Boolean search
indexed_uint_set& unsat_set() { return m_ddfw.unsat_set(); }
vector<clause_info> const& clauses() const { return m_ddfw.clauses(); }
clause_info& get_clause_info(unsigned idx) { return m_ddfw.get_clause_info(idx); }
void remove_assumptions() { m_ddfw.remove_assumptions(); }
void flip(bool_var v) { m_ddfw.flip(v); }
inline double get_reward(bool_var v) const { return m_ddfw.get_reward(v); }
void add(unsigned sz, literal const* c) { m_ddfw.add(sz, c); }
void reinit() { m_ddfw.reinit(); }
};
}

View file

@ -19,7 +19,7 @@ Notes:
#include "sat/sat_local_search.h"
#include "sat/sat_solver.h"
#include "sat/sat_params.hpp"
#include "params/sat_params.hpp"
#include "util/timer.h"
namespace sat {

View file

@ -1,128 +0,0 @@
def_module_params('sat',
export=True,
description='propositional SAT solver',
params=(max_memory_param(),
('phase', SYMBOL, 'caching', 'phase selection strategy: always_false, always_true, basic_caching, random, caching, local_search'),
('phase.sticky', BOOL, True, 'use sticky phase caching'),
('search.unsat.conflicts', UINT, 400, 'period for solving for unsat (in number of conflicts)'),
('search.sat.conflicts', UINT, 400, 'period for solving for sat (in number of conflicts)'),
('rephase.base', UINT, 1000, 'number of conflicts per rephase '),
('reorder.base', UINT, UINT_MAX, 'number of conflicts per random reorder '),
('reorder.itau', DOUBLE, 4.0, 'inverse temperature for softmax'),
('reorder.activity_scale', UINT, 100, 'scaling factor for activity update'),
('propagate.prefetch', BOOL, True, 'prefetch watch lists for assigned literals'),
('restart', SYMBOL, 'ema', 'restart strategy: static, luby, ema or geometric'),
('restart.initial', UINT, 2, 'initial restart (number of conflicts)'),
('restart.max', UINT, UINT_MAX, 'maximal number of restarts.'),
('restart.fast', BOOL, True, 'use fast restart approach only removing less active literals.'),
('restart.factor', DOUBLE, 1.5, 'restart increment factor for geometric strategy'),
('restart.margin', DOUBLE, 1.1, 'margin between fast and slow restart factors. For ema'),
('restart.emafastglue', DOUBLE, 3e-2, 'ema alpha factor for fast moving average'),
('restart.emaslowglue', DOUBLE, 1e-5, 'ema alpha factor for slow moving average'),
('variable_decay', UINT, 110, 'multiplier (divided by 100) for the VSIDS activity increment'),
('inprocess.max', UINT, UINT_MAX, 'maximal number of inprocessing passes'),
('inprocess.out', SYMBOL, '', 'file to dump result of the first inprocessing step and exit'),
('branching.heuristic', SYMBOL, 'vsids', 'branching heuristic vsids, chb'),
('branching.anti_exploration', BOOL, False, 'apply anti-exploration heuristic for branch selection'),
('random_freq', DOUBLE, 0.01, 'frequency of random case splits'),
('random_seed', UINT, 0, 'random seed'),
('burst_search', UINT, 100, 'number of conflicts before first global simplification'),
('enable_pre_simplify', BOOL, False, 'enable pre simplifications before the bounded search'),
('max_conflicts', UINT, UINT_MAX, 'maximum number of conflicts'),
('gc', SYMBOL, 'glue_psm', 'garbage collection strategy: psm, glue, glue_psm, dyn_psm'),
('gc.initial', UINT, 20000, 'learned clauses garbage collection frequency'),
('gc.increment', UINT, 500, 'increment to the garbage collection threshold'),
('gc.small_lbd', UINT, 3, 'learned clauses with small LBD are never deleted (only used in dyn_psm)'),
('gc.k', UINT, 7, 'learned clauses that are inactive for k gc rounds are permanently deleted (only used in dyn_psm)'),
('gc.burst', BOOL, False, 'perform eager garbage collection during initialization'),
('gc.defrag', BOOL, True, 'defragment clauses when garbage collecting'),
('simplify.delay', UINT, 0, 'set initial delay of simplification by a conflict count'),
('force_cleanup', BOOL, False, 'force cleanup to remove tautologies and simplify clauses'),
('minimize_lemmas', BOOL, True, 'minimize learned clauses'),
('dyn_sub_res', BOOL, True, 'dynamic subsumption resolution for minimizing learned clauses'),
('core.minimize', BOOL, False, 'minimize computed core'),
('core.minimize_partial', BOOL, False, 'apply partial (cheap) core minimization'),
('backtrack.scopes', UINT, 100, 'number of scopes to enable chronological backtracking'),
('backtrack.conflicts', UINT, 4000, 'number of conflicts before enabling chronological backtracking'),
('threads', UINT, 1, 'number of parallel threads to use'),
('dimacs.core', BOOL, False, 'extract core from DIMACS benchmarks'),
('drat.disable', BOOL, False, 'override anything that enables DRAT'),
('smt', BOOL, False, 'use the SAT solver based incremental SMT core'),
('smt.proof.check', BOOL, False, 'check proofs on the fly during SMT search'),
('drat.file', SYMBOL, '', 'file to dump DRAT proofs'),
('drat.binary', BOOL, False, 'use Binary DRAT output format'),
('drat.check_unsat', BOOL, False, 'build up internal proof and check'),
('drat.check_sat', BOOL, False, 'build up internal trace, check satisfying model'),
('drat.activity', BOOL, False, 'dump variable activities'),
('cardinality.solver', BOOL, True, 'use cardinality solver'),
('pb.solver', SYMBOL, 'solver', 'method for handling Pseudo-Boolean constraints: circuit (arithmetical circuit), sorting (sorting circuit), totalizer (use totalizer encoding), binary_merge, segmented, solver (use native solver)'),
('pb.min_arity', UINT, 9, 'minimal arity to compile pb/cardinality constraints to CNF'),
('cardinality.encoding', SYMBOL, 'grouped', 'encoding used for at-most-k constraints: grouped, bimander, ordered, unate, circuit'),
('pb.resolve', SYMBOL, 'cardinality', 'resolution strategy for boolean algebra solver: cardinality, rounding'),
('pb.lemma_format', SYMBOL, 'cardinality', 'generate either cardinality or pb lemmas'),
('euf', BOOL, False, 'enable euf solver (this feature is preliminary and not ready for general consumption)'),
('ddfw_search', BOOL, False, 'use ddfw local search instead of CDCL'),
('ddfw.init_clause_weight', UINT, 8, 'initial clause weight for DDFW local search'),
('ddfw.use_reward_pct', UINT, 15, 'percentage to pick highest reward variable when it has reward 0'),
('ddfw.restart_base', UINT, 100000, 'number of flips used a starting point for hesitant restart backoff'),
('ddfw.reinit_base', UINT, 10000, 'increment basis for geometric backoff scheme of re-initialization of weights'),
('ddfw.threads', UINT, 0, 'number of ddfw threads to run in parallel with sat solver'),
('prob_search', BOOL, False, 'use probsat local search instead of CDCL'),
('local_search', BOOL, False, 'use local search instead of CDCL'),
('local_search_threads', UINT, 0, 'number of local search threads to find satisfiable solution'),
('local_search_mode', SYMBOL, 'wsat', 'local search algorithm, either default wsat or qsat'),
('local_search_dbg_flips', BOOL, False, 'write debug information for number of flips'),
('binspr', BOOL, False, 'enable SPR inferences of binary propagation redundant clauses. This inprocessing step eliminates models'),
('anf', BOOL, False, 'enable ANF based simplification in-processing'),
('anf.delay', UINT, 2, 'delay ANF simplification by in-processing round'),
('anf.exlin', BOOL, False, 'enable extended linear simplification'),
('cut', BOOL, False, 'enable AIG based simplification in-processing'),
('cut.delay', UINT, 2, 'delay cut simplification by in-processing round'),
('cut.aig', BOOL, False, 'extract aigs (and ites) from cluases for cut simplification'),
('cut.lut', BOOL, False, 'extract luts from clauses for cut simplification'),
('cut.xor', BOOL, False, 'extract xors from clauses for cut simplification'),
('cut.npn3', BOOL, False, 'extract 3 input functions from clauses for cut simplification'),
('cut.dont_cares', BOOL, True, 'integrate dont cares with cuts'),
('cut.redundancies', BOOL, True, 'integrate redundancy checking of cuts'),
('cut.force', BOOL, False, 'force redoing cut-enumeration until a fixed-point'),
('lookahead.cube.cutoff', SYMBOL, 'depth', 'cutoff type used to create lookahead cubes: depth, freevars, psat, adaptive_freevars, adaptive_psat'),
# - depth: the maximal cutoff is fixed to the value of lookahead.cube.depth.
# So if the value is 10, at most 1024 cubes will be generated of length 10.
# - freevars: cutoff based on a variable fraction of lookahead.cube.freevars.
# Cut if the number of current unassigned variables drops below a fraction of number of initial variables.
# - psat: Let psat_heur := (Sum_{clause C} (psat.clause_base ^ {-|C|+1})) / |freevars|^psat.var_exp
# Cut if the value of psat_heur exceeds psat.trigger
# - adaptive_freevars: Cut if the number of current unassigned variables drops below a fraction of free variables
# at the time of the last conflict. The fraction is increased every time the cutoff is created.
# - adative_psat: Cut based on psat_heur in an adaptive way.
('lookahead.cube.fraction', DOUBLE, 0.4, 'adaptive fraction to create lookahead cubes. Used when lookahead.cube.cutoff is adaptive_freevars or adaptive_psat'),
('lookahead.cube.depth', UINT, 1, 'cut-off depth to create cubes. Used when lookahead.cube.cutoff is depth.'),
('lookahead.cube.freevars', DOUBLE, 0.8, 'cube free variable fraction. Used when lookahead.cube.cutoff is freevars'),
('lookahead.cube.psat.var_exp', DOUBLE, 1, 'free variable exponent for PSAT cutoff'),
('lookahead.cube.psat.clause_base', DOUBLE, 2, 'clause base for PSAT cutoff'),
('lookahead.cube.psat.trigger', DOUBLE, 5, 'trigger value to create lookahead cubes for PSAT cutoff. Used when lookahead.cube.cutoff is psat'),
('lookahead.preselect', BOOL, False, 'use pre-selection of subset of variables for branching'),
('lookahead_simplify', BOOL, False, 'use lookahead solver during simplification'),
('lookahead_scores', BOOL, False, 'extract lookahead scores. A utility that can only be used from the DIMACS front-end'),
('lookahead.double', BOOL, True, 'enable double lookahead'),
('lookahead.use_learned', BOOL, False, 'use learned clauses when selecting lookahead literal'),
('lookahead_simplify.bca', BOOL, True, 'add learned binary clauses as part of lookahead simplification'),
('lookahead.global_autarky', BOOL, False, 'prefer to branch on variables that occur in clauses that are reduced'),
('lookahead.delta_fraction', DOUBLE, 1.0, 'number between 0 and 1, the smaller the more literals are selected for double lookahead'),
('lookahead.reward', SYMBOL, 'march_cu', 'select lookahead heuristic: ternary, heule_schur (Heule Schur), heuleu (Heule Unit), unit, or march_cu'))
# reward function used to determine which literal to cube on.
# - ternary: reward function useful for random 3-SAT instances. Used by Heule and Knuth in March.
# - heule_schur: reward function based on "Schur Number 5", Heule, AAAI 2018
# The score of a literal lit is:
# Sum_{C in Clauses | lit in C} 2 ^ (- |C|+1)
# * Sum_{lit' in C | lit' != lit} lit_occs(~lit')
# / | C |
# where lit_occs(lit) is the number of clauses containing lit.
# - heuleu: The score of a literal lit is: Sum_{C in Clauses | lit in C} 2 ^ (-|C| + 1)
# - unit: heule_schur + also counts number of unit clauses.
# - march_cu: default reward function used in a version of March
# Each reward function also comes with its own variant of "mix_diff", which
# is the function for combining reward metrics for the positive and negative variant of a literal.
)

