mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
updated hitting set sample
This commit is contained in:
parent
e804f7743a
commit
8d54e83567
|
@ -1,48 +1,166 @@
|
|||
#
|
||||
# Unweighted hitting set maxsat solver.
|
||||
# interleaved with local hill-climbing improvements
|
||||
#
|
||||
|
||||
from z3 import *
|
||||
import random
|
||||
|
||||
|
||||
|
||||
class Soft:
|
||||
__init__(self, soft):
|
||||
def __init__(self, soft):
|
||||
self.formulas = soft
|
||||
self.name2formula = { Bool(f"s{s}") : s for s in soft }
|
||||
self.formula2name = { s : v for (v, s) in self._name2formula.items() }
|
||||
self.formula2name = { s : v for (v, s) in self.name2formula.items() }
|
||||
|
||||
|
||||
def improve(hi, mdl, new_model, soft):
|
||||
cost = len([f for f in soft.formulas if not is_true(new_model.eval(f))])
|
||||
if mdl is None:
|
||||
mdl = new_model
|
||||
if cost <= hi:
|
||||
print("improve", hi, cost)
|
||||
mdl = new_model
|
||||
if cost < hi:
|
||||
hi = cost
|
||||
assert mdl
|
||||
return hi, mdl
|
||||
|
||||
def pick_hs(K, soft):
|
||||
#
|
||||
# This can improve lower bound, but is expensive.
|
||||
# Note that Z3 does not work well for hitting set optimization.
|
||||
# MIP solvers contain better
|
||||
# tuned approaches thanks to LP lower bounds and likely other properties.
|
||||
# Would be nice to have a good hitting set
|
||||
# heuristic built into Z3....
|
||||
#
|
||||
def pick_hs_(K, lo, soft):
|
||||
hs = set()
|
||||
for k in K:
|
||||
ks = set(k)
|
||||
if len(ks & hs) > 0:
|
||||
continue
|
||||
h = random.choice([h for h in k])
|
||||
hs = hs | { h }
|
||||
print("approximate hitting set", len(hs), "smallest possible size", lo)
|
||||
return hs, lo
|
||||
|
||||
opt_backoff_limit = 0
|
||||
opt_backoff_count = 0
|
||||
timeout_value = 6000
|
||||
def pick_hs(K, lo, soft):
|
||||
global timeout_value
|
||||
global opt_backoff_limit
|
||||
global opt_backoff_count
|
||||
if opt_backoff_count < opt_backoff_limit:
|
||||
opt_backoff_count += 1
|
||||
return pick_hs_(K, lo, soft)
|
||||
opt = Optimize()
|
||||
for k in K:
|
||||
opt.add(Or(soft.formula2name[f] for f in k))
|
||||
opt.add(Or([soft.formula2name[f] for f in k]))
|
||||
for n in soft.formula2name.values():
|
||||
opt.add_soft(Not(n))
|
||||
print(opt.check())
|
||||
mdl = opt.model()
|
||||
hs = [soft.name2formula[n] for n in soft.formula2name.values() if is_true(mdl.eval(n))]
|
||||
return hs, True
|
||||
obj = opt.add_soft(Not(n))
|
||||
opt.set("timeout", timeout_value)
|
||||
is_sat = opt.check()
|
||||
lo = max(lo, opt.lower(obj).as_long())
|
||||
if is_sat == sat:
|
||||
mdl = opt.model()
|
||||
hs = [soft.name2formula[n] for n in soft.formula2name.values() if is_true(mdl.eval(n))]
|
||||
return hs, lo
|
||||
else:
|
||||
print("Timeout", timeout_value, "lo", lo, "limit", opt_backoff_limit)
|
||||
opt_backoff_limit += 1
|
||||
opt_backoff_count = 0
|
||||
timeout_value += 500
|
||||
return pick_hs_(K, lo, soft)
|
||||
|
||||
|
||||
|
||||
def local_mss(hi, mdl, s, soft):
|
||||
mss = { f for f in soft.formulas if is_true(mdl.eval(f)) }
|
||||
ps = set(soft.formulas) - mss
|
||||
backbones = set()
|
||||
qs = set()
|
||||
while len(ps) > 0:
|
||||
p = random.choice([p for p in ps])
|
||||
ps = ps - { p }
|
||||
is_sat = s.check(mss | backbones | { p })
|
||||
print(p, len(ps), is_sat)
|
||||
sys.stdout.flush()
|
||||
if is_sat == sat:
|
||||
mdl = s.model()
