3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-23 17:15:31 +00:00

cleanup nla_solver

Signed-off-by: Lev <levnach@hotmail.com>
This commit is contained in:
Lev 2018-10-08 16:33:10 -07:00 committed by Lev Nachmanson
parent ccd978e43b
commit 6ce6922c5a
5 changed files with 241 additions and 166 deletions

View file

@ -6,6 +6,7 @@ z3_add_component(lp
core_solver_pretty_printer.cpp
dense_matrix.cpp
eta_matrix.cpp
factorization.cpp
gomory.cpp
indexed_vector.cpp
int_solver.cpp

View file

@ -0,0 +1,121 @@
#include "util/vector.h"
#include "util/lp/factorization.h"
namespace nla {
void const_iterator::init_vars_by_the_mask(unsigned_vector & k_vars, unsigned_vector & j_vars) const {
// the last element for m_factorization.m_rooted_vars goes to k_vars
SASSERT(m_mask.size() + 1 == m_ff->m_cmon.vars().size());
k_vars.push_back(m_ff->m_cmon.vars().back());
for (unsigned j = 0; j < m_mask.size(); j++) {
if (m_mask[j]) {
k_vars.push_back(m_ff->m_cmon[j]);
} else {
j_vars.push_back(m_ff->m_cmon[j]);
}
}
}
bool const_iterator::get_factors(unsigned& k, unsigned& j, rational& sign) const {
unsigned_vector k_vars;
unsigned_vector j_vars;
init_vars_by_the_mask(k_vars, j_vars);
SASSERT(!k_vars.empty() && !j_vars.empty());
std::sort(k_vars.begin(), k_vars.end());
std::sort(j_vars.begin(), j_vars.end());
rational k_sign, j_sign;
monomial m;
if (k_vars.size() == 1) {
k = k_vars[0];
k_sign = 1;
} else {
if (!m_ff->find_monomial_of_vars(k_vars, m, k_sign)) {
return false;
}
k = m.var();
}
if (j_vars.size() == 1) {
j = j_vars[0];
j_sign = 1;
} else {
if (!m_ff->find_monomial_of_vars(j_vars, m, j_sign)) {
return false;
}
j = m.var();
}
sign = j_sign * k_sign;
return true;
}
const_iterator::reference const_iterator::operator*() const {
if (m_full_factorization_returned == false) {
return create_full_factorization();
}
unsigned j, k; rational sign;
if (!get_factors(j, k, sign))
return factorization();
return create_binary_factorization(j, k, m_ff->m_cmon.coeff() * sign);
}
void const_iterator::advance_mask() {
if (!m_full_factorization_returned) {
m_full_factorization_returned = true;
return;
}
for (bool& m : m_mask) {
if (m) {
m = false;
}
else {
m = true;
break;
}
}
}
const_iterator::self_type const_iterator::operator++() { self_type i = *this; operator++(1); return i; }
const_iterator::self_type const_iterator::operator++(int) { advance_mask(); return *this; }
const_iterator::const_iterator(const svector<bool>& mask, const factorization_factory *f) :
m_mask(mask),
m_ff(f) ,
m_full_factorization_returned(false)
{}
bool const_iterator::operator==(const const_iterator::self_type &other) const {
return
m_full_factorization_returned == other.m_full_factorization_returned &&
m_mask == other.m_mask;
}
bool const_iterator::operator!=(const const_iterator::self_type &other) const { return !(*this == other); }
factorization const_iterator::create_binary_factorization(lpvar j, lpvar k, rational const& sign) const {
// todo : the current explanation is an overkill
// std::function<void (expl_set&)> explain = [&](expl_set& exp){
// const imp & impl = m_ff->m_impf;
// unsigned mon_index = 0;
// if (impl.m_var_to_its_monomial.find(k, mon_index)) {
// impl.add_explanation_of_reducing_to_rooted_monomial(impl.m_monomials[mon_index], exp);
// }
// if (impl.m_var_to_its_monomial.find(j, mon_index)) {
// impl.add_explanation_of_reducing_to_rooted_monomial(impl.m_monomials[mon_index], exp);
// }
// impl.add_explanation_of_reducing_to_rooted_monomial(m_ff->m_mon, exp);
// };
factorization f;
f.vars().push_back(j);
f.vars().push_back(k);
f.sign() = sign;
return f;
}
factorization const_iterator::create_full_factorization() const {
factorization f;
f.vars() = m_ff->m_mon.vars();
f.sign() = rational(1);
return f;
}
}