View file

@ -29,7 +29,7 @@ Revision History:
#include "sat/sat_solver.h"
#include "sat/sat_integrity_checker.h"
#include "sat/sat_lookahead.h"
#include "sat/sat_ddfw.h"
#include "sat/sat_ddfw_wrapper.h"
#include "sat/sat_prob.h"
#include "sat/sat_anf_simplifier.h"
#include "sat/sat_cut_simplifier.h"
@ -1365,7 +1365,7 @@ namespace sat {
}
literal_vector _lits;
scoped_limits scoped_rl(rlimit());
m_local_search = alloc(ddfw);
m_local_search = alloc(ddfw_wrapper);
scoped_ls _ls(*this);
SASSERT(m_local_search);
m_local_search->add(*this);
@ -1442,7 +1442,7 @@ namespace sat {
lbool solver::do_ddfw_search(unsigned num_lits, literal const* lits) {
if (m_ext) return l_undef;
SASSERT(!m_local_search);
m_local_search = alloc(ddfw);
m_local_search = alloc(ddfw_wrapper);
return invoke_local_search(num_lits, lits);
}
@ -1485,7 +1485,7 @@ namespace sat {
// set up ddfw search
for (int i = 0; i < num_ddfw; ++i) {
ddfw* d = alloc(ddfw);
ddfw_wrapper* d = alloc(ddfw_wrapper);
d->updt_params(m_params);
d->set_seed(m_config.m_random_seed + i);
d->add(*this);
@ -2932,6 +2932,7 @@ namespace sat {
bool_var v = m_trail[i].var();
m_best_phase[v] = m_phase[v];
}
set_has_new_best_phase(true);
}
}

View file

@ -152,6 +152,7 @@ namespace sat {
bool_vector m_phase;
bool_vector m_best_phase;
bool_vector m_prev_phase;
bool m_new_best_phase = false;
svector<char> m_assigned_since_gc;
search_state m_search_state;
unsigned m_search_unsat_conflicts;
@ -228,7 +229,7 @@ namespace sat {
friend class parallel;
friend class lookahead;
friend class local_search;
friend class ddfw;
friend class ddfw_wrapper;
friend class prob;
friend class unit_walk;
friend struct mk_stat;
@ -380,6 +381,9 @@ namespace sat {
bool was_eliminated(literal l) const { return was_eliminated(l.var()); }
void set_phase(literal l) override { if (l.var() < num_vars()) m_best_phase[l.var()] = m_phase[l.var()] = !l.sign(); }
bool get_phase(bool_var b) { return m_phase.get(b, false); }
bool get_best_phase(bool_var b) { return m_best_phase.get(b, false); }
void set_has_new_best_phase(bool b) { m_new_best_phase = b; }
bool has_new_best_phase() const { return m_new_best_phase; }
void move_to_front(bool_var b);
unsigned scope_lvl() const { return m_scope_lvl; }
unsigned search_lvl() const { return m_search_lvl; }

View file

@ -39,7 +39,7 @@ Notes:
#include "model/model_v2_pp.h"
#include "model/model_evaluator.h"
#include "sat/sat_solver.h"
#include "sat/sat_params.hpp"
#include "params/sat_params.hpp"
#include "sat/smt/euf_solver.h"
#include "sat/tactic/goal2sat.h"
#include "sat/tactic/sat2goal.h"

View file

@ -33,7 +33,7 @@ Notes:
#include "model/model_evaluator.h"
#include "sat/sat_solver.h"
#include "solver/simplifier_solver.h"
#include "sat/sat_params.hpp"
#include "params/sat_params.hpp"
#include "sat/smt/euf_solver.h"
#include "sat/tactic/goal2sat.h"
#include "sat/tactic/sat2goal.h"
@ -586,8 +586,9 @@ private:
void add_assumption(expr* a) {
init_goal2sat();
m_dep.insert(a, m_goal2sat.internalize(a));
get_euf()->add_assertion(a);
auto lit = m_goal2sat.internalize(a);
m_dep.insert(a, lit);
get_euf()->add_clause(1, &lit);
}
void internalize_assumptions(expr_ref_vector const& asms) {

View file

@ -3,7 +3,6 @@ z3_add_component(sat_smt
arith_axioms.cpp
arith_diagnostics.cpp
arith_internalize.cpp
arith_sls.cpp
arith_solver.cpp
arith_value.cpp
array_axioms.cpp
@ -22,7 +21,6 @@ z3_add_component(sat_smt
euf_ackerman.cpp
euf_internalize.cpp
euf_invariant.cpp
euf_local_search.cpp
euf_model.cpp
euf_proof.cpp
euf_proof_checker.cpp

View file

@ -547,6 +547,7 @@ namespace arith {
}
void solver::new_diseq_eh(euf::th_eq const& e) {
TRACE("artih", tout << mk_bounded_pp(e.eq(), m) << "\n");
ensure_column(e.v1());
ensure_column(e.v2());
m_delayed_eqs.push_back(std::make_pair(e, false));