|
||||
rs = { p }
|
||||
|
||||
# by commenting this out, we use a more stubborn exploration
|
||||
# by using the random seed as opposed to current model as a guide
|
||||
# to what gets satisfied.
|
||||
#
|
||||
# Not sure if it really has an effect.
|
||||
# rs = rs | { q for q in ps if is_true(mdl.eval(q)) }
|
||||
rs = rs | { q for q in qs if is_true(mdl.eval(q)) }
|
||||
mss = mss | rs
|
||||
ps = ps - rs
|
||||
qs = qs - rs
|
||||
hi, mdl = improve(hi, mdl, s.model(), soft)
|
||||
elif is_sat == unsat:
|
||||
backbones = backbones | { Not(p) }
|
||||
else:
|
||||
qs = qs | { p }
|
||||
return hi, mdl
|
||||
|
||||
def get_cores(hi, hs, mdl, s, soft):
|
||||
core = s.unsat_core()
|
||||
remaining = set(soft.formulas) - set(core) - set(hs)
|
||||
num_cores = 0
|
||||
cores = [core]
|
||||
print("new core of size", len(core))
|
||||
while True:
|
||||
is_sat = s.check(remaining)
|
||||
if unsat == is_sat:
|
||||
core = s.unsat_core()
|
||||
print("new core of size", len(core))
|
||||
cores += [core]
|
||||
remaining = remaining - set(core)
|
||||
elif sat == is_sat and num_cores == len(cores):
|
||||
hi, mdl = local_mss(hi, s.model(), s, soft)
|
||||
break
|
||||
elif sat == is_sat:
|
||||
hi, mdl = improve(hi, mdl, s.model(), soft)
|
||||
|
||||
#
|
||||
# Extend the size of the hitting set using the new cores
|
||||
# and update remaining using these cores.
|
||||
# The new hitting set contains at least one new element
|
||||
# from the original core
|
||||
#
|
||||
hs = set(hs)
|
||||
for i in range(num_cores, len(cores)):
|
||||
h = random.choice([c for c in cores[i]])
|
||||
hs = hs | { h }
|
||||
remaining = set(soft.formulas) - set(core) - set(hs)
|
||||
num_cores = len(cores)
|
||||
else:
|
||||
print(is_sat)
|
||||
break
|
||||
return hi, mdl, cores
|
||||
|
||||
def hs(lo, hi, mdl, K, s, soft):
|
||||
hs, is_min = pick_hs(K, soft)
|
||||
is_sat = s.check(set(soft.formulas) - set(hs))
|
||||
hs, lo = pick_hs(K, lo, soft)
|
||||
is_sat = s.check(set(soft.formulas) - set(hs))
|
||||
if is_sat == sat:
|
||||
hi, mdl = improve(hi, mdl, s.model(), soft)
|
||||
elif is_sat == unsat:
|
||||
core = s.unsat_core()
|
||||
K += [set(core)]
|
||||
if is_min:
|
||||
lo = max(lo, len(hs))
|
||||
hi, mdl, cores = get_cores(hi, hs, mdl, s, soft)
|
||||
K += [set(core) for core in cores]
|
||||
hi, mdl = local_mss(hi, mdl, s, soft)
|
||||
print("total number of cores", len(K))
|
||||
else:
|
||||
print("unknown")
|
||||
print(lo, hi)
|
||||
print("maxsat [", lo, ", ", hi, "]")
|
||||
return lo, hi, mdl, K
|
||||
|
||||
|
||||
#set_option(verbose=1)
|
||||
def main(file):
|
||||
s = Solver()
|
||||
opt = Optimize()
|
||||
|
@ -56,7 +174,8 @@ def main(file):
|
|||
while lo < hi:
|
||||
lo, hi, mdl, K = hs(lo, hi, None, K, s, soft)
|
||||
|
||||
def __main__():
|
||||
main(sys.argv[0])
|
||||
|
||||
if __name__ == '__main__':
|
||||
main(sys.argv[1])
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue