mirror of
				https://github.com/Z3Prover/z3
				synced 2025-10-31 03:32:28 +00:00 
			
		
		
		
	fixup proof log annotations of rules
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
		
							parent
							
								
									6485808b49
								
							
						
					
					
						commit
						65f38eac16
					
				
					 7 changed files with 49 additions and 42 deletions
				
			
		|  | @ -3338,15 +3338,25 @@ proof * ast_manager::mk_th_lemma( | ||||||
|     if (proofs_disabled()) |     if (proofs_disabled()) | ||||||
|         return nullptr; |         return nullptr; | ||||||
| 
 | 
 | ||||||
|  |     proof_ref pr(*this); | ||||||
|     ptr_buffer<expr> args; |     ptr_buffer<expr> args; | ||||||
|     vector<parameter> parameters; |  | ||||||
|     parameters.push_back(parameter(get_family_name(tid))); |  | ||||||
|     for (unsigned i = 0; i < num_params; ++i) { |     for (unsigned i = 0; i < num_params; ++i) { | ||||||
|         parameters.push_back(params[i]); |         auto const &p = params[i]; | ||||||
|  |         if (p.is_symbol()) | ||||||
|  |             args.push_back(mk_app(p.get_symbol(), 0, nullptr, mk_proof_sort())); | ||||||
|  |         else if (p.is_ast() && is_expr(p.get_ast())) | ||||||
|  |             args.push_back(to_expr(p.get_ast())); | ||||||
|  |         else if (p.is_rational()) { | ||||||
|  |             arith_util autil(*this); | ||||||
|  |             args.push_back(autil.mk_real(p.get_rational())); | ||||||
|  |         }      | ||||||
|     } |     } | ||||||
|  |     pr = mk_app(get_family_name(tid), args.size(), args.data(), mk_proof_sort()); | ||||||
|  |     args.reset(); | ||||||
|  |     args.push_back(pr.get()); | ||||||
|     args.append(num_proofs, (expr**) proofs); |     args.append(num_proofs, (expr**) proofs); | ||||||
|     args.push_back(fact); |     args.push_back(fact); | ||||||
|     return mk_app(basic_family_id, PR_TH_LEMMA, num_params+1, parameters.data(), args.size(), args.data()); |     return mk_app(basic_family_id, PR_TH_LEMMA, 0, nullptr, args.size(), args.data()); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| proof* ast_manager::mk_hyper_resolve(unsigned num_premises, proof* const* premises, expr* concl, | proof* ast_manager::mk_hyper_resolve(unsigned num_premises, proof* const* premises, expr* concl, | ||||||
|  |  | ||||||
|  | @ -38,7 +38,7 @@ void finite_set_axioms::in_empty_axiom(expr *x) { | ||||||
|     expr_ref empty_set(u.mk_empty(elem_sort), m); |     expr_ref empty_set(u.mk_empty(elem_sort), m); | ||||||
|     expr_ref x_in_empty(u.mk_in(x, empty_set), m); |     expr_ref x_in_empty(u.mk_in(x, empty_set), m); | ||||||
|      |      | ||||||
|     theory_axiom ax(m, "finite-set", "in-empty"); |     theory_axiom ax(m, "in-empty"); | ||||||
|     ax.clause.push_back(m.mk_not(x_in_empty)); |     ax.clause.push_back(m.mk_not(x_in_empty)); | ||||||
|     m_add_clause(ax); |     m_add_clause(ax); | ||||||
| } | } | ||||||
|  | @ -50,7 +50,7 @@ void finite_set_axioms::in_union_axiom(expr *x, expr *a) { | ||||||
|     if (!u.is_union(a, b, c)) |     if (!u.is_union(a, b, c)) | ||||||
|         return; |         return; | ||||||
| 
 | 
 | ||||||
|     theory_axiom ax(m, "finite-set", "in-union"); |     theory_axiom ax(m, "in-union"); | ||||||
|     expr_ref x_in_a(u.mk_in(x, a), m); |     expr_ref x_in_a(u.mk_in(x, a), m); | ||||||
|     expr_ref x_in_b(u.mk_in(x, b), m); |     expr_ref x_in_b(u.mk_in(x, b), m); | ||||||
|     expr_ref x_in_c(u.mk_in(x, c), m); |     expr_ref x_in_c(u.mk_in(x, c), m); | ||||||