View file

@ -18,14 +18,18 @@
--*/
#include "util/rational.h"
#include "util/lp/monomial.h"
namespace nla {
class factorization_factory;
typedef unsigned lpvar;
class factorization {
svector<lpvar> m_vars;
rational m_sign;
std::function<void (expl_set&)> m_explain;
public:
void explain(expl_set& s) const { m_explain(s); }
bool is_empty() const { return m_vars.empty(); }
svector<lpvar> & vars() { return m_vars; }
const svector<lpvar> & vars() const { return m_vars; }
@ -35,6 +39,68 @@ public:
size_t size() const { return m_vars.size(); }
const lpvar* begin() const { return m_vars.begin(); }
const lpvar* end() const { return m_vars.end(); }
factorization(std::function<void (expl_set&)> explain) : m_explain(explain) {}
};
struct const_iterator {
// fields
svector<bool> m_mask;
const factorization_factory * m_ff;
bool m_full_factorization_returned;
//typedefs
typedef const_iterator self_type;
typedef factorization value_type;
typedef const factorization reference;
typedef int difference_type;
typedef std::forward_iterator_tag iterator_category;
void init_vars_by_the_mask(unsigned_vector & k_vars, unsigned_vector & j_vars) const;
bool get_factors(unsigned& k, unsigned& j, rational& sign) const;
reference operator*() const;
void advance_mask();
self_type operator++();
self_type operator++(int);
const_iterator(const svector<bool>& mask, const factorization_factory *f);
bool operator==(const self_type &other) const;
bool operator!=(const self_type &other) const;
factorization create_binary_factorization(lpvar j, lpvar k, rational const& sign) const;
factorization create_full_factorization() const;
};
struct factorization_factory {
// returns true if found
virtual bool find_monomial_of_vars(const svector<lpvar>& vars, monomial& m, rational & sign) const = 0;
unsigned m_i_mon;
const monomial& m_mon;
monomial_coeff m_cmon;
factorization_factory(unsigned i_mon, const monomial& mon, const monomial_coeff& cmon) :
m_i_mon(i_mon),
m_mon(mon),
m_cmon(cmon) {
}
const_iterator begin() const {
// we keep the last element always in the first factor to avoid
// repeating a pair twice
svector<bool> mask(m_mon.vars().size() - 1, false);
return const_iterator(mask, this);
}
const_iterator end() const {
svector<bool> mask(m_mon.vars().size() - 1, true);
auto it = const_iterator(mask, this);
it.m_full_factorization_returned = true;
return it;
}
};
}

View file

@ -2,6 +2,7 @@
Copyright (c) 2017 Microsoft Corporation
Author: Nikolaj Bjorner
*/
#pragma once
#include "util/lp/lp_settings.h"
#include "util/vector.h"
#include "util/lp/lar_solver.h"
@ -22,6 +23,7 @@ namespace nla {
monomial(lp::var_index v, const svector<lp::var_index> &vs):
m_v(v), m_vs(vs) {}
monomial() {}
unsigned var() const { return m_v; }
unsigned size() const { return m_vs.size(); }
unsigned operator[](unsigned idx) const { return m_vs[idx]; }