View file

@ -1,642 +0,0 @@
/*++
Copyright (c) 2023 Microsoft Corporation
Module Name:
arith_local_search.cpp
Abstract:
Local search dispatch for SMT
Author:
Nikolaj Bjorner (nbjorner) 2023-02-07
--*/
#include "sat/sat_solver.h"
#include "sat/smt/arith_solver.h"
namespace arith {
sls::sls(solver& s):
s(s), m(s.m) {}
void sls::reset() {
m_bool_vars.reset();
m_vars.reset();
m_terms.reset();
}
void sls::save_best_values() {
for (unsigned v = 0; v < s.get_num_vars(); ++v)
m_vars[v].m_best_value = m_vars[v].m_value;
check_ineqs();
if (unsat().size() == 1) {
auto idx = *unsat().begin();
verbose_stream() << idx << "\n";
auto const& c = *m_bool_search->m_clauses[idx].m_clause;
verbose_stream() << c << "\n";
for (auto lit : c) {
bool_var bv = lit.var();
ineq* i = atom(bv);
if (i)
verbose_stream() << lit << ": " << *i << "\n";
}
verbose_stream() << "\n";
}
}
void sls::store_best_values() {
// first compute assignment to terms
// then update non-basic variables in tableau.
if (!unsat().empty())
return;
for (auto const& [t,v] : m_terms) {
int64_t val = 0;
lp::lar_term const& term = s.lp().get_term(t);
for (lp::lar_term::ival const& arg : term) {
auto t2 = arg.j();
auto w = s.lp().local_to_external(t2);
val += to_numeral(arg.coeff()) * m_vars[w].m_best_value;
}
m_vars[v].m_best_value = val;
}
for (unsigned v = 0; v < s.get_num_vars(); ++v) {
if (s.is_bool(v))
continue;
if (!s.lp().external_is_used(v))
continue;
int64_t new_value = m_vars[v].m_best_value;
s.ensure_column(v);
lp::lpvar vj = s.lp().external_to_local(v);
SASSERT(vj != lp::null_lpvar);
if (!s.lp().is_base(vj)) {
rational new_value_(new_value, rational::i64());
lp::impq val(new_value_, rational::zero());
s.lp().set_value_for_nbasic_column(vj, val);
}
}
lbool r = s.make_feasible();
VERIFY (!unsat().empty() || r == l_true);
#if 0
if (unsat().empty())
s.m_num_conflicts = s.get_config().m_arith_propagation_threshold;
#endif
auto check_bool_var = [&](sat::bool_var bv) {
auto* ineq = m_bool_vars.get(bv, nullptr);
if (!ineq)
return;
api_bound* b = nullptr;
s.m_bool_var2bound.find(bv, b);
if (!b)
return;
auto bound = b->get_value();
theory_var v = b->get_var();
if (s.get_phase(bv) == m_bool_search->get_model()[bv])
return;
switch (b->get_bound_kind()) {
case lp_api::lower_t:
verbose_stream() << "v" << v << " " << bound << " <= " << s.get_value(v) << " " << m_vars[v].m_best_value << "\n";
break;
case lp_api::upper_t:
verbose_stream() << "v" << v << " " << bound << " >= " << s.get_value(v) << " " << m_vars[v].m_best_value << "\n";
break;
}
int64_t value = 0;
for (auto const& [coeff, v] : ineq->m_args) {
value += coeff * m_vars[v].m_best_value;
}
ineq->m_args_value = value;
verbose_stream() << *ineq << " dtt " << dtt(false, *ineq) << " phase " << s.get_phase(bv) << " model " << m_bool_search->get_model()[bv] << "\n";
for (auto const& [coeff, v] : ineq->m_args)
verbose_stream() << "v" << v << " := " << m_vars[v].m_best_value << "\n";
s.display(verbose_stream());
display(verbose_stream());
UNREACHABLE();
exit(0);
};
if (unsat().empty()) {
for (bool_var v = 0; v < s.s().num_vars(); ++v)
check_bool_var(v);
}
}
void sls::set(sat::ddfw* d) {
m_bool_search = d;
reset();
m_bool_vars.reserve(s.s().num_vars());
add_vars();
for (unsigned i = 0; i < d->num_clauses(); ++i)
for (sat::literal lit : *d->get_clause_info(i).m_clause)
init_bool_var(lit.var());
for (unsigned v = 0; v < s.s().num_vars(); ++v)
init_bool_var_assignment(v);
d->set(this);
}
// distance to true
int64_t sls::dtt(bool sign, int64_t args, ineq const& ineq) const {
switch (ineq.m_op) {
case ineq_kind::LE:
if (sign) {
if (args <= ineq.m_bound)
return ineq.m_bound - args + 1;
return 0;
}
if (args <= ineq.m_bound)
return 0;
return args - ineq.m_bound;
case ineq_kind::EQ:
if (sign) {
if (args == ineq.m_bound)
return 1;
return 0;
}
if (args == ineq.m_bound)
return 0;
return 1;
case ineq_kind::NE:
if (sign) {
if (args == ineq.m_bound)
return 0;
return 1;
}
if (args == ineq.m_bound)
return 1;
return 0;
case ineq_kind::LT:
if (sign) {
if (args < ineq.m_bound)
return ineq.m_bound - args;
return 0;
}
if (args < ineq.m_bound)
return 0;
return args - ineq.m_bound + 1;
default:
UNREACHABLE();
return 0;
}
}
//
// dtt is high overhead. It walks ineq.m_args
// m_vars[w].m_value can be computed outside and shared among calls
// different data-structures for storing coefficients
//
int64_t sls::dtt(bool sign, ineq const& ineq, var_t v, int64_t new_value) const {
for (auto const& [coeff, w] : ineq.m_args)
if (w == v)
return dtt(sign, ineq.m_args_value + coeff * (new_value - m_vars[v].m_value), ineq);
return 1;
}
int64_t sls::dtt(bool sign, ineq const& ineq, int64_t coeff, int64_t old_value, int64_t new_value) const {
return dtt(sign, ineq.m_args_value + coeff * (new_value - old_value), ineq);
}
bool sls::cm(bool old_sign, ineq const& ineq, var_t v, int64_t& new_value) {
for (auto const& [coeff, w] : ineq.m_args)
if (w == v)
return cm(old_sign, ineq, v, coeff, new_value);
return false;
}
bool sls::cm(bool old_sign, ineq const& ineq, var_t v, int64_t coeff, int64_t& new_value) {
SASSERT(ineq.is_true() != old_sign);
VERIFY(ineq.is_true() != old_sign);
auto bound = ineq.m_bound;
auto argsv = ineq.m_args_value;
bool solved = false;
int64_t delta = argsv - bound;
auto make_eq = [&]() {
SASSERT(delta != 0);
if (delta < 0)
new_value = value(v) + (abs(delta) + abs(coeff) - 1) / coeff;
else
new_value = value(v) - (delta + abs(coeff) - 1) / coeff;
solved = argsv + coeff * (new_value - value(v)) == bound;
if (!solved && abs(coeff) == 1) {
verbose_stream() << "did not solve equality " << ineq << " for " << v << "\n";
verbose_stream() << new_value << " " << value(v) << " delta " << delta << " lhs " << (argsv + coeff * (new_value - value(v))) << " bound " << bound << "\n";
UNREACHABLE();
}
return solved;
};
auto make_diseq = [&]() {
if (delta >= 0)
delta++;
else
delta--;
new_value = value(v) + (abs(delta) + abs(coeff) - 1) / coeff;
VERIFY(argsv + coeff * (new_value - value(v)) != bound);
return true;
};
if (!old_sign) {
switch (ineq.m_op) {
case ineq_kind::LE:
// args <= bound -> args > bound
SASSERT(argsv <= bound);
SASSERT(delta <= 0);
--delta;
new_value = value(v) + (abs(delta) + abs(coeff) - 1) / coeff;
VERIFY(argsv + coeff * (new_value - value(v)) > bound);
return true;
case ineq_kind::LT:
// args < bound -> args >= bound
SASSERT(argsv <= ineq.m_bound);
SASSERT(delta <= 0);
new_value = value(v) + (abs(delta) + abs(coeff) - 1) / coeff;
VERIFY(argsv + coeff * (new_value - value(v)) >= bound);
return true;
case ineq_kind::EQ:
return make_diseq();
case ineq_kind::NE:
return make_eq();
default:
UNREACHABLE();
break;
}
}
else {
switch (ineq.m_op) {
case ineq_kind::LE:
SASSERT(argsv > ineq.m_bound);
SASSERT(delta > 0);
new_value = value(v) - (delta + abs(coeff) - 1) / coeff;
VERIFY(argsv + coeff * (new_value - value(v)) <= bound);
return true;
case ineq_kind::LT:
SASSERT(argsv >= ineq.m_bound);
SASSERT(delta >= 0);
++delta;
new_value = value(v) - (abs(delta) + abs(coeff) - 1) / coeff;
VERIFY(argsv + coeff * (new_value - value(v)) < bound);
return true;
case ineq_kind::NE:
return make_diseq();
case ineq_kind::EQ:
return make_eq();
default:
UNREACHABLE();
break;
}
}
return false;
}
// flip on the first positive score
// it could be changed to flip on maximal positive score
// or flip on maximal non-negative score
// or flip on first non-negative score
bool sls::flip(bool sign, ineq const& ineq) {
int64_t new_value;
auto v = ineq.m_var_to_flip;
if (v == UINT_MAX) {
IF_VERBOSE(1, verbose_stream() << "no var to flip\n");
return false;
}
if (!cm(sign, ineq, v, new_value)) {
verbose_stream() << "no critical move for " << v << "\n";
return false;
}
update(v, new_value);
return true;
}
//
// dscore(op) = sum_c (dts(c,alpha) - dts(c,alpha_after)) * weight(c)
// TODO - use cached dts instead of computed dts
// cached dts has to be updated when the score of literals are updated.
//
double sls::dscore(var_t v, int64_t new_value) const {
double score = 0;
auto const& vi = m_vars[v];
for (auto const& [coeff, bv] : vi.m_bool_vars) {
sat::literal lit(bv, false);
for (auto cl : m_bool_search->get_use_list(lit))
score += (compute_dts(cl) - dts(cl, v, new_value)) * m_bool_search->get_weight(cl);
for (auto cl : m_bool_search->get_use_list(~lit))
score += (compute_dts(cl) - dts(cl, v, new_value)) * m_bool_search->get_weight(cl);
}
return score;
}
//
// cm_score is costly. It involves several cache misses.
// Note that
// - m_bool_search->get_use_list(lit).size() is "often" 1 or 2
// - dtt_old can be saved
//
int sls::cm_score(var_t v, int64_t new_value) {
int score = 0;
auto& vi = m_vars[v];
int64_t old_value = vi.m_value;
for (auto const& [coeff, bv] : vi.m_bool_vars) {
auto const& ineq = *atom(bv);
bool old_sign = sign(bv);
int64_t dtt_old = dtt(old_sign, ineq);
int64_t dtt_new = dtt(old_sign, ineq, coeff, old_value, new_value);
if ((dtt_old == 0) == (dtt_new == 0))
continue;
sat::literal lit(bv, old_sign);
if (dtt_old == 0)
// flip from true to false
lit.neg();
// lit flips form false to true:
for (auto cl : m_bool_search->get_use_list(lit)) {
auto const& clause = get_clause_info(cl);
if (!clause.is_true())
++score;
}
// ignore the situation where clause contains multiple literals using v
for (auto cl : m_bool_search->get_use_list(~lit)) {
auto const& clause = get_clause_info(cl);
if (clause.m_num_trues == 1)
--score;
}
}
return score;
}
int64_t sls::compute_dts(unsigned cl) const {
int64_t d(1), d2;
bool first = true;
for (auto a : get_clause(cl)) {
auto const* ineq = atom(a.var());
if (!ineq)
continue;
d2 = dtt(a.sign(), *ineq);
if (first)
d = d2, first = false;
else
d = std::min(d, d2);
if (d == 0)
break;
}
return d;
}
int64_t sls::dts(unsigned cl, var_t v, int64_t new_value) const {
int64_t d(1), d2;
bool first = true;
for (auto lit : get_clause(cl)) {
auto const* ineq = atom(lit.var());
if (!ineq)
continue;
d2 = dtt(lit.sign(), *ineq, v, new_value);
if (first)
d = d2, first = false;
else
d = std::min(d, d2);
if (d == 0)
break;
}
return d;
}
void sls::update(var_t v, int64_t new_value) {
auto& vi = m_vars[v];
auto old_value = vi.m_value;
for (auto const& [coeff, bv] : vi.m_bool_vars) {
auto& ineq = *atom(bv);
bool old_sign = sign(bv);
sat::literal lit(bv, old_sign);
SASSERT(is_true(lit));
ineq.m_args_value += coeff * (new_value - old_value);
int64_t dtt_new = dtt(old_sign, ineq);
if (dtt_new != 0)
m_bool_search->flip(bv);
SASSERT(dtt(sign(bv), ineq) == 0);
}
vi.m_value = new_value;
}
void sls::add_vars() {
SASSERT(m_vars.empty());
for (unsigned v = 0; v < s.get_num_vars(); ++v) {
int64_t value = s.is_registered_var(v) ? to_numeral(s.get_ivalue(v).x) : 0;
auto k = s.is_int(v) ? sls::var_kind::INT : sls::var_kind::REAL;
m_vars.push_back({ value, value, k, {} });
}
}
sls::ineq& sls::new_ineq(ineq_kind op, int64_t const& bound) {
auto* i = alloc(ineq);
i->m_bound = bound;
i->m_op = op;
return *i;
}
void sls::add_arg(sat::bool_var bv, ineq& ineq, int64_t const& c, var_t v) {
ineq.m_args.push_back({ c, v });
ineq.m_args_value += c * value(v);
m_vars[v].m_bool_vars.push_back({ c, bv});
}
int64_t sls::to_numeral(rational const& r) {
if (r.is_int64())
return r.get_int64();
return 0;
}
void sls::add_args(sat::bool_var bv, ineq& ineq, lp::lpvar t, theory_var v, int64_t sign) {
if (s.lp().column_has_term(t)) {
lp::lar_term const& term = s.lp().get_term(t);
m_terms.push_back({t,v});
for (lp::lar_term::ival arg : term) {
auto t2 = arg.j();
auto w = s.lp().local_to_external(t2);
add_arg(bv, ineq, sign * to_numeral(arg.coeff()), w);
}
}
else
add_arg(bv, ineq, sign, s.lp().local_to_external(t));
}
void sls::init_bool_var(sat::bool_var bv) {
if (m_bool_vars.get(bv, nullptr))
return;
api_bound* b = nullptr;
s.m_bool_var2bound.find(bv, b);
if (b) {
auto t = b->column_index();
rational bound = b->get_value();
bool should_minus = false;
sls::ineq_kind op;
should_minus = b->get_bound_kind() == lp_api::bound_kind::lower_t;
op = sls::ineq_kind::LE;
if (should_minus)
bound.neg();
auto& ineq = new_ineq(op, to_numeral(bound));
add_args(bv, ineq, t, b->get_var(), should_minus ? -1 : 1);
m_bool_vars.set(bv, &ineq);
m_bool_search->set_external(bv);
return;
}
expr* e = s.bool_var2expr(bv);
expr* l = nullptr, * r = nullptr;
if (e && m.is_eq(e, l, r) && s.a.is_int_real(l)) {
theory_var u = s.get_th_var(l);
theory_var v = s.get_th_var(r);
lp::lpvar tu = s.get_column(u);
lp::lpvar tv = s.get_column(v);
auto& ineq = new_ineq(sls::ineq_kind::EQ, 0);
add_args(bv, ineq, tu, u, 1);
add_args(bv, ineq, tv, v, -1);
m_bool_vars.set(bv, &ineq);
m_bool_search->set_external(bv);
return;
}
}
void sls::init_bool_var_assignment(sat::bool_var v) {
auto* ineq = m_bool_vars.get(v, nullptr);
if (ineq && is_true(sat::literal(v, false)) != (dtt(false, *ineq) == 0))
m_bool_search->flip(v);
}
void sls::init_search() {
on_restart();
}
void sls::finish_search() {
store_best_values();
}
void sls::flip(sat::bool_var v) {
sat::literal lit(v, !sign(v));
SASSERT(!is_true(lit));
auto const* ineq = atom(v);
if (!ineq)
IF_VERBOSE(0, verbose_stream() << "no inequality for variable " << v << "\n");
if (!ineq)
return;
SASSERT(ineq->is_true() == lit.sign());
flip(sign(v), *ineq);
}
double sls::reward(sat::bool_var v) {
if (m_dscore_mode)
return dscore_reward(v);
else
return dtt_reward(v);
}
double sls::dtt_reward(sat::bool_var bv0) {
bool sign0 = sign(bv0);
auto* ineq = atom(bv0);
if (!ineq)
return -1;
int64_t new_value;
double max_result = -1;
for (auto const & [coeff, x] : ineq->m_args) {
if (!cm(sign0, *ineq, x, coeff, new_value))
continue;
double result = 0;
auto old_value = m_vars[x].m_value;
for (auto const& [coeff, bv] : m_vars[x].m_bool_vars) {
result += m_bool_search->reward(bv);
continue;
bool old_sign = sign(bv);
auto dtt_old = dtt(old_sign, *atom(bv));
auto dtt_new = dtt(old_sign, *atom(bv), coeff, old_value, new_value);
if ((dtt_new == 0) != (dtt_old == 0))
result += m_bool_search->reward(bv);
}
if (result > max_result) {
max_result = result;
ineq->m_var_to_flip = x;
}
}
return max_result;
}
double sls::dscore_reward(sat::bool_var bv) {
m_dscore_mode = false;
bool old_sign = sign(bv);
sat::literal litv(bv, old_sign);
auto* ineq = atom(bv);
if (!ineq)
return 0;
SASSERT(ineq->is_true() != old_sign);
int64_t new_value;
for (auto const& [coeff, v] : ineq->m_args) {
double result = 0;
if (cm(old_sign, *ineq, v, coeff, new_value))
result = dscore(v, new_value);
// just pick first positive, or pick a max?
if (result > 0) {
ineq->m_var_to_flip = v;
return result;
}
}
return 0;
}
// switch to dscore mode
void sls::on_rescale() {
m_dscore_mode = true;
}
void sls::on_save_model() {
save_best_values();
}
void sls::on_restart() {
for (unsigned v = 0; v < s.s().num_vars(); ++v)
init_bool_var_assignment(v);
check_ineqs();
}
void sls::check_ineqs() {
auto check_bool_var = [&](sat::bool_var bv) {
auto const* ineq = atom(bv);
if (!ineq)
return;
int64_t d = dtt(sign(bv), *ineq);
sat::literal lit(bv, sign(bv));
if (is_true(lit) != (d == 0)) {
verbose_stream() << "invalid assignment " << bv << " " << *ineq << "\n";
}
VERIFY(is_true(lit) == (d == 0));
};
for (unsigned v = 0; v < s.get_num_vars(); ++v)
check_bool_var(v);
}
std::ostream& sls::display(std::ostream& out) const {
for (bool_var bv = 0; bv < s.s().num_vars(); ++bv) {
auto const* ineq = atom(bv);
if (!ineq)
continue;
out << bv << " " << *ineq << "\n";
}
for (unsigned v = 0; v < s.get_num_vars(); ++v) {
if (s.is_bool(v))
continue;
out << "v" << v << " := " << m_vars[v].m_value << " " << m_vars[v].m_best_value << "\n";
}
return out;
}
}

View file

@ -1,169 +0,0 @@
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
arith_local_search.h
Abstract:
Theory plugin for arithmetic local search
Author:
Nikolaj Bjorner (nbjorner) 2020-09-08
--*/
#pragma once
#include "util/obj_pair_set.h"
#include "ast/ast_trail.h"
#include "ast/arith_decl_plugin.h"
#include "math/lp/indexed_value.h"
#include "math/lp/lar_solver.h"
#include "math/lp/nla_solver.h"
#include "math/lp/lp_types.h"
#include "math/lp/lp_api.h"
#include "math/polynomial/algebraic_numbers.h"
#include "math/polynomial/polynomial.h"
#include "sat/smt/sat_th.h"
#include "sat/sat_ddfw.h"
namespace arith {
class solver;
// local search portion for arithmetic
class sls : public sat::local_search_plugin {
enum class ineq_kind { EQ, LE, LT, NE };
enum class var_kind { INT, REAL };
typedef unsigned var_t;
typedef unsigned atom_t;
struct config {
double cb = 0.0;
unsigned L = 20;
unsigned t = 45;
unsigned max_no_improve = 500000;
double sp = 0.0003;
};
struct stats {
unsigned m_num_flips = 0;
};
public:
// encode args <= bound, args = bound, args < bound
struct ineq {
vector<std::pair<int64_t, var_t>> m_args;
ineq_kind m_op = ineq_kind::LE;
int64_t m_bound;
int64_t m_args_value;
unsigned m_var_to_flip = UINT_MAX;
bool is_true() const {
switch (m_op) {
case ineq_kind::LE:
return m_args_value <= m_bound;
case ineq_kind::EQ:
return m_args_value == m_bound;
case ineq_kind::NE:
return m_args_value != m_bound;
default:
return m_args_value < m_bound;
}
}
std::ostream& display(std::ostream& out) const {
bool first = true;
for (auto const& [c, v] : m_args)
out << (first ? "" : " + ") << c << " * v" << v, first = false;
switch (m_op) {
case ineq_kind::LE:
return out << " <= " << m_bound << "(" << m_args_value << ")";
case ineq_kind::EQ:
return out << " == " << m_bound << "(" << m_args_value << ")";
case ineq_kind::NE:
return out << " != " << m_bound << "(" << m_args_value << ")";
default:
return out << " < " << m_bound << "(" << m_args_value << ")";
}
}
};
private:
struct var_info {
int64_t m_value;
int64_t m_best_value;
var_kind m_kind = var_kind::INT;
svector<std::pair<int64_t, sat::bool_var>> m_bool_vars;
};
solver& s;
ast_manager& m;
sat::ddfw* m_bool_search = nullptr;
stats m_stats;
config m_config;
scoped_ptr_vector<ineq> m_bool_vars;
vector<var_info> m_vars;
svector<std::pair<lp::lpvar, euf::theory_var>> m_terms;
bool m_dscore_mode = false;
indexed_uint_set& unsat() { return m_bool_search->unsat_set(); }
unsigned num_clauses() const { return m_bool_search->num_clauses(); }
sat::clause& get_clause(unsigned idx) { return *get_clause_info(idx).m_clause; }
sat::clause const& get_clause(unsigned idx) const { return *get_clause_info(idx).m_clause; }
sat::ddfw::clause_info& get_clause_info(unsigned idx) { return m_bool_search->get_clause_info(idx); }
sat::ddfw::clause_info const& get_clause_info(unsigned idx) const { return m_bool_search->get_clause_info(idx); }
bool is_true(sat::literal lit) { return lit.sign() != m_bool_search->get_value(lit.var()); }
bool sign(sat::bool_var v) const { return !m_bool_search->get_value(v); }
void reset();
ineq* atom(sat::bool_var bv) const { return m_bool_vars[bv]; }
bool flip(bool sign, ineq const& ineq);
int64_t dtt(bool sign, ineq const& ineq) const { return dtt(sign, ineq.m_args_value, ineq); }
int64_t dtt(bool sign, int64_t args_value, ineq const& ineq) const;
int64_t dtt(bool sign, ineq const& ineq, var_t v, int64_t new_value) const;
int64_t dtt(bool sign, ineq const& ineq, int64_t coeff, int64_t old_value, int64_t new_value) const;
int64_t dts(unsigned cl, var_t v, int64_t new_value) const;
int64_t compute_dts(unsigned cl) const;
bool cm(bool sign, ineq const& ineq, var_t v, int64_t& new_value);
bool cm(bool sign, ineq const& ineq, var_t v, int64_t coeff, int64_t& new_value);
int cm_score(var_t v, int64_t new_value);
void update(var_t v, int64_t new_value);
double dscore_reward(sat::bool_var v);
double dtt_reward(sat::bool_var v);
double dscore(var_t v, int64_t new_value) const;
void save_best_values();
void store_best_values();
void add_vars();
sls::ineq& new_ineq(ineq_kind op, int64_t const& bound);
void add_arg(sat::bool_var bv, ineq& ineq, int64_t const& c, var_t v);
void add_args(sat::bool_var bv, ineq& ineq, lp::lpvar j, euf::theory_var v, int64_t sign);
void init_bool_var(sat::bool_var v);
void init_bool_var_assignment(sat::bool_var v);
int64_t value(var_t v) const { return m_vars[v].m_value; }
int64_t to_numeral(rational const& r);
void check_ineqs();
std::ostream& display(std::ostream& out) const;
public:
sls(solver& s);
void set(sat::ddfw* d);
void init_search() override;
void finish_search() override;
void flip(sat::bool_var v) override;
double reward(sat::bool_var v) override;
void on_rescale() override;
void on_save_model() override;
void on_restart() override;
};
inline std::ostream& operator<<(std::ostream& out, sls::ineq const& ineq) {
return ineq.display(out);
}
}

View file

@ -24,7 +24,6 @@ namespace arith {
solver::solver(euf::solver& ctx, theory_id id) :
th_euf_solver(ctx, symbol("arith"), id),
m_model_eqs(DEFAULT_HASHTABLE_INITIAL_CAPACITY, var_value_hash(*this), var_value_eq(*this)),
m_local_search(*this),
m_resource_limit(*this),
m_bp(*this, m_implied_bounds),
a(m),
@ -988,10 +987,10 @@ namespace arith {
}
bool solver::use_nra_model() {
return m_nla && m_nla->use_nra_model();
return m_nla && m_use_nra_model && m_nla->use_nra_model();
}
bool solver::is_eq(theory_var v1, theory_var v2) {
bool solver::is_eq(theory_var v1, theory_var v2) {
if (use_nra_model()) {
return m_nla->am().eq(nl_value(v1, m_nla->tmp1()), nl_value(v2, m_nla->tmp2()));
}
@ -1006,6 +1005,8 @@ namespace arith {
IF_VERBOSE(12, verbose_stream() << "final-check " << lp().get_status() << "\n");
SASSERT(lp().ax_is_correct());
m_use_nra_model = false;
if (!lp().is_feasible() || lp().has_changed_columns()) {
switch (make_feasible()) {
case l_false:
@ -1038,8 +1039,12 @@ namespace arith {
break;
}
if (!check_delayed_eqs())
return sat::check_result::CR_CONTINUE;
switch (check_nla()) {
case l_true:
m_use_nra_model = true;
break;
case l_false:
return sat::check_result::CR_CONTINUE;
@ -1053,7 +1058,8 @@ namespace arith {
++m_stats.m_assume_eqs;
return sat::check_result::CR_CONTINUE;
}
if (!check_delayed_eqs())
if (!check_delayed_eqs())
return sat::check_result::CR_CONTINUE;
if (!int_undef && !check_bv_terms())
@ -1141,6 +1147,7 @@ namespace arith {
new_eq_eh(e);
else if (is_eq(e.v1(), e.v2())) {
mk_diseq_axiom(e.v1(), e.v2());
TRACE("arith", tout << mk_bounded_pp(e.eq(), m) << " " << use_nra_model() << "\n");
found_diseq = true;
break;
}
@ -1249,9 +1256,9 @@ namespace arith {
for (auto ev : m_explanation)
set_evidence(ev.ci());
TRACE("arith",
TRACE("arith_conflict",
tout << "Lemma - " << (is_conflict ? "conflict" : "propagation") << "\n";
for (literal c : m_core) tout << c << ": " << literal2expr(c) << "\n";
for (literal c : m_core) tout << c << ": " << literal2expr(c) << " := " << s().value(c) << "\n";
for (auto p : m_eqs) tout << ctx.bpp(p.first) << " == " << ctx.bpp(p.second) << "\n";);
if (ctx.get_config().m_arith_validate)
@ -1271,6 +1278,10 @@ namespace arith {
m_core.push_back(ctx.mk_literal(m.mk_eq(eq.first->get_expr(), eq.second->get_expr())));
for (literal& c : m_core)
c.neg();
// it is possible if multiple lemmas are added at the same time.
if (any_of(m_core, [&](literal c) { return s().value(c) == l_true; }))
return;
add_redundant(m_core, explain(ty));
}
@ -1508,6 +1519,7 @@ namespace arith {
case l_undef:
break;
}
TRACE("arith", tout << "nla " << r << "\n");
return r;
}
@ -1521,10 +1533,13 @@ namespace arith {
}
for (auto const& ineq : m_nla->literals()) {
auto lit = mk_ineq_literal(ineq);
if (s().value(lit) == l_true)
continue;
ctx.mark_relevant(lit);
s().set_phase(lit);
// verbose_stream() << lit << ":= " << s().value(lit) << "\n";
// force trichotomy axiom for equality literals
if (ineq.cmp() == lp::EQ) {
if (ineq.cmp() == lp::EQ && false) {
nla::lemma l;
l.push_back(ineq);
l.push_back(nla::ineq(lp::LT, ineq.term(), ineq.rs()));

View file

@ -28,8 +28,6 @@ Author:
#include "math/polynomial/algebraic_numbers.h"
#include "math/polynomial/polynomial.h"
#include "sat/smt/sat_th.h"
#include "sat/smt/arith_sls.h"
#include "sat/sat_ddfw.h"
namespace euf {
class solver;
@ -186,8 +184,6 @@ namespace arith {
coeffs().pop_back();
}
};
sls m_local_search;
typedef vector<std::pair<rational, lpvar>> var_coeffs;
vector<rational> m_columns;
@ -234,6 +230,7 @@ namespace arith {
// non-linear arithmetic
scoped_ptr<nla::solver> m_nla;
bool m_use_nra_model = false;
// integer arithmetic
scoped_ptr<lp::int_solver> m_lia;
@ -513,8 +510,6 @@ namespace arith {
bool enable_ackerman_axioms(euf::enode* n) const override { return !a.is_add(n->get_expr()); }
bool has_unhandled() const override { return m_not_handled != nullptr; }
void set_bool_search(sat::ddfw* ddfw) override { m_local_search.set(ddfw); }
// bounds and equality propagation callbacks
lp::lar_solver& lp() { return *m_solver; }
lp::lar_solver const& lp() const { return *m_solver; }

View file

@ -118,8 +118,8 @@ namespace bv {
}
}
if (glue < max_glue)
v.m_glue = (sz > 6 && 2*glue <= sz) ? 0 : glue;
if (glue < max_glue)
v.m_glue = glue; // (sz > 6 && 2 * glue <= sz) ? 0 : glue;
}
void ackerman::remove(vv* p) {

View file

@ -525,8 +525,8 @@ namespace euf {
return n;
}
void solver::add_assertion(expr* f) {
m_assertions.push_back(f);
m_trail.push(push_back_vector(m_assertions));
void solver::add_clause(unsigned n, sat::literal const* lits) {
m_top_level_clauses.push_back(sat::literal_vector(n, lits));
m_trail.push(push_back_vector(m_top_level_clauses));
}
}

View file

@ -1,50 +0,0 @@
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
euf_local_search.cpp
Abstract:
Local search dispatch for SMT
Author:
Nikolaj Bjorner (nbjorner) 2023-02-07
--*/
#include "sat/sat_solver.h"
#include "sat/sat_ddfw.h"
#include "sat/smt/euf_solver.h"
namespace euf {
lbool solver::local_search(bool_vector& phase) {
scoped_limits scoped_rl(m.limit());
sat::ddfw bool_search;
bool_search.reinit(s(), phase);
bool_search.updt_params(s().params());
bool_search.set_seed(rand());
scoped_rl.push_child(&(bool_search.rlimit()));
for (auto* th : m_solvers)
th->set_bool_search(&bool_search);
bool_search.check(0, nullptr, nullptr);
auto const& mdl = bool_search.get_model();
for (unsigned i = 0; i < mdl.size(); ++i)
phase[i] = mdl[i] == l_true;
if (bool_search.unsat_set().empty()) {
enable_trace("arith");
enable_trace("sat");
enable_trace("euf");
TRACE("sat", s().display(tout));
}
return bool_search.unsat_set().empty() ? l_true : l_undef;
}
}

View file

@ -21,7 +21,7 @@ Author:
#include "ast/ast_ll_pp.h"
#include "ast/arith_decl_plugin.h"
#include "smt/smt_solver.h"
#include "sat/sat_params.hpp"
#include "params/sat_params.hpp"
#include "sat/smt/euf_proof_checker.h"
#include "sat/smt/arith_theory_checker.h"
#include "sat/smt/q_theory_checker.h"

View file

@ -55,7 +55,6 @@ namespace euf {
m_smt_proof_checker(m, p),
m_clause(m),
m_expr_args(m),
m_assertions(m),
m_values(m)
{
updt_params(p);

View file

@ -100,15 +100,6 @@ namespace euf {
scope(unsigned l) : m_var_lim(l) {}
};
struct local_search_config {
double cb = 0.0;
unsigned L = 20;
unsigned t = 45;
unsigned max_no_improve = 500000;
double sp = 0.0003;
};
size_t* to_ptr(sat::literal l) { return TAG(size_t*, reinterpret_cast<size_t*>((size_t)(l.index() << 4)), 1); }
size_t* to_ptr(size_t jst) { return TAG(size_t*, reinterpret_cast<size_t*>(jst), 2); }
bool is_literal(size_t* p) const { return GET_TAG(p) == 1; }
@ -127,7 +118,6 @@ namespace euf {
sat::sat_internalizer& si;
relevancy m_relevancy;
smt_params m_config;
local_search_config m_ls_config;
euf::egraph m_egraph;
trail_stack m_trail;
stats m_stats;
@ -174,7 +164,7 @@ namespace euf {
symbol m_smt = symbol("smt");
expr_ref_vector m_clause;
expr_ref_vector m_expr_args;
expr_ref_vector m_assertions;
vector<sat::literal_vector> m_top_level_clauses;
// internalization
@ -356,7 +346,6 @@ namespace euf {
void add_assumptions(sat::literal_set& assumptions) override;
bool tracking_assumptions() override;
std::string reason_unknown() override { return m_reason_unknown; }
lbool local_search(bool_vector& phase) override;
void propagate(literal lit, ext_justification_idx idx);
bool propagate(enode* a, enode* b, ext_justification_idx idx);
@ -485,8 +474,10 @@ namespace euf {
bool enable_ackerman_axioms(expr* n) const;
bool is_fixed(euf::enode* n, expr_ref& val, sat::literal_vector& explain);
void add_assertion(expr* f);
expr_ref_vector const& get_assertions() { return m_assertions; }
// void add_assertion(expr* f);
// expr_ref_vector const& get_assertions() { return m_assertions; }
void add_clause(unsigned n, sat::literal const* lits);
vector <sat::literal_vector> const& top_level_clauses() const { return m_top_level_clauses; }
model_ref get_sls_model();
// relevancy

