3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 01:25:31 +00:00

use IEnumerator and format

This commit is contained in:
Nikolaj Bjorner 2022-06-28 14:24:05 -07:00
parent 556f0d7b5f
commit 798a4ee86e

View file

@ -37,280 +37,306 @@ namespace Microsoft.Z3
/// <summary>
/// Propagator context for .Net
/// </summary>
public class UserPropagator
public class UserPropagator
{
/// <summary>
/// Delegate type for fixed callback
/// </summary>
public delegate void FixedEh(Expr term, Expr value);
public delegate void FixedEh(Expr term, Expr value);
/// <summary>
/// Delegate type for equality or disequality callback
/// </summary>
public delegate void EqEh(Expr term, Expr value);
public delegate void EqEh(Expr term, Expr value);
/// <summary>
/// Delegate type for when a new term using a registered function symbol is created internally
/// </summary>
public delegate void CreatedEh(Expr term);
public delegate void CreatedEh(Expr term);
/// <summary>
/// Delegate type for callback into solver's branching
/// <param name="term">A bit-vector or Boolean used for branching</param>
/// <param name="idx">If the term is a bit-vector, then an index into the bit-vector being branched on</param>
/// <param name="phase">Set phase to -1 (false) or 1 (true) to override solver's phase</param>
/// </summary>
public delegate void DecideEh(ref Expr term, ref uint idx, ref int phase);
/// <param name="term">A bit-vector or Boolean used for branching</param>
/// <param name="idx">If the term is a bit-vector, then an index into the bit-vector being branched on</param>
/// <param name="phase">Set phase to -1 (false) or 1 (true) to override solver's phase</param>
/// </summary>
public delegate void DecideEh(ref Expr term, ref uint idx, ref int phase);
// access managed objects through a static array.
// thread safety is ignored for now.
static List<UserPropagator> propagators = new List<UserPropagator>();
int id;
Solver solver;
Context ctx;
Z3_solver_callback callback = IntPtr.Zero;
FixedEh fixed_eh;
Action final_eh;
EqEh eq_eh;
EqEh diseq_eh;
CreatedEh created_eh;
DecideEh decide_eh;
// thread safety is ignored for now.
static List<UserPropagator> propagators = new List<UserPropagator>();
int id;
Solver solver;
Context ctx;
Z3_solver_callback callback = IntPtr.Zero;
FixedEh fixed_eh;
Action final_eh;
EqEh eq_eh;
EqEh diseq_eh;
CreatedEh created_eh;
DecideEh decide_eh;
void Callback(Action fn, Z3_solver_callback cb) {
this.callback = cb;
try {
fn();
}
catch {
// TBD: add debug log or exception handler
}
finally {
this.callback = IntPtr.Zero;
}
}
void Callback(Action fn, Z3_solver_callback cb)
{
this.callback = cb;
try
{
fn();
}
catch
{
// TBD: add debug log or exception handler
}
finally
{
this.callback = IntPtr.Zero;
}
}
static void _push(voidp ctx, Z3_solver_callback cb) {
var prop = propagators[ctx.ToInt32()];
prop.Callback(() => prop.Push(), cb);
}
static void _pop(voidp ctx, Z3_solver_callback cb, uint num_scopes) {
var prop = propagators[ctx.ToInt32()];
prop.Callback(() => prop.Pop(num_scopes), cb);
}
static voidp _fresh(voidp _ctx, Z3_context new_context) {
var prop = propagators[_ctx.ToInt32()];
var ctx = new Context(new_context);
var prop1 = prop.Fresh(prop.ctx);
return new IntPtr(prop1.id);
}
static void _push(voidp ctx, Z3_solver_callback cb)
{
var prop = propagators[ctx.ToInt32()];
prop.Callback(() => prop.Push(), cb);
}
static void _fixed(voidp ctx, Z3_solver_callback cb, Z3_ast _term, Z3_ast _value) {
var prop = propagators[ctx.ToInt32()];
using var term = Expr.Create(prop.ctx, _term);
using var value = Expr.Create(prop.ctx, _value);
prop.Callback(() => prop.fixed_eh(term, value), cb);
}
static void _pop(voidp ctx, Z3_solver_callback cb, uint num_scopes)
{
var prop = propagators[ctx.ToInt32()];
prop.Callback(() => prop.Pop(num_scopes), cb);
}
static void _final(voidp ctx, Z3_solver_callback cb) {
var prop = propagators[ctx.ToInt32()];
prop.Callback(() => prop.final_eh(), cb);
}
static voidp _fresh(voidp _ctx, Z3_context new_context)
{
var prop = propagators[_ctx.ToInt32()];
var ctx = new Context(new_context);
var prop1 = prop.Fresh(prop.ctx);
return new IntPtr(prop1.id);
}
static void _eq(voidp ctx, Z3_solver_callback cb, Z3_ast a, Z3_ast b) {
var prop = propagators[ctx.ToInt32()];
using var s = Expr.Create(prop.ctx, a);
using var t = Expr.Create(prop.ctx, b);
prop.Callback(() => prop.eq_eh(s, t), cb);
}
static void _fixed(voidp ctx, Z3_solver_callback cb, Z3_ast _term, Z3_ast _value)
{
var prop = propagators[ctx.ToInt32()];
using var term = Expr.Create(prop.ctx, _term);
using var value = Expr.Create(prop.ctx, _value);
prop.Callback(() => prop.fixed_eh(term, value), cb);
}
static void _diseq(voidp ctx, Z3_solver_callback cb, Z3_ast a, Z3_ast b) {
var prop = propagators[ctx.ToInt32()];
using var s = Expr.Create(prop.ctx, a);
using var t = Expr.Create(prop.ctx, b);
prop.Callback(() => prop.diseq_eh(s, t), cb);
}
static void _final(voidp ctx, Z3_solver_callback cb)
{
var prop = propagators[ctx.ToInt32()];
prop.Callback(() => prop.final_eh(), cb);
}
static void _created(voidp ctx, Z3_solver_callback cb, Z3_ast a) {
var prop = propagators[ctx.ToInt32()];
using var t = Expr.Create(prop.ctx, a);
prop.Callback(() => prop.created_eh(t), cb);
}
static void _eq(voidp ctx, Z3_solver_callback cb, Z3_ast a, Z3_ast b)
{
var prop = propagators[ctx.ToInt32()];
using var s = Expr.Create(prop.ctx, a);
using var t = Expr.Create(prop.ctx, b);
prop.Callback(() => prop.eq_eh(s, t), cb);
}
static void _decide(voidp ctx, Z3_solver_callback cb, ref Z3_ast a, ref uint idx, ref int phase) {
var prop = propagators[ctx.ToInt32()];
var t = Expr.Create(prop.ctx, a);
var u = t;
prop.callback = cb;
prop.decide_eh(ref t, ref idx, ref phase);
prop.callback = IntPtr.Zero;
if (u != t)
a = t.NativeObject;
}
static void _diseq(voidp ctx, Z3_solver_callback cb, Z3_ast a, Z3_ast b)
{
var prop = propagators[ctx.ToInt32()];
using var s = Expr.Create(prop.ctx, a);
using var t = Expr.Create(prop.ctx, b);
prop.Callback(() => prop.diseq_eh(s, t), cb);
}
static void _created(voidp ctx, Z3_solver_callback cb, Z3_ast a)
{
var prop = propagators[ctx.ToInt32()];
using var t = Expr.Create(prop.ctx, a);
prop.Callback(() => prop.created_eh(t), cb);
}
static void _decide(voidp ctx, Z3_solver_callback cb, ref Z3_ast a, ref uint idx, ref int phase)
{
var prop = propagators[ctx.ToInt32()];
var t = Expr.Create(prop.ctx, a);
var u = t;
prop.callback = cb;
prop.decide_eh(ref t, ref idx, ref phase);
prop.callback = IntPtr.Zero;
if (u != t)
a = t.NativeObject;
}
/// <summary>
/// Propagator constructor from a solver class.
/// </summary>
public UserPropagator(Solver s)
{
id = propagators.Count;
propagators.Add(this);
solver = s;
ctx = solver.Context;
Native.Z3_solver_propagate_init(ctx.nCtx, solver.NativeObject, new IntPtr(id), _push, _pop, _fresh);
}
{
id = propagators.Count;
propagators.Add(this);
solver = s;
ctx = solver.Context;
Native.Z3_solver_propagate_init(ctx.nCtx, solver.NativeObject, new IntPtr(id), _push, _pop, _fresh);
}
/// <summary>
/// Propagator constructor from a context. It is used from inside of Fresh.
/// </summary>
public UserPropagator(Context _ctx)
{
id = propagators.Count;
propagators.Add(this);
{
id = propagators.Count;
propagators.Add(this);
solver = null;
ctx = _ctx;
}
ctx = _ctx;
}
/// <summary>
/// Release provate memory.
/// </summary>
~UserPropagator()
{
~UserPropagator()
{
propagators[id] = null;
if (solver == null)
ctx.Dispose();
}
}
/// <summary>
/// Virtual method for push. It must be overwritten by inherited class.
/// </summary>
public virtual void Push() { throw new Z3Exception("Push method should be overwritten"); }
/// </summary>
public virtual void Push() { throw new Z3Exception("Push method should be overwritten"); }
/// <summary>
/// Virtual method for pop. It must be overwritten by inherited class.
/// </summary>
public virtual void Pop(uint n) { throw new Z3Exception("Pop method should be overwritten"); }
/// </summary>
public virtual void Pop(uint n) { throw new Z3Exception("Pop method should be overwritten"); }
/// <summary>
/// Virtual method for fresh. It can be overwritten by inherited class.
/// </summary>
public virtual UserPropagator Fresh(Context ctx) { return new UserPropagator(ctx); }
/// </summary>
public virtual UserPropagator Fresh(Context ctx) { return new UserPropagator(ctx); }
/// <summary>
/// Declare combination of assigned expressions a conflict
/// </summary>
public void Conflict(params Expr[] terms) {
Propagate(terms, ctx.MkFalse());
/// </summary>
public void Conflict(params Expr[] terms)
{
Propagate(terms, ctx.MkFalse());
}
/// <summary>
/// Declare combination of assigned expressions a conflict
/// </summary>
public void Conflict(IEnumerable<Expr> terms)
{
Propagate(terms, ctx.MkFalse());
}
/// <summary>
/// Propagate consequence
/// </summary>
public void Propagate(Expr[] terms, Expr conseq) {
var nTerms = Z3Object.ArrayToNative(terms);
/// </summary>
public void Propagate(IEnumerable<Expr> terms, Expr conseq)
{
var nTerms = Z3Object.ArrayToNative(terms.ToArray());
Native.Z3_solver_propagate_consequence(ctx.nCtx, this.callback, (uint)nTerms.Length, nTerms, 0u, null, null, conseq.NativeObject);
}
/// <summary>
/// Set fixed callback
/// </summary>
/// </summary>
public FixedEh Fixed
{
set
{
this.fixed_eh = value;
if (solver != null)
Native.Z3_solver_propagate_fixed(ctx.nCtx, solver.NativeObject, _fixed);
}
}
{
set
{
this.fixed_eh = value;
if (solver != null)
Native.Z3_solver_propagate_fixed(ctx.nCtx, solver.NativeObject, _fixed);
}
}
/// <summary>
/// Set final callback
/// </summary>
public Action Final
{
set
{
this.final_eh = value;
if (solver != null)
Native.Z3_solver_propagate_final(ctx.nCtx, solver.NativeObject, _final);
/// </summary>
public Action Final
{
set
{
this.final_eh = value;
if (solver != null)
Native.Z3_solver_propagate_final(ctx.nCtx, solver.NativeObject, _final);
}
}
/// <summary>
/// Set equality event callback
/// </summary>
public EqEh Eq
{
set
{
this.eq_eh = value;
if (solver != null)
Native.Z3_solver_propagate_eq(ctx.nCtx, solver.NativeObject, _eq);
}
/// </summary>
public EqEh Eq
{
set
{
this.eq_eh = value;
if (solver != null)
Native.Z3_solver_propagate_eq(ctx.nCtx, solver.NativeObject, _eq);
}
}
/// <summary>
/// Set disequality event callback
/// </summary>
public EqEh Diseq
{
set
{
this.diseq_eh = value;
if (solver != null)
Native.Z3_solver_propagate_diseq(ctx.nCtx, solver.NativeObject, _diseq);
}
/// </summary>
public EqEh Diseq
{
set
{
this.diseq_eh = value;
if (solver != null)
Native.Z3_solver_propagate_diseq(ctx.nCtx, solver.NativeObject, _diseq);
}
}
/// <summary>
/// Set created callback
/// </summary>
public CreatedEh Created
{
set
{
this.created_eh = value;
if (solver != null)
Native.Z3_solver_propagate_created(ctx.nCtx, solver.NativeObject, _created);
}
/// </summary>
public CreatedEh Created
{
set
{
this.created_eh = value;
if (solver != null)
Native.Z3_solver_propagate_created(ctx.nCtx, solver.NativeObject, _created);
}
}
/// <summary>
/// Set decision callback
/// </summary>
public DecideEh Decide
{
set
{
this.decide_eh = value;
if (solver != null)
Native.Z3_solver_propagate_decide(ctx.nCtx, solver.NativeObject, _decide);
}
/// </summary>
public DecideEh Decide
{
set
{
this.decide_eh = value;
if (solver != null)
Native.Z3_solver_propagate_decide(ctx.nCtx, solver.NativeObject, _decide);
}
}
/// <summary>
/// Set the next decision
/// </summary>
public void NextSplit(Expr e, uint idx, int phase)
{
Native.Z3_solver_next_split(ctx.nCtx, this.callback, e.NativeObject, idx, phase);
}
/// </summary>
public void NextSplit(Expr e, uint idx, int phase)
{
Native.Z3_solver_next_split(ctx.nCtx, this.callback, e.NativeObject, idx, phase);
}
/// <summary>
/// Track assignments to a term
/// </summary>
public void Register(Expr term) {
if (this.callback != IntPtr.Zero) {
Native.Z3_solver_propagate_register_cb(ctx.nCtx, callback, term.NativeObject);
/// </summary>
public void Register(Expr term)
{
if (this.callback != IntPtr.Zero)
{
Native.Z3_solver_propagate_register_cb(ctx.nCtx, callback, term.NativeObject);
}
else {
Native.Z3_solver_propagate_register(ctx.nCtx, solver.NativeObject, term.NativeObject);
else
{
Native.Z3_solver_propagate_register(ctx.nCtx, solver.NativeObject, term.NativeObject);
}
}
}
}
}