3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00
z3/examples/python/hs.py
2021-03-06 10:18:52 -08:00

182 lines
5.3 KiB
Python

#
# Unweighted hitting set maxsat solver.
# interleaved with local hill-climbing improvements
#
from z3 import *
import random
class Soft:
def __init__(self, soft):
self.formulas = soft
self.name2formula = { Bool(f"s{s}") : s for s in soft }
self.formula2name = { s : v for (v, s) in self.name2formula.items() }
def improve(hi, mdl, new_model, soft):
cost = len([f for f in soft.formulas if not is_true(new_model.eval(f))])
if mdl is None:
mdl = new_model
if cost <= hi:
print("improve", hi, cost)
mdl = new_model
if cost < hi:
hi = cost
assert mdl
return hi, mdl
#
# This can improve lower bound, but is expensive.
# Note that Z3 does not work well for hitting set optimization.
# MIP solvers contain better
# tuned approaches thanks to LP lower bounds and likely other properties.
# Would be nice to have a good hitting set
# heuristic built into Z3....
#
def pick_hs_(K, lo, soft):
hs = set()
for k in K:
ks = set(k)
if len(ks & hs) > 0:
continue
h = random.choice([h for h in k])
hs = hs | { h }
print("approximate hitting set", len(hs), "smallest possible size", lo)
return hs, lo
opt_backoff_limit = 0
opt_backoff_count = 0
timeout_value = 6000
def pick_hs(K, lo, soft):
global timeout_value
global opt_backoff_limit
global opt_backoff_count
if opt_backoff_count < opt_backoff_limit:
opt_backoff_count += 1
return pick_hs_(K, lo, soft)
opt = Optimize()
for k in K:
opt.add(Or([soft.formula2name[f] for f in k]))
for n in soft.formula2name.values():
obj = opt.add_soft(Not(n))
opt.set("timeout", timeout_value)
is_sat = opt.check()
lo = max(lo, opt.lower(obj).as_long())
if is_sat == sat:
mdl = opt.model()
hs = [soft.name2formula[n] for n in soft.formula2name.values() if is_true(mdl.eval(n))]
return hs, lo
else:
print("Timeout", timeout_value, "lo", lo, "limit", opt_backoff_limit)
opt_backoff_limit += 1
opt_backoff_count = 0
timeout_value += 500
return pick_hs_(K, lo, soft)
def local_mss(hi, mdl, s, soft):
mss = { f for f in soft.formulas if is_true(mdl.eval(f)) }
ps = set(soft.formulas) - mss
backbones = set()
qs = set()
while len(ps) > 0:
p = random.choice([p for p in ps])
ps = ps - { p }
is_sat = s.check(mss | backbones | { p })
print(p, len(ps), is_sat)
sys.stdout.flush()
if is_sat == sat:
mdl = s.model()
rs = { p }
# by commenting this out, we use a more stubborn exploration
# by using the random seed as opposed to current model as a guide
# to what gets satisfied.
#
# Not sure if it really has an effect.
# rs = rs | { q for q in ps if is_true(mdl.eval(q)) }
rs = rs | { q for q in qs if is_true(mdl.eval(q)) }
mss = mss | rs
ps = ps - rs
qs = qs - rs
hi, mdl = improve(hi, mdl, s.model(), soft)
elif is_sat == unsat:
backbones = backbones | { Not(p) }
else:
qs = qs | { p }
return hi, mdl
def get_cores(hi, hs, mdl, s, soft):
core = s.unsat_core()
remaining = set(soft.formulas) - set(core) - set(hs)
num_cores = 0
cores = [core]
print("new core of size", len(core))
while True:
is_sat = s.check(remaining)
if unsat == is_sat:
core = s.unsat_core()
print("new core of size", len(core))
cores += [core]
remaining = remaining - set(core)
elif sat == is_sat and num_cores == len(cores):
hi, mdl = local_mss(hi, s.model(), s, soft)
break
elif sat == is_sat:
hi, mdl = improve(hi, mdl, s.model(), soft)
#
# Extend the size of the hitting set using the new cores
# and update remaining using these cores.
# The new hitting set contains at least one new element
# from the original core
#
hs = set(hs)
for i in range(num_cores, len(cores)):
h = random.choice([c for c in cores[i]])
hs = hs | { h }
remaining = set(soft.formulas) - set(core) - set(hs)
num_cores = len(cores)
else:
print(is_sat)
break
return hi, mdl, cores
def hs(lo, hi, mdl, K, s, soft):
hs, lo = pick_hs(K, lo, soft)
is_sat = s.check(set(soft.formulas) - set(hs))
if is_sat == sat:
hi, mdl = improve(hi, mdl, s.model(), soft)
elif is_sat == unsat:
hi, mdl, cores = get_cores(hi, hs, mdl, s, soft)
K += [set(core) for core in cores]
hi, mdl = local_mss(hi, mdl, s, soft)
print("total number of cores", len(K))
else:
print("unknown")
print("maxsat [", lo, ", ", hi, "]")
return lo, hi, mdl, K
#set_option(verbose=1)
def main(file):
s = Solver()
opt = Optimize()
opt.from_file(file)
s.add(opt.assertions())
soft = [f.arg(0) for f in opt.objectives()[0].children()]
K = []
lo = 0
hi = len(soft)
soft = Soft(soft)
while lo < hi:
lo, hi, mdl, K = hs(lo, hi, None, K, s, soft)
if __name__ == '__main__':
main(sys.argv[1])