View file

@ -26,6 +26,8 @@
namespace nla {
struct solver::imp {
typedef lp::lar_base_constraint lpcon;
@ -525,7 +527,7 @@ struct solver::imp {
return basic_neutral_for_reduced_monomial(m, v, reduced_vars);
}
// returns the variable m_i, of a monomial if found and sets the sign,
// returns true if found
bool find_monomial_of_vars(const svector<lpvar>& vars, monomial& m, rational & sign) const {
auto it = m_rooted_monomials.find(vars);
if (it == m_rooted_monomials.end()) {
@ -848,164 +850,6 @@ struct solver::imp {
return out << ", sign = " << f.sign();
}
struct factorization_factory {
unsigned m_i_mon;
const imp& m_impf;
const monomial& m_mon;
monomial_coeff m_cmon;
factorization_factory(unsigned i_mon, const imp& s) :
m_i_mon(i_mon),
m_impf(s),
m_mon(m_impf.m_monomials[i_mon]),
m_cmon(m_impf.canonize_monomial(m_mon)) {
}
struct const_iterator {
// fields
svector<bool> m_mask;
const factorization_factory& m_ff;
bool m_full_factorization_returned;
//typedefs
typedef const_iterator self_type;
typedef factorization value_type;
typedef const factorization reference;
typedef int difference_type;
typedef std::forward_iterator_tag iterator_category;
void init_vars_by_the_mask(unsigned_vector & k_vars, unsigned_vector & j_vars) const {
// the last element for m_factorization.m_rooted_vars goes to k_vars
SASSERT(m_mask.size() + 1 == m_ff.m_cmon.vars().size());
k_vars.push_back(m_ff.m_cmon.vars().back());
for (unsigned j = 0; j < m_mask.size(); j++) {
if (m_mask[j]) {
k_vars.push_back(m_ff.m_cmon[j]);
} else {
j_vars.push_back(m_ff.m_cmon[j]);
}
}
}
bool get_factors(unsigned& k, unsigned& j, rational& sign) const {
unsigned_vector k_vars;
unsigned_vector j_vars;
init_vars_by_the_mask(k_vars, j_vars);
SASSERT(!k_vars.empty() && !j_vars.empty());
std::sort(k_vars.begin(), k_vars.end());
std::sort(j_vars.begin(), j_vars.end());
rational k_sign, j_sign;
monomial m;
if (k_vars.size() == 1) {
k = k_vars[0];
k_sign = 1;
} else {
if (!m_ff.m_impf.find_monomial_of_vars(k_vars, m, k_sign)) {
return false;
}
k = m.var();
}
if (j_vars.size() == 1) {
j = j_vars[0];
j_sign = 1;
} else {
if (!m_ff.m_impf.find_monomial_of_vars(j_vars, m, j_sign)) {
return false;
}
j = m.var();
}
sign = j_sign * k_sign;
return true;
}
reference operator*() const {
if (m_full_factorization_returned == false) {
return create_full_factorization();
}
unsigned j, k; rational sign;
if (!get_factors(j, k, sign))
return factorization([](expl_set&){});
return create_binary_factorization(j, k, m_ff.m_cmon.coeff() * sign);
}
void advance_mask() {
if (!m_full_factorization_returned) {
m_full_factorization_returned = true;
return;
}
for (bool& m : m_mask) {
if (m) {
m = false;
}
else {
m = true;
break;
}
}
}
self_type operator++() { self_type i = *this; operator++(1); return i; }
self_type operator++(int) { advance_mask(); return *this; }
const_iterator(const svector<bool>& mask, const factorization_factory & f) :
m_mask(mask),
m_ff(f) ,
m_full_factorization_returned(false)
{}
bool operator==(const self_type &other) const {
return
m_full_factorization_returned == other.m_full_factorization_returned &&
m_mask == other.m_mask;
}
bool operator!=(const self_type &other) const { return !(*this == other); }
factorization create_binary_factorization(lpvar j, lpvar k, rational const& sign) const {
// todo : the current explanation is an overkill
std::function<void (expl_set&)> explain = [&](expl_set& exp){
const imp & impl = m_ff.m_impf;
unsigned mon_index = 0;
if (impl.m_var_to_its_monomial.find(k, mon_index)) {
impl.add_explanation_of_reducing_to_rooted_monomial(impl.m_monomials[mon_index], exp);
}
if (impl.m_var_to_its_monomial.find(j, mon_index)) {