|  | @ -62,13 +62,13 @@ void finite_set_axioms::in_union_axiom(expr *x, expr *a) { | ||||||
|     m_add_clause(ax); |     m_add_clause(ax); | ||||||
| 
 | 
 | ||||||
|     // (x in b) => (x in a)
 |     // (x in b) => (x in a)
 | ||||||
|     theory_axiom ax2(m, "finite-set", "in-union"); |     theory_axiom ax2(m, "in-union"); | ||||||
|     ax2.clause.push_back(m.mk_not(x_in_b)); |     ax2.clause.push_back(m.mk_not(x_in_b)); | ||||||
|     ax2.clause.push_back(x_in_a); |     ax2.clause.push_back(x_in_a); | ||||||
|     m_add_clause(ax2); |     m_add_clause(ax2); | ||||||
| 
 | 
 | ||||||
|     // (x in c) => (x in a)
 |     // (x in c) => (x in a)
 | ||||||
|     theory_axiom ax3(m, "finite-set", "in-union"); |     theory_axiom ax3(m, "in-union"); | ||||||
|     ax3.clause.push_back(m.mk_not(x_in_c)); |     ax3.clause.push_back(m.mk_not(x_in_c)); | ||||||
|     ax3.clause.push_back(x_in_a); |     ax3.clause.push_back(x_in_a); | ||||||
|     m_add_clause(ax3); |     m_add_clause(ax3); | ||||||
|  | @ -86,19 +86,19 @@ void finite_set_axioms::in_intersect_axiom(expr *x, expr *a) { | ||||||
|     expr_ref x_in_c(u.mk_in(x, c), m); |     expr_ref x_in_c(u.mk_in(x, c), m); | ||||||
|      |      | ||||||
|     // (x in a) => (x in b)
 |     // (x in a) => (x in b)
 | ||||||
|     theory_axiom ax1(m, "finite-set", "in-intersect"); |     theory_axiom ax1(m, "in-intersect"); | ||||||
|     ax1.clause.push_back(m.mk_not(x_in_a)); |     ax1.clause.push_back(m.mk_not(x_in_a)); | ||||||
|     ax1.clause.push_back(x_in_b); |     ax1.clause.push_back(x_in_b); | ||||||
|     m_add_clause(ax1); |     m_add_clause(ax1); | ||||||
| 
 | 
 | ||||||
|     // (x in a) => (x in c)
 |     // (x in a) => (x in c)
 | ||||||
|     theory_axiom ax2(m, "finite-set", "in-intersect"); |     theory_axiom ax2(m, "in-intersect"); | ||||||
|     ax2.clause.push_back(m.mk_not(x_in_a)); |     ax2.clause.push_back(m.mk_not(x_in_a)); | ||||||
|     ax2.clause.push_back(x_in_c); |     ax2.clause.push_back(x_in_c); | ||||||
|     m_add_clause(ax2); |     m_add_clause(ax2); | ||||||
| 
 | 
 | ||||||
|     // (x in b) and (x in c) => (x in a)
 |     // (x in b) and (x in c) => (x in a)
 | ||||||
|     theory_axiom ax3(m, "finite-set", "in-intersect"); |     theory_axiom ax3(m, "in-intersect"); | ||||||
|     ax3.clause.push_back(m.mk_not(x_in_b)); |     ax3.clause.push_back(m.mk_not(x_in_b)); | ||||||
|     ax3.clause.push_back(m.mk_not(x_in_c)); |     ax3.clause.push_back(m.mk_not(x_in_c)); | ||||||
|     ax3.clause.push_back(x_in_a); |     ax3.clause.push_back(x_in_a); | ||||||
|  | @ -117,19 +117,19 @@ void finite_set_axioms::in_difference_axiom(expr *x, expr *a) { | ||||||
|     expr_ref x_in_c(u.mk_in(x, c), m); |     expr_ref x_in_c(u.mk_in(x, c), m); | ||||||
|      |      | ||||||
|     // (x in a) => (x in b)
 |     // (x in a) => (x in b)
 | ||||||
|     theory_axiom ax1(m, "finite-set", "in-difference"); |     theory_axiom ax1(m, "in-difference"); | ||||||
|     ax1.clause.push_back(m.mk_not(x_in_a)); |     ax1.clause.push_back(m.mk_not(x_in_a)); | ||||||
|     ax1.clause.push_back(x_in_b); |     ax1.clause.push_back(x_in_b); | ||||||
|     m_add_clause(ax1); |     m_add_clause(ax1); | ||||||
|      |      | ||||||
|     // (x in a) => not (x in c)
 |     // (x in a) => not (x in c)
 | ||||||
|     theory_axiom ax2(m, "finite-set", "in-difference"); |     theory_axiom ax2(m, "in-difference"); | ||||||
|     ax2.clause.push_back(m.mk_not(x_in_a)); |     ax2.clause.push_back(m.mk_not(x_in_a)); | ||||||
