mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
182 lines
5.3 KiB
Python
182 lines
5.3 KiB
Python
#
|
|
# Unweighted hitting set maxsat solver.
|
|
# interleaved with local hill-climbing improvements
|
|
#
|
|
|
|
from z3 import *
|
|
import random
|
|
|
|
|
|
|
|
class Soft:
|
|
def __init__(self, soft):
|
|
self.formulas = soft
|
|
self.name2formula = { Bool(f"s{s}") : s for s in soft }
|
|
self.formula2name = { s : v for (v, s) in self.name2formula.items() }
|
|
|
|
|
|
def improve(hi, mdl, new_model, soft):
|
|
cost = len([f for f in soft.formulas if not is_true(new_model.eval(f))])
|
|
if mdl is None:
|
|
mdl = new_model
|
|
if cost <= hi:
|
|
print("improve", hi, cost)
|
|
mdl = new_model
|
|
if cost < hi:
|
|
hi = cost
|
|
assert mdl
|
|
return hi, mdl
|
|
|
|
#
|
|
# This can improve lower bound, but is expensive.
|
|
# Note that Z3 does not work well for hitting set optimization.
|
|
# MIP solvers contain better
|
|
# tuned approaches thanks to LP lower bounds and likely other properties.
|
|
# Would be nice to have a good hitting set
|
|
# heuristic built into Z3....
|
|
#
|
|
def pick_hs_(K, lo, soft):
|
|
hs = set()
|
|
for k in K:
|
|
ks = set(k)
|
|
if len(ks & hs) > 0:
|
|
continue
|
|
h = random.choice([h for h in k])
|
|
hs = hs | { h }
|
|
print("approximate hitting set", len(hs), "smallest possible size", lo)
|
|
return hs, lo
|
|
|
|
opt_backoff_limit = 0
|
|
opt_backoff_count = 0
|
|
timeout_value = 6000
|
|
def pick_hs(K, lo, soft):
|
|
global timeout_value
|
|
global opt_backoff_limit
|
|
global opt_backoff_count
|
|
if opt_backoff_count < opt_backoff_limit:
|
|
opt_backoff_count += 1
|
|
return pick_hs_(K, lo, soft)
|
|
opt = Optimize()
|
|
for k in K:
|
|
opt.add(Or([soft.formula2name[f] for f in k]))
|
|
for n in soft.formula2name.values():
|
|
obj = opt.add_soft(Not(n))
|
|
opt.set("timeout", timeout_value)
|
|
is_sat = opt.check()
|
|
lo = max(lo, opt.lower(obj).as_long())
|
|
if is_sat == sat:
|
|
mdl = opt.model()
|
|
hs = [soft.name2formula[n] for n in soft.formula2name.values() if is_true(mdl.eval(n))]
|
|
return hs, lo
|
|
else:
|
|
print("Timeout", timeout_value, "lo", lo, "limit", opt_backoff_limit)
|
|
opt_backoff_limit += 1
|
|
opt_backoff_count = 0
|
|
timeout_value += 500
|
|
return pick_hs_(K, lo, soft)
|
|
|
|
|
|
|
|
def local_mss(hi, mdl, s, soft):
|
|
mss = { f for f in soft.formulas if is_true(mdl.eval(f)) }
|
|
ps = set(soft.formulas) - mss
|
|
backbones = set()
|
|
qs = set()
|
|
while len(ps) > 0:
|
|
p = random.choice([p for p in ps])
|
|
ps = ps - { p }
|
|
is_sat = s.check(mss | backbones | { p })
|
|
print(p, len(ps), is_sat)
|
|
sys.stdout.flush()
|
|
if is_sat == sat:
|
|
mdl = s.model()
|
|
rs = { p }
|
|
|
|
# by commenting this out, we use a more stubborn exploration
|
|
# by using the random seed as opposed to current model as a guide
|
|
# to what gets satisfied.
|
|
#
|
|
# Not sure if it really has an effect.
|
|
# rs = rs | { q for q in ps if is_true(mdl.eval(q)) }
|
|
rs = rs | { q for q in qs if is_true(mdl.eval(q)) }
|
|
mss = mss | rs
|
|
ps = ps - rs
|
|
qs = qs - rs
|
|
hi, mdl = improve(hi, mdl, s.model(), soft)
|
|
elif is_sat == unsat:
|
|
backbones = backbones | { Not(p) }
|
|
else:
|
|
qs = qs | { p }
|
|
return hi, mdl
|
|
|
|
def get_cores(hi, hs, mdl, s, soft):
|
|
core = s.unsat_core()
|
|
remaining = set(soft.formulas) - set(core) - set(hs)
|
|
num_cores = 0
|
|
cores = [core]
|
|
print("new core of size", len(core))
|
|
while True:
|
|
is_sat = s.check(remaining)
|
|
if unsat == is_sat:
|
|
core = s.unsat_core()
|
|
print("new core of size", len(core))
|
|
cores += [core]
|
|
remaining = remaining - set(core)
|
|
elif sat == is_sat and num_cores == len(cores):
|
|
hi, mdl = local_mss(hi, s.model(), s, soft)
|
|
break
|
|
elif sat == is_sat:
|
|
hi, mdl = improve(hi, mdl, s.model(), soft)
|
|
|
|
#
|
|
# Extend the size of the hitting set using the new cores
|
|
# and update remaining using these cores.
|
|
# The new hitting set contains at least one new element
|
|
# from the original core
|
|
#
|
|
hs = set(hs)
|
|
for i in range(num_cores, len(cores)):
|
|
h = random.choice([c for c in cores[i]])
|
|
hs = hs | { h }
|
|
remaining = set(soft.formulas) - set(core) - set(hs)
|
|
num_cores = len(cores)
|
|
else:
|
|
print(is_sat)
|
|
break
|
|
return hi, mdl, cores
|
|
|
|
def hs(lo, hi, mdl, K, s, soft):
|
|
hs, lo = pick_hs(K, lo, soft)
|
|
is_sat = s.check(set(soft.formulas) - set(hs))
|
|
if is_sat == sat:
|
|
hi, mdl = improve(hi, mdl, s.model(), soft)
|
|
elif is_sat == unsat:
|
|
hi, mdl, cores = get_cores(hi, hs, mdl, s, soft)
|
|
K += [set(core) for core in cores]
|
|
hi, mdl = local_mss(hi, mdl, s, soft)
|
|
print("total number of cores", len(K))
|
|
else:
|
|
print("unknown")
|
|
print("maxsat [", lo, ", ", hi, "]")
|
|
return lo, hi, mdl, K
|
|
|
|
#set_option(verbose=1)
|
|
def main(file):
|
|
s = Solver()
|
|
opt = Optimize()
|
|
opt.from_file(file)
|
|
s.add(opt.assertions())
|
|
soft = [f.arg(0) for f in opt.objectives()[0].children()]
|
|
K = []
|
|
lo = 0
|
|
hi = len(soft)
|
|
soft = Soft(soft)
|
|
while lo < hi:
|
|
lo, hi, mdl, K = hs(lo, hi, None, K, s, soft)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main(sys.argv[1])
|
|
|
|
|