View file

@ -22,6 +22,10 @@ Author:
namespace intblast {
void translator_trail::push(push_back_vector<expr_ref_vector> const& c) { ctx.push(c); }
void translator_trail::push(push_back_vector<ptr_vector<app>> const& c) { ctx.push(c); }
void translator_trail::push_idx(set_vector_idx_trail<expr_ref_vector> const& c) { ctx.push(c); }
solver::solver(euf::solver& ctx) :
th_euf_solver(ctx, symbol("intblast"), ctx.get_manager().get_family_id("bv")),
ctx(ctx),
@ -29,9 +33,8 @@ namespace intblast {
m(ctx.get_manager()),
bv(m),
a(m),
m_translate(m),
m_args(m),
m_pinned(m)
trail(ctx),
m_translator(m, trail)
{}
euf::theory_var solver::mk_var(euf::enode* n) {
@ -85,49 +88,22 @@ namespace intblast {
SASSERT(!n->is_attached_to(get_id()));
mk_var(n);
SASSERT(n->is_attached_to(get_id()));
internalize_bv(a);
m_translator.internalize_bv(a);
return true;
}
void solver::eq_internalized(euf::enode* n) {
expr* e = n->get_expr();
expr* x = nullptr, * y = nullptr;
VERIFY(m.is_eq(n->get_expr(), x, y));
SASSERT(bv.is_bv(x));
if (!is_translated(e)) {
ensure_translated(x);
ensure_translated(y);
m_args.reset();
m_args.push_back(a.mk_sub(translated(x), translated(y)));
set_translated(e, m.mk_eq(umod(x, 0), a.mk_int(0)));
}
m_preds.push_back(e);
TRACE("bv", tout << mk_pp(e, m) << " " << mk_pp(translated(e), m) << "\n");
ctx.push(push_back_vector(m_preds));
}
void solver::set_translated(expr* e, expr* r) {
SASSERT(r);
SASSERT(!is_translated(e));
m_translate.setx(e->get_id(), r);
ctx.push(set_vector_idx_trail(m_translate, e->get_id()));
}
void solver::internalize_bv(app* e) {
ensure_translated(e);
if (m.is_bool(e)) {
m_preds.push_back(e);
ctx.push(push_back_vector(m_preds));
}
m_translator.translate_eq(n->get_expr());
}
bool solver::add_bound_axioms() {
if (m_vars_qhead == m_vars.size())
auto const& vars = m_translator.vars();
if (m_vars_qhead == vars.size())
return false;
ctx.push(value_trail(m_vars_qhead));
for (; m_vars_qhead < m_vars.size(); ++m_vars_qhead) {
auto v = m_vars[m_vars_qhead];
auto w = translated(v);
for (; m_vars_qhead < vars.size(); ++m_vars_qhead) {
auto v = vars[m_vars_qhead];
auto w = m_translator.translated(v);
auto sz = rational::power_of_two(bv.get_bv_size(v->get_sort()));
auto lo = ctx.mk_literal(a.mk_ge(w, a.mk_int(0)));
auto hi = ctx.mk_literal(a.mk_le(w, a.mk_int(sz - 1)));
@ -140,12 +116,13 @@ namespace intblast {
}
bool solver::add_predicate_axioms() {
if (m_preds_qhead == m_preds.size())
auto const& preds = m_translator.preds();
if (m_preds_qhead == preds.size())
return false;
ctx.push(value_trail(m_preds_qhead));
for (; m_preds_qhead < m_preds.size(); ++m_preds_qhead) {
expr* e = m_preds[m_preds_qhead];
expr_ref r(translated(e), m);
for (; m_preds_qhead < preds.size(); ++m_preds_qhead) {
expr* e = preds[m_preds_qhead];
expr_ref r(m_translator.translated(e), m);
ctx.get_rewriter()(r);
auto a = expr2literal(e);
auto b = mk_literal(r);
@ -158,31 +135,7 @@ namespace intblast {
bool solver::unit_propagate() {
return add_bound_axioms() || add_predicate_axioms();
}
void solver::ensure_translated(expr* e) {
if (m_translate.get(e->get_id(), nullptr))
return;
ptr_vector<expr> todo;
ast_fast_mark1 visited;
todo.push_back(e);
visited.mark(e);
for (unsigned i = 0; i < todo.size(); ++i) {
expr* e = todo[i];
if (!is_app(e))
continue;
app* a = to_app(e);
if (m.is_bool(e) && a->get_family_id() != bv.get_family_id())
continue;
for (auto arg : *a)
if (!visited.is_marked(arg) && !m_translate.get(arg->get_id(), nullptr)) {
visited.mark(arg);
todo.push_back(arg);
}
}
std::stable_sort(todo.begin(), todo.end(), [&](expr* a, expr* b) { return get_depth(a) < get_depth(b); });
for (expr* e : todo)
translate_expr(e);
}
}
lbool solver::check_axiom(sat::literal_vector const& lits) {
sat::literal_vector core;
@ -198,14 +151,10 @@ namespace intblast {
}
lbool solver::check_core(sat::literal_vector const& lits, euf::enode_pair_vector const& eqs) {
m_core.reset();
m_vars.reset();
m_is_plugin = false;
m_translator.reset(false);
m_solver = mk_smt2_solver(m, s.params(), symbol::null);
for (unsigned i = 0; i < m_translate.size(); ++i)
m_translate[i] = nullptr;
expr_ref_vector es(m), original_es(m);
for (auto lit : lits)
es.push_back(ctx.literal2expr(lit));
@ -222,8 +171,8 @@ namespace intblast {
translate(es);
for (auto e : m_vars) {
auto v = translated(e);
for (auto e : m_translator.vars()) {
auto v = m_translator.translated(e);
auto b = rational::power_of_two(bv.get_bv_size(e));
m_solver->assert_expr(a.mk_le(a.mk_int(0), v));
m_solver->assert_expr(a.mk_lt(v, a.mk_int(b)));
@ -331,8 +280,8 @@ namespace intblast {
translate(es);
for (auto e : m_vars) {
auto v = translated(e);
for (auto e : m_translator.vars()) {
auto v = m_translator.translated(e);
auto b = rational::power_of_two(bv.get_bv_size(e));
m_solver->assert_expr(a.mk_le(a.mk_int(0), v));
m_solver->assert_expr(a.mk_lt(v, a.mk_int(b)));
@ -377,7 +326,7 @@ namespace intblast {
void solver::sorted_subterms(expr_ref_vector& es, ptr_vector<expr>& sorted) {
expr_fast_mark1 visited;
for (expr* e : es) {
if (is_translated(e))
if (m_translator.is_translated(e))
continue;
if (visited.is_marked(e))
continue;
@ -389,7 +338,7 @@ namespace intblast {
if (is_app(e)) {
app* a = to_app(e);
for (expr* arg : *a) {
if (!visited.is_marked(arg) && !is_translated(arg)) {
if (!visited.is_marked(arg) && !m_translator.is_translated(arg)) {
visited.mark(arg);
sorted.push_back(arg);
}
@ -399,7 +348,7 @@ namespace intblast {
else if (is_quantifier(e)) {
quantifier* q = to_quantifier(e);
expr* b = q->get_expr();
if (!visited.is_marked(b) && !is_translated(b)) {
if (!visited.is_marked(b) && !m_translator.is_translated(b)) {
visited.mark(b);
sorted.push_back(b);
}
@ -414,20 +363,20 @@ namespace intblast {
sorted_subterms(es, todo);
for (expr* e : todo)
translate_expr(e);
m_translator.translate_expr(e);
TRACE("bv",
for (expr* e : es)
tout << mk_pp(e, m) << "\n->\n" << mk_pp(translated(e), m) << "\n";
tout << mk_pp(e, m) << "\n->\n" << mk_pp(m_translator.translated(e), m) << "\n";
);
for (unsigned i = 0; i < es.size(); ++i)
es[i] = translated(es.get(i));
es[i] = m_translator.translated(es.get(i));
}
sat::check_result solver::check() {
// ensure that bv2int is injective
for (auto e : m_bv2int) {
for (auto e : m_translator.bv2int()) {
euf::enode* n = expr2enode(e);
euf::enode* r1 = n->get_arg(0)->get_root();
for (auto sib : euf::enode_class(n)) {
@ -449,7 +398,7 @@ namespace intblast {
}
// ensure that int2bv respects values
// bv2int(int2bv(x)) = x mod N
for (auto e : m_int2bv) {
for (auto e : m_translator.int2bv()) {
auto n = expr2enode(e);
auto x = n->get_arg(0)->get_expr();
auto bv2int = bv.mk_bv2int(e);
@ -469,595 +418,12 @@ namespace intblast {
return sat::check_result::CR_DONE;
}
bool solver::is_bounded(expr* x, rational const& N) {
return any_of(m_vars, [&](expr* v) {
return is_translated(v) && translated(v) == x && bv_size(v) <= N;
});
}
bool solver::is_non_negative(expr* bv_expr, expr* e) {
auto N = rational::power_of_two(bv.get_bv_size(bv_expr));
rational r;
if (a.is_numeral(e, r))
return r >= 0;
if (is_bounded(e, N))
return true;
expr* x = nullptr, * y = nullptr;
if (a.is_mul(e, x, y))
return is_non_negative(bv_expr, x) && is_non_negative(bv_expr, y);
if (a.is_add(e, x, y))
return is_non_negative(bv_expr, x) && is_non_negative(bv_expr, y);
return false;
}
expr* solver::umod(expr* bv_expr, unsigned i) {
expr* x = arg(i);
rational N = bv_size(bv_expr);
return amod(bv_expr, x, N);
}
expr* solver::smod(expr* bv_expr, unsigned i) {
expr* x = arg(i);
auto N = bv_size(bv_expr);
auto shift = N / 2;
rational r;
if (a.is_numeral(x, r))
return a.mk_int(mod(r + shift, N));
return amod(bv_expr, add(x, a.mk_int(shift)), N);
}
expr_ref solver::mul(expr* x, expr* y) {
expr_ref _x(x, m), _y(y, m);
if (a.is_zero(x))
return _x;
if (a.is_zero(y))
return _y;
if (a.is_one(x))
return _y;
if (a.is_one(y))
return _x;
rational v1, v2;
if (a.is_numeral(x, v1) && a.is_numeral(y, v2))
return expr_ref(a.mk_int(v1 * v2), m);
_x = a.mk_mul(x, y);
return _x;
}
expr_ref solver::add(expr* x, expr* y) {
expr_ref _x(x, m), _y(y, m);
if (a.is_zero(x))
return _y;
if (a.is_zero(y))
return _x;
rational v1, v2;
if (a.is_numeral(x, v1) && a.is_numeral(y, v2))
return expr_ref(a.mk_int(v1 + v2), m);
_x = a.mk_add(x, y);
return _x;
}
/*
* Perform simplifications that are claimed sound when the bit-vector interpretations of
* mod/div always guard the mod and dividend to be non-zero.
* Potentially shady area is for arithmetic expressions created by int2bv.
* They will be guarded by a modulus which does not disappear.
*/
expr* solver::amod(expr* bv_expr, expr* x, rational const& N) {
rational v;
expr* r = nullptr, *c = nullptr, * t = nullptr, * e = nullptr;
if (m.is_ite(x, c, t, e))
r = m.mk_ite(c, amod(bv_expr, t, N), amod(bv_expr, e, N));
else if (a.is_idiv(x, t, e) && a.is_numeral(t, v) && 0 <= v && v < N && is_non_negative(bv_expr, e))
r = x;
else if (a.is_mod(x, t, e) && a.is_numeral(t, v) && 0 <= v && v < N)
r = x;
else if (a.is_numeral(x, v))
r = a.mk_int(mod(v, N));
else if (is_bounded(x, N))
r = x;
else
r = a.mk_mod(x, a.mk_int(N));
return r;
}
rational solver::bv_size(expr* bv_expr) {
return rational::power_of_two(bv.get_bv_size(bv_expr->get_sort()));
}
void solver::translate_expr(expr* e) {
if (is_quantifier(e))
translate_quantifier(to_quantifier(e));
else if (is_var(e))
translate_var(to_var(e));
else {
app* ap = to_app(e);
if (m_is_plugin && ap->get_family_id() == basic_family_id && m.is_bool(ap)) {
set_translated(e, e);
return;
}
m_args.reset();
for (auto arg : *ap)
m_args.push_back(translated(arg));
if (ap->get_family_id() == basic_family_id)
translate_basic(ap);
else if (ap->get_family_id() == bv.get_family_id())
translate_bv(ap);
else
translate_app(ap);
}
}
void solver::translate_quantifier(quantifier* q) {
if (m_is_plugin) {
set_translated(q, q);
return;
}
if (is_lambda(q))
throw default_exception("lambdas are not supported in intblaster");
expr* b = q->get_expr();
unsigned nd = q->get_num_decls();
ptr_vector<sort> sorts;
for (unsigned i = 0; i < nd; ++i) {
auto s = q->get_decl_sort(i);
if (bv.is_bv_sort(s)) {
NOT_IMPLEMENTED_YET();
sorts.push_back(a.mk_int());
}
else
sorts.push_back(s);
}
b = translated(b);
// TODO if sorts contain integer, then created bounds variables.
set_translated(q, m.update_quantifier(q, b));
}
void solver::translate_var(var* v) {
if (bv.is_bv_sort(v->get_sort()))
set_translated(v, m.mk_var(v->get_idx(), a.mk_int()));
else
set_translated(v, v);
}
// Translate functions that are not built-in or bit-vectors.
// Base method uses fresh functions.
// Other method could use bv2int, int2bv axioms and coercions.
// f(args) = bv2int(f(int2bv(args'))
//
void solver::translate_app(app* e) {
if (m_is_plugin && m.is_bool(e)) {
set_translated(e, e);
return;
}
bool has_bv_sort = bv.is_bv(e);
func_decl* f = e->get_decl();
for (unsigned i = 0; i < m_args.size(); ++i)
if (bv.is_bv(e->get_arg(i)))
m_args[i] = bv.mk_int2bv(bv.get_bv_size(e->get_arg(i)), m_args.get(i));
if (has_bv_sort)
m_vars.push_back(e);
if (m_is_plugin) {
expr* r = m.mk_app(f, m_args);
if (has_bv_sort) {
ctx.push(push_back_vector(m_vars));
r = bv.mk_bv2int(r);
}
set_translated(e, r);
return;
}
else if (has_bv_sort) {
if (f->get_family_id() != null_family_id)
throw default_exception("conversion for interpreted functions is not supported by intblast solver");
func_decl* g = nullptr;
if (!m_new_funs.find(f, g)) {
g = m.mk_fresh_func_decl(e->get_decl()->get_name(), symbol("bv"), f->get_arity(), f->get_domain(), a.mk_int());
m_new_funs.insert(f, g);
}
f = g;
m_pinned.push_back(f);
}
set_translated(e, m.mk_app(f, m_args));
}
void solver::translate_bv(app* e) {
auto bnot = [&](expr* e) {
return a.mk_sub(a.mk_int(-1), e);
};
auto band = [&](expr_ref_vector const& args) {
expr* r = arg(0);
for (unsigned i = 1; i < args.size(); ++i)
r = a.mk_band(bv.get_bv_size(e), r, arg(i));
return r;
};
auto rotate_left = [&](unsigned n) {
auto sz = bv.get_bv_size(e);
n = n % sz;
expr* r = arg(0);
if (n != 0 && sz != 1) {
// r[sz - n - 1 : 0] ++ r[sz - 1 : sz - n]
// r * 2^(sz - n) + (r div 2^n) mod 2^(sz - n)???
// r * A + (r div B) mod A
auto N = bv_size(e);
auto A = rational::power_of_two(sz - n);
auto B = rational::power_of_two(n);
auto hi = mul(r, a.mk_int(A));
auto lo = amod(e, a.mk_idiv(umod(e, 0), a.mk_int(B)), A);
r = add(hi, lo);
}
return r;
};
expr* bv_expr = e;
expr_ref r(m);
auto const& args = m_args;
switch (e->get_decl_kind()) {
case OP_BADD:
r = a.mk_add(args);
break;
case OP_BSUB:
r = a.mk_sub(args.size(), args.data());
break;
case OP_BMUL:
r = a.mk_mul(args);
break;
case OP_ULEQ:
bv_expr = e->get_arg(0);
r = a.mk_le(umod(bv_expr, 0), umod(bv_expr, 1));
break;
case OP_UGEQ:
bv_expr = e->get_arg(0);
r = a.mk_ge(umod(bv_expr, 0), umod(bv_expr, 1));
break;
case OP_ULT:
bv_expr = e->get_arg(0);
r = a.mk_lt(umod(bv_expr, 0), umod(bv_expr, 1));
break;
case OP_UGT:
bv_expr = e->get_arg(0);
r = a.mk_gt(umod(bv_expr, 0), umod(bv_expr, 1));
break;
case OP_SLEQ:
bv_expr = e->get_arg(0);
r = a.mk_le(smod(bv_expr, 0), smod(bv_expr, 1));
break;
case OP_SGEQ:
bv_expr = e->get_arg(0);
r = a.mk_ge(smod(bv_expr, 0), smod(bv_expr, 1));
break;
case OP_SLT:
bv_expr = e->get_arg(0);
r = a.mk_lt(smod(bv_expr, 0), smod(bv_expr, 1));
break;
case OP_SGT:
bv_expr = e->get_arg(0);
r = a.mk_gt(smod(bv_expr, 0), smod(bv_expr, 1));
break;
case OP_BNEG:
r = a.mk_uminus(arg(0));
break;
case OP_CONCAT: {
unsigned sz = 0;
expr_ref new_arg(m);
for (unsigned i = args.size(); i-- > 0;) {
expr* old_arg = e->get_arg(i);
new_arg = umod(old_arg, i);
if (sz > 0) {
new_arg = mul(new_arg, a.mk_int(rational::power_of_two(sz)));
r = add(r, new_arg);
}
else
r = new_arg;
sz += bv.get_bv_size(old_arg->get_sort());
}
break;
}
case OP_EXTRACT: {
unsigned lo, hi;
expr* old_arg;
VERIFY(bv.is_extract(e, lo, hi, old_arg));
r = arg(0);
if (lo > 0)
r = a.mk_idiv(r, a.mk_int(rational::power_of_two(lo)));
break;
}
case OP_BV_NUM: {
rational val;
unsigned sz;
VERIFY(bv.is_numeral(e, val, sz));
r = a.mk_int(val);
break;
}
case OP_BUREM:
case OP_BUREM_I: {
expr* x = umod(e, 0), * y = umod(e, 1);
r = if_eq(y, 0, x, a.mk_mod(x, y));
break;
}
case OP_BUDIV:
case OP_BUDIV_I: {
expr* x = umod(e, 0), * y = umod(e, 1);
r = if_eq(y, 0, a.mk_int(-1), a.mk_idiv(x, y));
break;
}
case OP_BUMUL_NO_OVFL: {
bv_expr = e->get_arg(0);
r = a.mk_lt(mul(umod(bv_expr, 0), umod(bv_expr, 1)), a.mk_int(bv_size(bv_expr)));
break;
}
case OP_BSHL: {
if (!a.is_numeral(arg(0)) && !a.is_numeral(arg(1)))
r = a.mk_shl(bv.get_bv_size(e), arg(0),arg(1));
else {
expr* x = arg(0), * y = umod(e, 1);
r = a.mk_int(0);
IF_VERBOSE(2, verbose_stream() << "shl " << mk_bounded_pp(e, m) << " " << bv.get_bv_size(e) << "\n");
for (unsigned i = 0; i < bv.get_bv_size(e); ++i)
r = if_eq(y, i, mul(x, a.mk_int(rational::power_of_two(i))), r);
}
break;
}
case OP_BNOT:
r = bnot(arg(0));
break;
case OP_BLSHR:
if (!a.is_numeral(arg(0)) && !a.is_numeral(arg(1)))
r = a.mk_lshr(bv.get_bv_size(e), arg(0), arg(1));
else {
expr* x = arg(0), * y = umod(e, 1);
r = a.mk_int(0);
IF_VERBOSE(2, verbose_stream() << "lshr " << mk_bounded_pp(e, m) << " " << bv.get_bv_size(e) << "\n");
for (unsigned i = 0; i < bv.get_bv_size(e); ++i)
r = if_eq(y, i, a.mk_idiv(x, a.mk_int(rational::power_of_two(i))), r);
}
break;
case OP_BASHR:
if (!a.is_numeral(arg(1)))
r = a.mk_ashr(bv.get_bv_size(e), arg(0), arg(1));
else {
//
// ashr(x, y)
// if y = k & x >= 0 -> x / 2^k
// if y = k & x < 0 -> (x / 2^k) - 2^{N-k}
//
unsigned sz = bv.get_bv_size(e);
rational N = bv_size(e);
expr* x = umod(e, 0), *y = umod(e, 1);
expr* signx = a.mk_ge(x, a.mk_int(N / 2));
r = m.mk_ite(signx, a.mk_int(- 1), a.mk_int(0));
IF_VERBOSE(1, verbose_stream() << "ashr " << mk_bounded_pp(e, m) << " " << bv.get_bv_size(e) << "\n");
for (unsigned i = 0; i < sz; ++i) {
expr* d = a.mk_idiv(x, a.mk_int(rational::power_of_two(i)));
r = if_eq(y, i,
m.mk_ite(signx, add(d, a.mk_int(- rational::power_of_two(sz-i))), d),
r);
}
}
break;
case OP_BOR:
// p | q := (p + q) - band(p, q)
IF_VERBOSE(2, verbose_stream() << "bor " << mk_bounded_pp(e, m) << " " << bv.get_bv_size(e) << "\n");
r = arg(0);
for (unsigned i = 1; i < args.size(); ++i)
r = a.mk_sub(add(r, arg(i)), a.mk_band(bv.get_bv_size(e), r, arg(i)));
break;
case OP_BNAND:
r = bnot(band(args));
break;
case OP_BAND:
IF_VERBOSE(2, verbose_stream() << "band " << mk_bounded_pp(e, m) << " " << bv.get_bv_size(e) << "\n");
r = band(args);
break;
case OP_BXNOR:
case OP_BXOR: {
// p ^ q := (p + q) - 2*band(p, q);
unsigned sz = bv.get_bv_size(e);
IF_VERBOSE(2, verbose_stream() << "bxor " << bv.get_bv_size(e) << "\n");
r = arg(0);
for (unsigned i = 1; i < args.size(); ++i) {
expr* q = arg(i);
r = a.mk_sub(add(r, q), mul(a.mk_int(2), a.mk_band(sz, r, q)));
}
if (e->get_decl_kind() == OP_BXNOR)
r = bnot(r);
break;
}
case OP_ZERO_EXT:
bv_expr = e->get_arg(0);
r = umod(bv_expr, 0);
SASSERT(bv.get_bv_size(e) >= bv.get_bv_size(bv_expr));
break;
case OP_SIGN_EXT: {
bv_expr = e->get_arg(0);
r = umod(bv_expr, 0);
SASSERT(bv.get_bv_size(e) >= bv.get_bv_size(bv_expr));
unsigned arg_sz = bv.get_bv_size(bv_expr);
//unsigned sz = bv.get_bv_size(e);
// rational N = rational::power_of_two(sz);
rational M = rational::power_of_two(arg_sz);
expr* signbit = a.mk_ge(r, a.mk_int(M / 2));
r = m.mk_ite(signbit, a.mk_sub(r, a.mk_int(M)), r);
break;
}
case OP_INT2BV:
m_int2bv.push_back(e);
ctx.push(push_back_vector(m_int2bv));
r = arg(0);
break;
case OP_BV2INT:
m_bv2int.push_back(e);
ctx.push(push_back_vector(m_bv2int));
r = umod(e->get_arg(0), 0);
break;
case OP_BCOMP:
bv_expr = e->get_arg(0);
r = m.mk_ite(m.mk_eq(umod(bv_expr, 0), umod(bv_expr, 1)), a.mk_int(1), a.mk_int(0));
break;
case OP_BSMOD_I:
case OP_BSMOD: {
expr* x = umod(e, 0), *y = umod(e, 1);
rational N = bv_size(e);
expr* signx = a.mk_ge(x, a.mk_int(N/2));
expr* signy = a.mk_ge(y, a.mk_int(N/2));
expr* u = a.mk_mod(x, y);
// u = 0 -> 0
// y = 0 -> x
// x < 0, y < 0 -> -u
// x < 0, y >= 0 -> y - u
// x >= 0, y < 0 -> y + u
// x >= 0, y >= 0 -> u
r = a.mk_uminus(u);
r = m.mk_ite(m.mk_and(m.mk_not(signx), signy), add(u, y), r);
r = m.mk_ite(m.mk_and(signx, m.mk_not(signy)), a.mk_sub(y, u), r);
r = m.mk_ite(m.mk_and(m.mk_not(signx), m.mk_not(signy)), u, r);
r = if_eq(u, 0, a.mk_int(0), r);
r = if_eq(y, 0, x, r);
break;
}
case OP_BSDIV_I:
case OP_BSDIV: {
// d = udiv(abs(x), abs(y))
// y = 0, x > 0 -> 1
// y = 0, x <= 0 -> -1
// x = 0, y != 0 -> 0
// x > 0, y < 0 -> -d
// x < 0, y > 0 -> -d
// x > 0, y > 0 -> d
// x < 0, y < 0 -> d
expr* x = umod(e, 0), * y = umod(e, 1);
rational N = bv_size(e);
expr* signx = a.mk_ge(x, a.mk_int(N / 2));
expr* signy = a.mk_ge(y, a.mk_int(N / 2));
x = m.mk_ite(signx, a.mk_sub(a.mk_int(N), x), x);
y = m.mk_ite(signy, a.mk_sub(a.mk_int(N), y), y);
expr* d = a.mk_idiv(x, y);
r = m.mk_ite(m.mk_iff(signx, signy), d, a.mk_uminus(d));
r = if_eq(y, 0, m.mk_ite(signx, a.mk_int(1), a.mk_int(-1)), r);
break;
}
case OP_BSREM_I:
case OP_BSREM: {
// y = 0 -> x
// else x - sdiv(x, y) * y
expr* x = umod(e, 0), * y = umod(e, 1);
rational N = bv_size(e);
expr* signx = a.mk_ge(x, a.mk_int(N / 2));
expr* signy = a.mk_ge(y, a.mk_int(N / 2));
expr* absx = m.mk_ite(signx, a.mk_sub(a.mk_int(N), x), x);
expr* absy = m.mk_ite(signy, a.mk_sub(a.mk_int(N), y), y);
expr* d = a.mk_idiv(absx, absy);
d = m.mk_ite(m.mk_iff(signx, signy), d, a.mk_uminus(d));
r = a.mk_sub(x, mul(d, y));
r = if_eq(y, 0, x, r);
break;
}
case OP_ROTATE_LEFT: {
auto n = e->get_parameter(0).get_int();
r = rotate_left(n);
break;
}
case OP_ROTATE_RIGHT: {
unsigned sz = bv.get_bv_size(e);
auto n = e->get_parameter(0).get_int();
r = rotate_left(sz - n);
break;
}
case OP_EXT_ROTATE_LEFT: {
unsigned sz = bv.get_bv_size(e);
expr* y = umod(e, 1);
r = a.mk_int(0);
for (unsigned i = 0; i < sz; ++i)
r = if_eq(y, i, rotate_left(i), r);
break;
}
case OP_EXT_ROTATE_RIGHT: {
unsigned sz = bv.get_bv_size(e);
expr* y = umod(e, 1);
r = a.mk_int(0);
for (unsigned i = 0; i < sz; ++i)
r = if_eq(y, i, rotate_left(sz - i), r);
break;
}
case OP_REPEAT: {
unsigned n = e->get_parameter(0).get_int();
expr* x = umod(e->get_arg(0), 0);
r = x;
rational N = bv_size(e->get_arg(0));
rational N0 = N;
for (unsigned i = 1; i < n; ++i)
r = add(mul(a.mk_int(N), x), r), N *= N0;
break;
}
case OP_BREDOR: {
r = umod(e->get_arg(0), 0);
r = m.mk_not(m.mk_eq(r, a.mk_int(0)));
break;
}
case OP_BREDAND: {
rational N = bv_size(e->get_arg(0));
r = umod(e->get_arg(0), 0);
r = m.mk_not(m.mk_eq(r, a.mk_int(N - 1)));
break;
}
default:
verbose_stream() << mk_pp(e, m) << "\n";
NOT_IMPLEMENTED_YET();
}
set_translated(e, r);
}
expr_ref solver::if_eq(expr* n, unsigned k, expr* th, expr* el) {
rational r;
expr_ref _th(th, m), _el(el, m);
if (bv.is_numeral(n, r)) {
if (r == k)
return expr_ref(th, m);
else
return expr_ref(el, m);
}
return expr_ref(m.mk_ite(m.mk_eq(n, a.mk_int(k)), th, el), m);
}
void solver::translate_basic(app* e) {
if (m.is_eq(e)) {
bool has_bv_arg = any_of(*e, [&](expr* arg) { return bv.is_bv(arg); });
if (has_bv_arg) {
expr* bv_expr = e->get_arg(0);
rational N = rational::power_of_two(bv.get_bv_size(bv_expr));
if (a.is_numeral(arg(0)) || a.is_numeral(arg(1)) ||
is_bounded(arg(0), N) || is_bounded(arg(1), N)) {
set_translated(e, m.mk_eq(umod(bv_expr, 0), umod(bv_expr, 1)));
}
else {
m_args[0] = a.mk_sub(arg(0), arg(1));
set_translated(e, m.mk_eq(umod(bv_expr, 0), a.mk_int(0)));
}
}
else
set_translated(e, m.mk_eq(arg(0), arg(1)));
}
else if (m.is_ite(e))
set_translated(e, m.mk_ite(arg(0), arg(1), arg(2)));
else if (m_is_plugin)
set_translated(e, e);
else
set_translated(e, m.mk_app(e->get_decl(), m_args));
}
rational solver::get_value(expr* e) const {
SASSERT(bv.is_bv(e));
model_ref mdl;
m_solver->get_model(mdl);
expr_ref r(m);
r = translated(e);
r = m_translator.translated(e);
rational val;
if (!mdl->eval_expr(r, r, true))
return rational::zero();
@ -1099,7 +465,7 @@ namespace intblast {
}
rational r, N = rational::power_of_two(bv.get_bv_size(e));
expr* te = translated(e);
expr* te = m_translator.translated(e);
model_ref mdlr;
m_solver->get_model(mdlr);
expr_ref value(m);
@ -1126,14 +492,12 @@ namespace intblast {
else {
expr_ref bv2int(bv.mk_bv2int(n->get_expr()), m);
euf::enode* b2i = ctx.get_enode(bv2int);
if (!b2i) verbose_stream() << bv2int << "\n";
SASSERT(b2i);
VERIFY(b2i);
arith::arith_value av(ctx);
rational r;
VERIFY(av.get_value(b2i->get_expr(), r));
value = bv.mk_numeral(r, bv.get_bv_size(n->get_expr()));
verbose_stream() << ctx.bpp(n) << " := " << value << "\n";
}
values.set(n->get_root_id(), value);
TRACE("model", tout << "add_value " << ctx.bpp(n) << " := " << value << "\n");
@ -1143,11 +507,11 @@ namespace intblast {
return;
for (auto n : ctx.get_egraph().nodes()) {
auto e = n->get_expr();
if (!is_translated(e))
if (!m_translator.is_translated(e))
continue;
if (!bv.is_bv(e))
continue;
auto t = translated(e);
auto t = m_translator.translated(e);
expr_ref ei(bv.mk_bv2int(e), m);
expr_ref ti(a.mk_mod(t, a.mk_int(rational::power_of_two(bv.get_bv_size(e)))), m);