|     ax2.clause.push_back(m.mk_not(x_in_c)); |     ax2.clause.push_back(m.mk_not(x_in_c)); | ||||||
|     m_add_clause(ax2); |     m_add_clause(ax2); | ||||||
| 
 | 
 | ||||||
|     // (x in b) and not (x in c) => (x in a)
 |     // (x in b) and not (x in c) => (x in a)
 | ||||||
|     theory_axiom ax3(m, "finite-set", "in-difference"); |     theory_axiom ax3(m, "in-difference"); | ||||||
|     ax3.clause.push_back(m.mk_not(x_in_b)); |     ax3.clause.push_back(m.mk_not(x_in_b)); | ||||||
|     ax3.clause.push_back(x_in_c); |     ax3.clause.push_back(x_in_c); | ||||||
|     ax3.clause.push_back(x_in_a); |     ax3.clause.push_back(x_in_a); | ||||||
|  | @ -145,7 +145,7 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) { | ||||||
|      |      | ||||||
|     expr_ref x_in_a(u.mk_in(x, a), m); |     expr_ref x_in_a(u.mk_in(x, a), m); | ||||||
| 
 | 
 | ||||||
|     theory_axiom ax(m, "finite-set", "in-singleton"); |     theory_axiom ax(m, "in-singleton"); | ||||||
|     if (x == b) { |     if (x == b) { | ||||||
|         // If x and b are syntactically identical, then (x in a) is always true
 |         // If x and b are syntactically identical, then (x in a) is always true
 | ||||||
| 
 | 
 | ||||||
|  | @ -181,19 +181,19 @@ void finite_set_axioms::in_range_axiom(expr *x, expr *a) { | ||||||
|     expr_ref x_le_hi(arith.mk_le(x, hi), m); |     expr_ref x_le_hi(arith.mk_le(x, hi), m); | ||||||
|      |      | ||||||
|     // (x in a) => (lo <= x)
 |     // (x in a) => (lo <= x)
 | ||||||
|     theory_axiom ax1(m, "finite-set", "in-range"); |     theory_axiom ax1(m, "in-range"); | ||||||
|     ax1.clause.push_back(m.mk_not(x_in_a)); |     ax1.clause.push_back(m.mk_not(x_in_a)); | ||||||
|     ax1.clause.push_back(lo_le_x); |     ax1.clause.push_back(lo_le_x); | ||||||
|     m_add_clause(ax1); |     m_add_clause(ax1); | ||||||
| 
 | 
 | ||||||
|     // (x in a) => (x <= hi)
 |     // (x in a) => (x <= hi)
 | ||||||
|     theory_axiom ax2(m, "finite-set", "in-range"); |     theory_axiom ax2(m, "in-range"); | ||||||
|     ax2.clause.push_back(m.mk_not(x_in_a)); |     ax2.clause.push_back(m.mk_not(x_in_a)); | ||||||
|     ax2.clause.push_back(x_le_hi); |     ax2.clause.push_back(x_le_hi); | ||||||
|     m_add_clause(ax2); |     m_add_clause(ax2); | ||||||
| 
 | 
 | ||||||
|     // (lo <= x) and (x <= hi) => (x in a)
 |     // (lo <= x) and (x <= hi) => (x in a)
 | ||||||
|     theory_axiom ax3(m, "finite-set", "in-range"); |     theory_axiom ax3(m, "in-range"); | ||||||
|     ax3.clause.push_back(m.mk_not(lo_le_x)); |     ax3.clause.push_back(m.mk_not(lo_le_x)); | ||||||
|     ax3.clause.push_back(m.mk_not(x_le_hi)); |     ax3.clause.push_back(m.mk_not(x_le_hi)); | ||||||
|     ax3.clause.push_back(x_in_a); |     ax3.clause.push_back(x_in_a); | ||||||
|  | @ -228,7 +228,7 @@ void finite_set_axioms::in_map_image_axiom(expr *x, expr *a) { | ||||||
|     expr_ref fx_in_a(u.mk_in(fx, a), m); |     expr_ref fx_in_a(u.mk_in(fx, a), m); | ||||||
|      |      | ||||||
|     // (x in b) => f(x) in a
 |     // (x in b) => f(x) in a
 | ||||||
|     theory_axiom ax(m, "finite-set", "in-map-image"); |     theory_axiom ax(m, "in-map-image"); | ||||||
|     ax.clause.push_back(m.mk_not(x_in_b)); |     ax.clause.push_back(m.mk_not(x_in_b)); | ||||||
|     ax.clause.push_back(fx_in_a); |     ax.clause.push_back(fx_in_a); | ||||||
|     m_add_clause(ax); |     m_add_clause(ax); | ||||||
|  | @ -249,19 +249,19 @@ void finite_set_axioms::in_filter_axiom(expr *x, expr *a) { | ||||||