impl.add_explanation_of_reducing_to_rooted_monomial(impl.m_monomials[mon_index], exp);
}
impl.add_explanation_of_reducing_to_rooted_monomial(m_ff.m_mon, exp);
};
factorization f(explain);
f.vars().push_back(j);
f.vars().push_back(k);
f.sign() = sign;
return f;
}
factorization create_full_factorization() const {
factorization f([](expl_set&){});
f.vars() = m_ff.m_mon.vars();
f.sign() = rational(1);
return f;
}
};
const_iterator begin() const {
// we keep the last element always in the first factor to avoid
// repeating a pair twice
svector<bool> mask(m_mon.vars().size() - 1, false);
return const_iterator(mask, *this);
}
const_iterator end() const {
svector<bool> mask(m_mon.vars().size() - 1, true);
auto it = const_iterator(mask, *this);
it.m_full_factorization_returned = true;
return it;
}
};
void restrict_signs_of_xy_and_y_on_lemma(lpvar y, lpvar xy, const rational& _y, const rational& _xy, int& y_sign, int &xy_sign) {
lp::lar_term t;
@ -1133,9 +977,36 @@ struct solver::imp {
}
return false;
}
struct factorization_factory_imp: factorization_factory {
const imp& m_imp;
factorization_factory_imp(unsigned i_mon, const imp& s) :
factorization_factory(i_mon,
s.m_monomials[i_mon],
s.canonize_monomial(s.m_monomials[i_mon])
),
m_imp(s) { }
bool find_monomial_of_vars(const svector<lpvar>& vars, monomial& m, rational & sign) const {
auto it = m_imp.m_rooted_monomials.find(vars);
if (it == m_imp.m_rooted_monomials.end()) {
return false;
}
const mono_index_with_sign & mi = *(it->second.begin());
sign = mi.m_sign;
m = m_imp.m_monomials[mi.m_i];
return true;
}
};
// we derive a lemma from |xy| >= |y| => |x| >= 1 || |y| = 0
bool basic_lemma_for_mon_proportionality_from_product_to_factors(unsigned i_mon) {
for (auto factorization : factorization_factory(i_mon, *this)) {
for (auto factorization : factorization_factory_imp(i_mon, *this)) {
if (factorization.is_empty()) {
TRACE("nla_solver", tout << "empty factorization";);
continue;
@ -1152,6 +1023,16 @@ struct solver::imp {
}
return false;
}
void explain(const factorization& f, expl_set exp) {
for (lpvar k : f) {
unsigned mon_index = 0;
if (m_var_to_its_monomial.find(k, mon_index)) {
add_explanation_of_reducing_to_rooted_monomial(m_monomials[mon_index], exp);
}
}
}
// here we use the fact
// xy = 0 -> x = 0 or y = 0
bool basic_lemma_for_mon_zero_from_monomial_to_factor(lpvar i_mon, const factorization& factorization) {
@ -1171,7 +1052,9 @@ struct solver::imp {
m_lemma->push_back(ineq(lp::lconstraint_kind::EQ, t, rational::zero()));
}
expl_set e;
factorization.explain(e);
explain(factorization, e);
// todo: it is an overkill, need to find shorter explanations
add_explanation_of_reducing_to_rooted_monomial(m_monomials[i_mon], e);
set_expl(e);
return true;
}
@ -1207,7 +1090,7 @@ struct solver::imp {
// use basic multiplication properties to create a lemma
// for the given monomial
bool basic_lemma_for_mon(unsigned i_mon) {
for (auto factorization : factorization_factory(i_mon, *this)) {
for (auto factorization : factorization_factory_imp(i_mon, *this)) {
if (basic_lemma_for_mon_zero(i_mon, factorization) ||
basic_lemma_for_mon_neutral(factorization) ||
basic_lemma_for_mon_proportionality(factorization))
@ -1363,7 +1246,7 @@ struct solver::imp {
m_expl = & exp;
init_search();
factorization_factory fc(mon_index, // 0 is the index of "abcde"
factorization_factory_imp fc(mon_index, // 0 is the index of "abcde"
*this);
std::cout << "factorizations = of "; print_var(m_monomials[0].var(), std::cout) << "\n";
@ -1380,6 +1263,8 @@ struct solver::imp {
}
}; // end of imp
void solver::add_monomial(lpvar v, unsigned sz, lpvar const* vs) {
m_imp->add(v, sz, vs);
}