View file

@ -38,6 +38,7 @@ Author:
#include "solver/solver.h"
#include "sat/smt/sat_th.h"
#include "util/statistics.h"
#include "ast/rewriter/bv2int_translator.h"
namespace euf {
class solver;
@ -45,18 +46,31 @@ namespace euf {
namespace intblast {
class translator_trail : public bv2int_translator_trail {
euf::solver& ctx;
public:
translator_trail(euf::solver& ctx):ctx(ctx) {}
void push(push_back_vector<expr_ref_vector> const& c) override;
void push(push_back_vector<ptr_vector<app>> const& c) override;
void push_idx(set_vector_idx_trail<expr_ref_vector> const& c) override;
};
class solver : public euf::th_euf_solver {
euf::solver& ctx;
sat::solver& s;
ast_manager& m;
bv_util bv;
arith_util a;
translator_trail trail;
bv2int_translator m_translator;
scoped_ptr<::solver> m_solver;
obj_map<func_decl, func_decl*> m_new_funs;
expr_ref_vector m_translate, m_args;
ast_ref_vector m_pinned;
//obj_map<func_decl, func_decl*> m_new_funs;
//expr_ref_vector m_translate, m_args;
//ast_ref_vector m_pinned;
sat::literal_vector m_core;
ptr_vector<app> m_bv2int, m_int2bv;
// ptr_vector<app> m_bv2int, m_int2bv;
statistics m_stats;
bool m_is_plugin = true; // when the solver is used as a plugin, then do not translate below quantifiers.
@ -66,33 +80,6 @@ namespace intblast {
bool is_translated(expr* e) const { return !!m_translate.get(e->get_id(), nullptr); }
expr* translated(expr* e) const { expr* r = m_translate.get(e->get_id(), nullptr); SASSERT(r); return r; }
void set_translated(expr* e, expr* r);
expr* arg(unsigned i) { return m_args.get(i); }
expr* umod(expr* bv_expr, unsigned i);
expr* smod(expr* bv_expr, unsigned i);
bool is_bounded(expr* v, rational const& N);
bool is_non_negative(expr* bv_expr, expr* e);
expr_ref mul(expr* x, expr* y);
expr_ref add(expr* x, expr* y);
expr_ref if_eq(expr* n, unsigned k, expr* th, expr* el);
expr* amod(expr* bv_expr, expr* x, rational const& N);
rational bv_size(expr* bv_expr);
void translate_expr(expr* e);
void translate_bv(app* e);
void translate_basic(app* e);
void translate_app(app* e);
void translate_quantifier(quantifier* q);
void translate_var(var* v);
void ensure_translated(expr* e);
void internalize_bv(app* e);
unsigned m_vars_qhead = 0, m_preds_qhead = 0;
ptr_vector<expr> m_vars, m_preds;
bool add_bound_axioms();
bool add_predicate_axioms();
@ -101,6 +88,9 @@ namespace intblast {
void add_value_plugin(euf::enode* n, model& mdl, expr_ref_vector& values);
void add_value_solver(euf::enode* n, model& mdl, expr_ref_vector& values);
unsigned m_vars_qhead = 0, m_preds_qhead = 0;
public:
solver(euf::solver& ctx);

View file

@ -18,7 +18,6 @@ Author:
#include "util/top_sort.h"
#include "sat/smt/sat_smt.h"
#include "sat/sat_ddfw.h"
#include "ast/euf/euf_egraph.h"
#include "model/model.h"
#include "smt/params/smt_params.h"
@ -139,10 +138,6 @@ namespace euf {
virtual euf::enode_pair get_justification_eq(size_t j);
/**
* Local search interface
*/
virtual void set_bool_search(sat::ddfw* ddfw) {}
virtual void set_bounds_begin() {}

View file

@ -13,154 +13,118 @@ Author:
Nikolaj Bjorner (nbjorner) 2024-02-21
--*/
#include "sat/smt/sls_solver.h"
#include "sat/smt/euf_solver.h"
#include "ast/sls/sls_context.h"
#include "ast/for_each_expr.h"
namespace sls {
#ifdef SINGLE_THREAD
solver::solver(euf::solver& ctx) :
th_euf_solver(ctx, symbol("sls"), ctx.get_manager().mk_family_id("sls"))
{}
{}
#ifdef SINGLE_THREAD
#else
solver::solver(euf::solver& ctx):
th_euf_solver(ctx, symbol("sls"), ctx.get_manager().mk_family_id("sls"))
{}
solver::~solver() {
finalize();
}
void solver::finalize() {
if (!m_completed && m_sls) {
m_sls->cancel();
m_thread.join();
m_sls->collect_statistics(m_st);
m_sls = nullptr;
m_shared = nullptr;
m_slsm = nullptr;
m_units = nullptr;
}
params_ref solver::get_params() {
return s().params();
}
sat::check_result solver::check() {
return sat::check_result::CR_DONE;
void solver::initialize_value(expr* t, expr* v) {
ctx.user_propagate_initialize_value(t, v);
}
void solver::force_phase(sat::literal lit) {
ctx.s().set_phase(lit);
}
void solver::set_has_new_best_phase(bool b) {
}
bool solver::get_best_phase(sat::bool_var v) {
return false;
}
expr* solver::bool_var2expr(sat::bool_var v) {
return ctx.bool_var2expr(v);
}
void solver::set_finished() {
ctx.s().set_canceled();
}
unsigned solver::get_num_bool_vars() const {
return s().num_vars();
}
void solver::finalize() {
if (!m_smt_plugin)
return;
m_smt_plugin->finalize(m_model, m_st);
m_model = nullptr;
m_smt_plugin = nullptr;
}
bool solver::unit_propagate() {
force_push();
sample_local_search();
return false;
}
bool solver::is_unit(expr* e) {
if (!e)
return false;
m.is_not(e, e);
if (is_uninterp_const(e))
if (m_smt_plugin && !m_checking) {
expr_ref_vector fmls(m);
m_checking = true;
m_smt_plugin->check(fmls, ctx.top_level_clauses());
return true;
bv_util bu(m);
expr* s;
if (bu.is_bit2bool(e, s))
return is_uninterp_const(s);
return false;
}
if (!m_smt_plugin)
return false;
if (!m_smt_plugin->completed())
return false;
m_smt_plugin->finalize(m_model, m_st);
m_smt_plugin = nullptr;
return true;
}
void solver::pop_core(unsigned n) {
for (; m_trail_lim < s().init_trail_size(); ++m_trail_lim) {
auto lit = s().trail_literal(m_trail_lim);
auto e = ctx.literal2expr(lit);
if (is_unit(e)) {
// IF_VERBOSE(1, verbose_stream() << "add unit " << mk_pp(e, m) << "\n");
std::lock_guard<std::mutex> lock(m_mutex);
ast_translation tr(m, *m_shared);
m_units->push_back(tr(e.get()));
m_has_units = true;
if (!m_smt_plugin)
return;
unsigned scope_lvl = s().scope_lvl();
if (s().search_lvl() == scope_lvl - n) {
for (; m_trail_lim < s().init_trail_size(); ++m_trail_lim) {
auto lit = s().trail_literal(m_trail_lim);
m_smt_plugin->add_unit(lit);
}
}
}
#if 0
if (ctx.has_new_best_phase())
m_smt_plugin->import_phase_from_smt();
#endif
m_smt_plugin->import_from_sls();
}
void solver::init_search() {
if (m_sls) {
m_sls->cancel();
m_thread.join();
m_result = l_undef;
m_completed = false;
m_has_units = false;
m_model = nullptr;
m_units = nullptr;
}
// set up state for local search solver here
m_shared = alloc(ast_manager);
m_slsm = alloc(ast_manager);
m_units = alloc(expr_ref_vector, *m_shared);
ast_translation tr(m, *m_slsm);
m_completed = false;
m_result = l_undef;
m_model = nullptr;
m_sls = alloc(bv::sls, *m_slsm, s().params());
for (expr* a : ctx.get_assertions())
m_sls->assert_expr(tr(a));
std::function<bool(expr*, unsigned)> eval = [&](expr* e, unsigned r) {
return false;
};
m_sls->init();
m_sls->init_eval(eval);
m_sls->updt_params(s().params());
m_sls->init_unit([&]() {
if (!m_has_units)
return expr_ref(*m_slsm);
expr_ref e(*m_slsm);
{
std::lock_guard<std::mutex> lock(m_mutex);
if (m_units->empty())
return expr_ref(*m_slsm);
ast_translation tr(*m_shared, *m_slsm);
e = tr(m_units->back());
m_units->pop_back();
}
return e;
});
m_sls->set_model([&](model& mdl) {
std::lock_guard<std::mutex> lock(m_mutex);
ast_translation tr(*m_shared, m);
m_model = mdl.translate(tr);
});
m_thread = std::thread([this]() { run_local_search(); });
if (m_smt_plugin)
finalize();
m_smt_plugin = alloc(sls::smt_plugin, *this);
m_checking = false;
}
void solver::sample_local_search() {
if (!m_completed)
return;
m_thread.join();
m_completed = false;
m_sls->collect_statistics(m_st);
if (m_result == l_true) {
IF_VERBOSE(2, verbose_stream() << "(sat.sls :model-completed)\n";);
auto mdl = m_sls->get_model();
ast_translation tr(*m_slsm, m);
m_model = mdl->translate(tr);
s().set_canceled();
}
m_sls = nullptr;
}
void solver::run_local_search() {
m_result = (*m_sls)();
m_completed = true;
std::ostream& solver::display(std::ostream& out) const {
return out << "theory-sls\n";
}
#endif
}

View file

@ -18,7 +18,7 @@ Author:
#include "util/rlimit.h"
#include "ast/sls/bv_sls.h"
#include "ast/sls/sat_ddfw.h"
#include "sat/smt/sat_th.h"
@ -52,8 +52,7 @@ namespace sls {
#else
#include <thread>
#include <mutex>
#include "ast/sls/sls_smt_plugin.h"
namespace euf {
class solver;
@ -61,24 +60,12 @@ namespace euf {
namespace sls {
class solver : public euf::th_euf_solver {
std::atomic<lbool> m_result;
std::atomic<bool> m_completed, m_has_units;
std::thread m_thread;
std::mutex m_mutex;
// m is accessed by the main thread
// m_slsm is accessed by the sls thread
// m_shared is only accessed at synchronization points
scoped_ptr<ast_manager> m_shared, m_slsm;
scoped_ptr<bv::sls> m_sls;
scoped_ptr<expr_ref_vector> m_units;
class solver : public euf::th_euf_solver, public sls::smt_context {
model_ref m_model;
sls::smt_plugin* m_smt_plugin = nullptr;
unsigned m_trail_lim = 0;
statistics m_st;
void run_local_search();
void sample_local_search();
bool is_unit(expr*);
bool m_checking = false;
::statistics m_st;
public:
solver(euf::solver& ctx);
@ -97,10 +84,21 @@ namespace sls {
sat::literal internalize(expr* e, bool sign, bool root) override { UNREACHABLE(); return sat::null_literal; }
void internalize(expr* e) override { UNREACHABLE(); }
void get_antecedents(sat::literal l, sat::ext_justification_idx idx, sat::literal_vector & r, bool probing) override { UNREACHABLE(); }
sat::check_result check() override;
std::ostream & display(std::ostream & out) const override { return out; }
sat::check_result check() override { return sat::check_result::CR_DONE; }
std::ostream& display(std::ostream& out) const override;
std::ostream & display_justification(std::ostream & out, sat::ext_justification_idx idx) const override { UNREACHABLE(); return out; }
std::ostream & display_constraint(std::ostream & out, sat::ext_constraint_idx idx) const override { UNREACHABLE(); return out; }
ast_manager& get_manager() override { return m; }
params_ref get_params() override;
void initialize_value(expr* t, expr* v) override;
void force_phase(sat::literal lit) override;
void set_has_new_best_phase(bool b) override;
bool get_best_phase(sat::bool_var v) override;
expr* bool_var2expr(sat::bool_var v) override;
void set_finished() override;
unsigned get_num_bool_vars() const override;
};

View file

@ -44,7 +44,7 @@ Notes:
#include "sat/smt/pb_solver.h"
#include "sat/smt/euf_solver.h"
#include "sat/smt/sat_th.h"
#include "sat/sat_params.hpp"
#include "params/sat_params.hpp"
#include<sstream>
struct goal2sat::imp : public sat::sat_internalizer {
@ -139,10 +139,6 @@ struct goal2sat::imp : public sat::sat_internalizer {
return m_euf && ensure_euf()->relevancy_enabled();
}
bool top_level_relevant() {
return m_top_level && relevancy_enabled();
}
void mk_clause(sat::literal l1, sat::literal l2, euf::th_proof_hint* ph) {
sat::literal lits[2] = { l1, l2 };
mk_clause(2, lits, ph);
@ -158,6 +154,7 @@ struct goal2sat::imp : public sat::sat_internalizer {
if (relevancy_enabled())
ensure_euf()->add_aux(n, lits);
m_solver.add_clause(n, lits, mk_status(ph));
add_top_level_clause(n, lits);
}
void mk_root_clause(sat::literal l) {
@ -179,6 +176,7 @@ struct goal2sat::imp : public sat::sat_internalizer {
if (relevancy_enabled())
ensure_euf()->add_root(n, lits);
m_solver.add_clause(n, lits, ph ? mk_status(ph) : sat::status::input());
add_top_level_clause(n, lits);
}
sat::bool_var add_var(bool is_ext, expr* n) {
@ -895,7 +893,6 @@ struct goal2sat::imp : public sat::sat_internalizer {
process(n, true);
CTRACE("goal2sat", !m_result_stack.empty(), tout << m_result_stack << "\n";);
SASSERT(m_result_stack.empty());
add_assertion(n);
}
void insert_dep(expr* dep0, expr* dep, bool sign) {
@ -990,10 +987,12 @@ struct goal2sat::imp : public sat::sat_internalizer {
}
}
void add_assertion(expr* f) {
void add_top_level_clause(unsigned n, sat::literal const* lits) {
if (!m_top_level)
return;
auto* ext = dynamic_cast<euf::solver*>(m_solver.get_extension());
if (ext)
ext->add_assertion(f);
ext->add_clause(n, lits);
}
void update_model(model_ref& mdl) {

View file

@ -44,7 +44,7 @@ Notes:
#include "sat/smt/pb_solver.h"
#include "sat/smt/euf_solver.h"
#include "sat/smt/sat_th.h"
#include "sat/sat_params.hpp"
#include "params/sat_params.hpp"
#include<sstream>
sat2goal::mc::mc(ast_manager& m): m(m), m_var2expr(m) {}

View file

@ -16,13 +16,14 @@ Author:
Notes:
--*/
#include "params/sat_params.hpp"
#include "ast/ast_pp.h"
#include "model/model_v2_pp.h"
#include "tactic/tactical.h"
#include "sat/tactic/goal2sat.h"
#include "sat/tactic/sat2goal.h"
#include "sat/sat_solver.h"
#include "sat/sat_params.hpp"
class sat_tactic : public tactic {