|     expr_ref px(autil.mk_select(p, x), m); |     expr_ref px(autil.mk_select(p, x), m); | ||||||
|      |      | ||||||
|     // (x in a) => (x in b)
 |     // (x in a) => (x in b)
 | ||||||
|     theory_axiom ax1(m, "finite-set", "in-filter"); |     theory_axiom ax1(m, "in-filter"); | ||||||
|     ax1.clause.push_back(m.mk_not(x_in_a)); |     ax1.clause.push_back(m.mk_not(x_in_a)); | ||||||
|     ax1.clause.push_back(x_in_b); |     ax1.clause.push_back(x_in_b); | ||||||
|     m_add_clause(ax1); |     m_add_clause(ax1); | ||||||
| 
 | 
 | ||||||
|     // (x in a) => p(x)
 |     // (x in a) => p(x)
 | ||||||
|     theory_axiom ax2(m, "finite-set", "in-filter"); |     theory_axiom ax2(m, "in-filter"); | ||||||
|     ax2.clause.push_back(m.mk_not(x_in_a)); |     ax2.clause.push_back(m.mk_not(x_in_a)); | ||||||
|     ax2.clause.push_back(px); |     ax2.clause.push_back(px); | ||||||
|     m_add_clause(ax2); |     m_add_clause(ax2); | ||||||
| 
 | 
 | ||||||
|     // (x in b) and p(x) => (x in a)
 |     // (x in b) and p(x) => (x in a)
 | ||||||
|     theory_axiom ax3(m, "finite-set", "in-filter"); |     theory_axiom ax3(m, "in-filter"); | ||||||
|     ax3.clause.push_back(m.mk_not(x_in_b)); |     ax3.clause.push_back(m.mk_not(x_in_b)); | ||||||
|     ax3.clause.push_back(m.mk_not(px)); |     ax3.clause.push_back(m.mk_not(px)); | ||||||
|     ax3.clause.push_back(x_in_a); |     ax3.clause.push_back(x_in_a); | ||||||
|  | @ -280,7 +280,7 @@ void finite_set_axioms::size_singleton_axiom(expr *a) { | ||||||
|     expr_ref one(arith.mk_int(1), m); |     expr_ref one(arith.mk_int(1), m); | ||||||
|     expr_ref eq(m.mk_eq(size_a, one), m); |     expr_ref eq(m.mk_eq(size_a, one), m); | ||||||
| 
 | 
 | ||||||
|     theory_axiom ax(m, "finite-set", "size-singleton"); |     theory_axiom ax(m, "size-singleton"); | ||||||
|     ax.clause.push_back(eq); |     ax.clause.push_back(eq); | ||||||
|     m_add_clause(ax); |     m_add_clause(ax); | ||||||
| } | } | ||||||
|  | @ -293,12 +293,12 @@ void finite_set_axioms::subset_axiom(expr* a) { | ||||||
|     expr_ref intersect_bc(u.mk_intersect(b, c), m); |     expr_ref intersect_bc(u.mk_intersect(b, c), m); | ||||||
|     expr_ref eq(m.mk_eq(intersect_bc, b), m); |     expr_ref eq(m.mk_eq(intersect_bc, b), m); | ||||||
| 
 | 
 | ||||||
|     theory_axiom ax1(m, "finite-set", "subset"); |     theory_axiom ax1(m,  "subset"); | ||||||
|     ax1.clause.push_back(m.mk_not(a)); |     ax1.clause.push_back(m.mk_not(a)); | ||||||
|     ax1.clause.push_back(eq); |     ax1.clause.push_back(eq); | ||||||
|     m_add_clause(ax1); |     m_add_clause(ax1); | ||||||
| 
 | 
 | ||||||
|     theory_axiom ax2(m, "finite-set", "subset"); |     theory_axiom ax2(m,  "subset"); | ||||||
|     ax2.clause.push_back(a); |     ax2.clause.push_back(a); | ||||||
|     ax2.clause.push_back(m.mk_not(eq)); |     ax2.clause.push_back(m.mk_not(eq)); | ||||||
|     m_add_clause(ax2); |     m_add_clause(ax2); | ||||||
|  | @ -313,13 +313,13 @@ void finite_set_axioms::extensionality_axiom(expr *a, expr* b) { | ||||||
|     expr_ref diff_in_b(u.mk_in(diff_ab, b), m); |     expr_ref diff_in_b(u.mk_in(diff_ab, b), m); | ||||||
|      |      | ||||||
|     // (a != b) => (x in diff_ab != x in diff_ba)
 |     // (a != b) => (x in diff_ab != x in diff_ba)
 | ||||||
|     theory_axiom ax(m, "finite-set", "extensionality"); |     theory_axiom ax(m, "extensionality"); | ||||||
|     ax.clause.push_back(a_eq_b); |     ax.clause.push_back(a_eq_b); | ||||||
|     ax.clause.push_back(m.mk_not(diff_in_a)); |     ax.clause.push_back(m.mk_not(diff_in_a)); | ||||||
|     ax.clause.push_back(m.mk_not(diff_in_b)); |     ax.clause.push_back(m.mk_not(diff_in_b)); | ||||||
|     m_add_clause(ax); |     m_add_clause(ax); | ||||||
| 
 | 
 | ||||||
|     theory_axiom ax2(m, "finite-set", "extensionality"); |     theory_axiom ax2(m, "extensionality"); | ||||||
|     ax2.clause.push_back(m.mk_not(a_eq_b)); |     ax2.clause.push_back(m.mk_not(a_eq_b)); | ||||||
|     ax2.clause.push_back(diff_in_a); |     ax2.clause.push_back(diff_in_a); | ||||||
|     ax2.clause.push_back(diff_in_b); |     ax2.clause.push_back(diff_in_b); | ||||||
|  |  | ||||||
|  | @ -19,12 +19,7 @@ struct theory_axiom { | ||||||
|     theory_axiom(ast_manager& m, symbol const& th): clause(m) { |     theory_axiom(ast_manager& m, symbol const& th): clause(m) { | ||||||
|         params.push_back(parameter(th)); |         params.push_back(parameter(th)); | ||||||
|     } |     } | ||||||
|     theory_axiom(ast_manager &m, symbol const &th, symbol const& rule) : clause(m) { |     theory_axiom(ast_manager &m, char const* rule) : clause(m) { | ||||||
|         params.push_back(parameter(th)); |  | ||||||
|         params.push_back(parameter(rule)); |  | ||||||
|     } |  | ||||||
|     theory_axiom(ast_manager &m, char const *th, char const *rule) : clause(m) { |  | ||||||
|         params.push_back(parameter(symbol(th))); |  | ||||||
|         params.push_back(parameter(symbol(rule))); |         params.push_back(parameter(symbol(rule))); | ||||||
|     } |     } | ||||||
|     theory_axiom(ast_manager &m) : clause(m) { |     theory_axiom(ast_manager &m) : clause(m) { | ||||||
|  |  | ||||||
|  | @ -151,7 +151,7 @@ namespace smt { | ||||||
|         update(st, m_lits, pr); |         update(st, m_lits, pr); | ||||||
|     } |     } | ||||||
| 
 | 
 | ||||||
|     void clause_proof::propagate(literal lit, justification const& jst, literal_vector const& ante) { |     void clause_proof::propagate(literal lit, justification * jst, literal_vector const& ante) { | ||||||
|         if (!is_enabled()) |         if (!is_enabled()) | ||||||
|             return; |             return; | ||||||
|         m_lits.reset(); |         m_lits.reset(); | ||||||
|  | @ -159,8 +159,7 @@ namespace smt { | ||||||
|             m_lits.push_back(ctx.literal2expr(~l)); |             m_lits.push_back(ctx.literal2expr(~l)); | ||||||
|         m_lits.push_back(ctx.literal2expr(lit)); |         m_lits.push_back(ctx.literal2expr(lit)); | ||||||
|         auto st = clause_proof::status::th_lemma; |         auto st = clause_proof::status::th_lemma; | ||||||
|         auto pr = justification2proof(st, &const_cast<justification &>(jst)); |         auto pr = justification2proof(st, jst); | ||||||
|         // proof_ref pr(m.mk_app(symbol("smt"), 0, nullptr, m.mk_proof_sort()), m);
 |  | ||||||
|         update(st, m_lits, pr); |         update(st, m_lits, pr); | ||||||
|     } |     } | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
|  | @ -82,7 +82,7 @@ namespace smt { | ||||||
|         void add(literal lit1, literal lit2, clause_kind k, justification* j, literal_buffer const* simp_lits = nullptr); |         void add(literal lit1, literal lit2, clause_kind k, justification* j, literal_buffer const* simp_lits = nullptr); | ||||||
|         void add(clause& c, literal_buffer const* simp_lits = nullptr); |         void add(clause& c, literal_buffer const* simp_lits = nullptr); | ||||||
|         void add(unsigned n, literal const* lits, clause_kind k, justification* j); |         void add(unsigned n, literal const* lits, clause_kind k, justification* j); | ||||||
|         void propagate(literal lit, justification const& j, literal_vector const& ante); |         void propagate(literal lit, justification* j, literal_vector const& ante); | ||||||
|         void del(clause& c); |         void del(clause& c); | ||||||
|         proof_ref get_proof(bool inconsistent); |         proof_ref get_proof(bool inconsistent); | ||||||
|         bool is_enabled() const { return m_enabled; } |         bool is_enabled() const { return m_enabled; } | ||||||
|  |  | ||||||
|  | @ -347,7 +347,7 @@ namespace smt { | ||||||
|         literal_vector & antecedents = m_tmp_literal_vector; |         literal_vector & antecedents = m_tmp_literal_vector; | ||||||
|         antecedents.reset(); |         antecedents.reset(); | ||||||
|         justification2literals_core(js, antecedents); |         justification2literals_core(js, antecedents); | ||||||
|         m_ctx.get_clause_proof().propagate(consequent, *js, antecedents); |         m_ctx.get_clause_proof().propagate(consequent, js, antecedents); | ||||||
|         for (literal l : antecedents) |         for (literal l : antecedents) | ||||||
|             process_antecedent(l, num_marks); |             process_antecedent(l, num_marks); | ||||||
|         (void)consequent; |         (void)consequent; | ||||||
|  |  | ||||||
|  | @ -724,13 +724,16 @@ namespace smt { | ||||||
|             auto bjust = ctx.mk_justification(just); |             auto bjust = ctx.mk_justification(just); | ||||||
|             if (ctx.clause_proof_active()) { |             if (ctx.clause_proof_active()) { | ||||||
|                 // assume all justifications is a non-empty list of symbol parameters
 |                 // assume all justifications is a non-empty list of symbol parameters
 | ||||||
|  |                 // proof logging is basically broken: it doesn't log propagations, but instead
 | ||||||
|  |                 // only propagations that are processed by conflict resolution. 
 | ||||||
|  |                 // this misses conflicts at base level.
 | ||||||
|                 proof_ref pr(m); |                 proof_ref pr(m); | ||||||
|                 expr_ref_vector args(m); |                 expr_ref_vector args(m); | ||||||
|                 for (unsigned i = 1; i < ax.params.size(); ++i)  |                 for (auto const& p : ax.params) | ||||||
|                     args.push_back(m.mk_app(ax.params[i].get_symbol(), 0, nullptr, m.mk_proof_sort()));                     |                     args.push_back(m.mk_const(p.get_symbol(), m.mk_proof_sort()));                   | ||||||
|                 pr = m.mk_app(ax.params[0].get_symbol(), args.size(), args.data(), m.mk_proof_sort()); |                 pr = m.mk_app(m.get_family_name(get_family_id()), args.size(), args.data(), m.mk_proof_sort()); | ||||||
|                 justification_proof_wrapper jp(ctx, pr.get(), false); |                 justification_proof_wrapper jp(ctx, pr.get(), false); | ||||||
|                 ctx.get_clause_proof().propagate(lit, jp, antecedent); |                 ctx.get_clause_proof().propagate(lit, &jp, antecedent); | ||||||
|                 jp.del_eh(m); |                 jp.del_eh(m); | ||||||
|             } |             } | ||||||
|             ctx.assign(lit, bjust);                                 |             ctx.assign(lit, bjust);                                 | ||||||
|  |  | ||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue