mirror of
https://github.com/Z3Prover/z3
synced 2025-10-29 10:49:23 +00:00
adding proof hint output
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
eb10ab1633
commit
6485808b49
6 changed files with 191 additions and 137 deletions
|
|
@ -24,6 +24,11 @@ Revision History:
|
|||
#include "ast/array_decl_plugin.h"
|
||||
#include "ast/rewriter/finite_set_axioms.h"
|
||||
|
||||
|
||||
std::ostream& operator<<(std::ostream& out, theory_axiom const& ax) {
|
||||
return out << "axiom";
|
||||
}
|
||||
|
||||
// a ~ set.empty => not (x in a)
|
||||
// x is an element, generate axiom that x is not in any empty set of x's type
|
||||
void finite_set_axioms::in_empty_axiom(expr *x) {
|
||||
|
|
@ -33,9 +38,9 @@ void finite_set_axioms::in_empty_axiom(expr *x) {
|
|||
expr_ref empty_set(u.mk_empty(elem_sort), m);
|
||||
expr_ref x_in_empty(u.mk_in(x, empty_set), m);
|
||||
|
||||
expr_ref_vector clause(m);
|
||||
clause.push_back(m.mk_not(x_in_empty));
|
||||
m_add_clause(clause);
|
||||
theory_axiom ax(m, "finite-set", "in-empty");
|
||||
ax.clause.push_back(m.mk_not(x_in_empty));
|
||||
m_add_clause(ax);
|
||||
}
|
||||
|
||||
// a := set.union(b, c)
|
||||
|
|
@ -44,30 +49,29 @@ void finite_set_axioms::in_union_axiom(expr *x, expr *a) {
|
|||
expr* b = nullptr, *c = nullptr;
|
||||
if (!u.is_union(a, b, c))
|
||||
return;
|
||||
|
||||
expr_ref_vector clause(m);
|
||||
|
||||
theory_axiom ax(m, "finite-set", "in-union");
|
||||
expr_ref x_in_a(u.mk_in(x, a), m);
|
||||
expr_ref x_in_b(u.mk_in(x, b), m);
|
||||
expr_ref x_in_c(u.mk_in(x, c), m);
|
||||
|
||||
// (x in a) => (x in b) or (x in c)
|
||||
expr_ref_vector clause1(m);
|
||||
clause1.push_back(m.mk_not(x_in_a));
|
||||
clause1.push_back(x_in_b);
|
||||
clause1.push_back(x_in_c);
|
||||
m_add_clause(clause1);
|
||||
|
||||
ax.clause.push_back(m.mk_not(x_in_a));
|
||||
ax.clause.push_back(x_in_b);
|
||||
ax.clause.push_back(x_in_c);
|
||||
m_add_clause(ax);
|
||||
|
||||
// (x in b) => (x in a)
|
||||
expr_ref_vector clause2(m);
|
||||
clause2.push_back(m.mk_not(x_in_b));
|
||||
clause2.push_back(x_in_a);
|
||||
m_add_clause(clause2);
|
||||
|
||||
theory_axiom ax2(m, "finite-set", "in-union");
|
||||
ax2.clause.push_back(m.mk_not(x_in_b));
|
||||
ax2.clause.push_back(x_in_a);
|
||||
m_add_clause(ax2);
|
||||
|
||||
// (x in c) => (x in a)
|
||||
expr_ref_vector clause3(m);
|
||||
clause3.push_back(m.mk_not(x_in_c));
|
||||
clause3.push_back(x_in_a);
|
||||
m_add_clause(clause3);
|
||||
theory_axiom ax3(m, "finite-set", "in-union");
|
||||
ax3.clause.push_back(m.mk_not(x_in_c));
|
||||
ax3.clause.push_back(x_in_a);
|
||||
m_add_clause(ax3);
|
||||
}
|
||||
|
||||
// a := set.intersect(b, c)
|
||||
|
|
@ -82,23 +86,23 @@ void finite_set_axioms::in_intersect_axiom(expr *x, expr *a) {
|
|||
expr_ref x_in_c(u.mk_in(x, c), m);
|
||||
|
||||
// (x in a) => (x in b)
|
||||
expr_ref_vector clause1(m);
|
||||
clause1.push_back(m.mk_not(x_in_a));
|
||||
clause1.push_back(x_in_b);
|
||||
m_add_clause(clause1);
|
||||
|
||||
theory_axiom ax1(m, "finite-set", "in-intersect");
|
||||
ax1.clause.push_back(m.mk_not(x_in_a));
|
||||
ax1.clause.push_back(x_in_b);
|
||||
m_add_clause(ax1);
|
||||
|
||||
// (x in a) => (x in c)
|
||||
expr_ref_vector clause2(m);
|
||||
clause2.push_back(m.mk_not(x_in_a));
|
||||
clause2.push_back(x_in_c);
|
||||
m_add_clause(clause2);
|
||||
|
||||
theory_axiom ax2(m, "finite-set", "in-intersect");
|
||||
ax2.clause.push_back(m.mk_not(x_in_a));
|
||||
ax2.clause.push_back(x_in_c);
|
||||
m_add_clause(ax2);
|
||||
|
||||
// (x in b) and (x in c) => (x in a)
|
||||
expr_ref_vector clause3(m);
|
||||
clause3.push_back(m.mk_not(x_in_b));
|
||||
clause3.push_back(m.mk_not(x_in_c));
|
||||
clause3.push_back(x_in_a);
|
||||
m_add_clause(clause3);
|
||||
theory_axiom ax3(m, "finite-set", "in-intersect");
|
||||
ax3.clause.push_back(m.mk_not(x_in_b));
|
||||
ax3.clause.push_back(m.mk_not(x_in_c));
|
||||
ax3.clause.push_back(x_in_a);
|
||||
m_add_clause(ax3);
|
||||
}
|
||||
|
||||
// a := set.difference(b, c)
|
||||
|
|
@ -113,23 +117,23 @@ void finite_set_axioms::in_difference_axiom(expr *x, expr *a) {
|
|||
expr_ref x_in_c(u.mk_in(x, c), m);
|
||||
|
||||
// (x in a) => (x in b)
|
||||
expr_ref_vector clause1(m);
|
||||
clause1.push_back(m.mk_not(x_in_a));
|
||||
clause1.push_back(x_in_b);
|
||||
m_add_clause(clause1);
|
||||
theory_axiom ax1(m, "finite-set", "in-difference");
|
||||
ax1.clause.push_back(m.mk_not(x_in_a));
|
||||
ax1.clause.push_back(x_in_b);
|
||||
m_add_clause(ax1);
|
||||
|
||||
// (x in a) => not (x in c)
|
||||
expr_ref_vector clause2(m);
|
||||
clause2.push_back(m.mk_not(x_in_a));
|
||||
clause2.push_back(m.mk_not(x_in_c));
|
||||
m_add_clause(clause2);
|
||||
|
||||
theory_axiom ax2(m, "finite-set", "in-difference");
|
||||
ax2.clause.push_back(m.mk_not(x_in_a));
|
||||
ax2.clause.push_back(m.mk_not(x_in_c));
|
||||
m_add_clause(ax2);
|
||||
|
||||
// (x in b) and not (x in c) => (x in a)
|
||||
expr_ref_vector clause3(m);
|
||||
clause3.push_back(m.mk_not(x_in_b));
|
||||
clause3.push_back(x_in_c);
|
||||
clause3.push_back(x_in_a);
|
||||
m_add_clause(clause3);
|
||||
theory_axiom ax3(m, "finite-set", "in-difference");
|
||||
ax3.clause.push_back(m.mk_not(x_in_b));
|
||||
ax3.clause.push_back(x_in_c);
|
||||
ax3.clause.push_back(x_in_a);
|
||||
m_add_clause(ax3);
|
||||
}
|
||||
|
||||
// a := set.singleton(b)
|
||||
|
|
@ -141,27 +145,27 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) {
|
|||
|
||||
expr_ref x_in_a(u.mk_in(x, a), m);
|
||||
|
||||
theory_axiom ax(m, "finite-set", "in-singleton");
|
||||
if (x == b) {
|
||||
// If x and b are syntactically identical, then (x in a) is always true
|
||||
expr_ref_vector clause(m);
|
||||
clause.push_back(x_in_a);
|
||||
m_add_clause(clause);
|
||||
|
||||
ax.clause.push_back(x_in_a);
|
||||
m_add_clause(ax);
|
||||
return;
|
||||
}
|
||||
|
||||
expr_ref x_eq_b(m.mk_eq(x, b), m);
|
||||
|
||||
// (x in a) => (x == b)
|
||||
expr_ref_vector clause1(m);
|
||||
clause1.push_back(m.mk_not(x_in_a));
|
||||
clause1.push_back(x_eq_b);
|
||||
m_add_clause(clause1);
|
||||
|
||||
ax.clause.push_back(m.mk_not(x_in_a));
|
||||
ax.clause.push_back(x_eq_b);
|
||||
m_add_clause(ax);
|
||||
ax.clause.reset();
|
||||
|
||||
// (x == b) => (x in a)
|
||||
expr_ref_vector clause2(m);
|
||||
clause2.push_back(m.mk_not(x_eq_b));
|
||||
clause2.push_back(x_in_a);
|
||||
m_add_clause(clause2);
|
||||
ax.clause.push_back(m.mk_not(x_eq_b));
|
||||
ax.clause.push_back(x_in_a);
|
||||
m_add_clause(ax);
|
||||
}
|
||||
|
||||
// a := set.range(lo, hi)
|
||||
|
|
@ -177,23 +181,23 @@ void finite_set_axioms::in_range_axiom(expr *x, expr *a) {
|
|||
expr_ref x_le_hi(arith.mk_le(x, hi), m);
|
||||
|
||||
// (x in a) => (lo <= x)
|
||||
expr_ref_vector clause1(m);
|
||||
clause1.push_back(m.mk_not(x_in_a));
|
||||
clause1.push_back(lo_le_x);
|
||||
m_add_clause(clause1);
|
||||
|
||||
theory_axiom ax1(m, "finite-set", "in-range");
|
||||
ax1.clause.push_back(m.mk_not(x_in_a));
|
||||
ax1.clause.push_back(lo_le_x);
|
||||
m_add_clause(ax1);
|
||||
|
||||
// (x in a) => (x <= hi)
|
||||
expr_ref_vector clause2(m);
|
||||
clause2.push_back(m.mk_not(x_in_a));
|
||||
clause2.push_back(x_le_hi);
|
||||
m_add_clause(clause2);
|
||||
|
||||
theory_axiom ax2(m, "finite-set", "in-range");
|
||||
ax2.clause.push_back(m.mk_not(x_in_a));
|
||||
ax2.clause.push_back(x_le_hi);
|
||||
m_add_clause(ax2);
|
||||
|
||||
// (lo <= x) and (x <= hi) => (x in a)
|
||||
expr_ref_vector clause3(m);
|
||||
clause3.push_back(m.mk_not(lo_le_x));
|
||||
clause3.push_back(m.mk_not(x_le_hi));
|
||||
clause3.push_back(x_in_a);
|
||||
m_add_clause(clause3);
|
||||
theory_axiom ax3(m, "finite-set", "in-range");
|
||||
ax3.clause.push_back(m.mk_not(lo_le_x));
|
||||
ax3.clause.push_back(m.mk_not(x_le_hi));
|
||||
ax3.clause.push_back(x_in_a);
|
||||
m_add_clause(ax3);
|
||||
}
|
||||
|
||||
// a := set.map(f, b)
|
||||
|
|
@ -224,10 +228,10 @@ void finite_set_axioms::in_map_image_axiom(expr *x, expr *a) {
|
|||
expr_ref fx_in_a(u.mk_in(fx, a), m);
|
||||
|
||||
// (x in b) => f(x) in a
|
||||
expr_ref_vector clause(m);
|
||||
clause.push_back(m.mk_not(x_in_b));
|
||||
clause.push_back(fx_in_a);
|
||||
m_add_clause(clause);
|
||||
theory_axiom ax(m, "finite-set", "in-map-image");
|
||||
ax.clause.push_back(m.mk_not(x_in_b));
|
||||
ax.clause.push_back(fx_in_a);
|
||||
m_add_clause(ax);
|
||||
}
|
||||
|
||||
// a := set.filter(p, b)
|
||||
|
|
@ -245,23 +249,23 @@ void finite_set_axioms::in_filter_axiom(expr *x, expr *a) {
|
|||
expr_ref px(autil.mk_select(p, x), m);
|
||||
|
||||
// (x in a) => (x in b)
|
||||
expr_ref_vector clause1(m);
|
||||
clause1.push_back(m.mk_not(x_in_a));
|
||||
clause1.push_back(x_in_b);
|
||||
m_add_clause(clause1);
|
||||
|
||||
theory_axiom ax1(m, "finite-set", "in-filter");
|
||||
ax1.clause.push_back(m.mk_not(x_in_a));
|
||||
ax1.clause.push_back(x_in_b);
|
||||
m_add_clause(ax1);
|
||||
|
||||
// (x in a) => p(x)
|
||||
expr_ref_vector clause2(m);
|
||||
clause2.push_back(m.mk_not(x_in_a));
|
||||
clause2.push_back(px);
|
||||
m_add_clause(clause2);
|
||||
|
||||
theory_axiom ax2(m, "finite-set", "in-filter");
|
||||
ax2.clause.push_back(m.mk_not(x_in_a));
|
||||
ax2.clause.push_back(px);
|
||||
m_add_clause(ax2);
|
||||
|
||||
// (x in b) and p(x) => (x in a)
|
||||
expr_ref_vector clause3(m);
|
||||
clause3.push_back(m.mk_not(x_in_b));
|
||||
clause3.push_back(m.mk_not(px));
|
||||
clause3.push_back(x_in_a);
|
||||
m_add_clause(clause3);
|
||||
theory_axiom ax3(m, "finite-set", "in-filter");
|
||||
ax3.clause.push_back(m.mk_not(x_in_b));
|
||||
ax3.clause.push_back(m.mk_not(px));
|
||||
ax3.clause.push_back(x_in_a);
|
||||
m_add_clause(ax3);
|
||||
}
|
||||
|
||||
// a := set.singleton(b)
|
||||
|
|
@ -275,10 +279,10 @@ void finite_set_axioms::size_singleton_axiom(expr *a) {
|
|||
expr_ref size_a(u.mk_size(a), m);
|
||||
expr_ref one(arith.mk_int(1), m);
|
||||
expr_ref eq(m.mk_eq(size_a, one), m);
|
||||
|
||||
expr_ref_vector clause(m);
|
||||
clause.push_back(eq);
|
||||
m_add_clause(clause);
|
||||
|
||||
theory_axiom ax(m, "finite-set", "size-singleton");
|
||||
ax.clause.push_back(eq);
|
||||
m_add_clause(ax);
|
||||
}
|
||||
|
||||
void finite_set_axioms::subset_axiom(expr* a) {
|
||||
|
|
@ -288,16 +292,16 @@ void finite_set_axioms::subset_axiom(expr* a) {
|
|||
|
||||
expr_ref intersect_bc(u.mk_intersect(b, c), m);
|
||||
expr_ref eq(m.mk_eq(intersect_bc, b), m);
|
||||
|
||||
expr_ref_vector clause1(m);
|
||||
clause1.push_back(m.mk_not(a));
|
||||
clause1.push_back(eq);
|
||||
m_add_clause(clause1);
|
||||
|
||||
expr_ref_vector clause2(m);
|
||||
clause2.push_back(a);
|
||||
clause2.push_back(m.mk_not(eq));
|
||||
m_add_clause(clause2);
|
||||
|
||||
theory_axiom ax1(m, "finite-set", "subset");
|
||||
ax1.clause.push_back(m.mk_not(a));
|
||||
ax1.clause.push_back(eq);
|
||||
m_add_clause(ax1);
|
||||
|
||||
theory_axiom ax2(m, "finite-set", "subset");
|
||||
ax2.clause.push_back(a);
|
||||
ax2.clause.push_back(m.mk_not(eq));
|
||||
m_add_clause(ax2);
|
||||
}
|
||||
|
||||
void finite_set_axioms::extensionality_axiom(expr *a, expr* b) {
|
||||
|
|
@ -309,8 +313,15 @@ void finite_set_axioms::extensionality_axiom(expr *a, expr* b) {
|
|||
expr_ref diff_in_b(u.mk_in(diff_ab, b), m);
|
||||
|
||||
// (a != b) => (x in diff_ab != x in diff_ba)
|
||||
expr_ref_vector clause(m);
|
||||
clause.push_back(a_eq_b);
|
||||
clause.push_back(m.mk_not(m.mk_iff(diff_in_a, diff_in_b)));
|
||||
m_add_clause(clause);
|
||||
theory_axiom ax(m, "finite-set", "extensionality");
|
||||
ax.clause.push_back(a_eq_b);
|
||||
ax.clause.push_back(m.mk_not(diff_in_a));
|
||||
ax.clause.push_back(m.mk_not(diff_in_b));
|
||||
m_add_clause(ax);
|
||||
|
||||
theory_axiom ax2(m, "finite-set", "extensionality");
|
||||
ax2.clause.push_back(m.mk_not(a_eq_b));
|
||||
ax2.clause.push_back(diff_in_a);
|
||||
ax2.clause.push_back(diff_in_b);
|
||||
m_add_clause(ax2);
|
||||
}
|
||||
|
|
@ -12,17 +12,39 @@ Abstract:
|
|||
|
||||
--*/
|
||||
|
||||
struct theory_axiom {
|
||||
expr_ref_vector clause;
|
||||
vector<parameter> params;
|
||||
unsigned weight = 0; // can be used to prioritize instantiation of axioms
|
||||
theory_axiom(ast_manager& m, symbol const& th): clause(m) {
|
||||
params.push_back(parameter(th));
|
||||
}
|
||||
theory_axiom(ast_manager &m, symbol const &th, symbol const& rule) : clause(m) {
|
||||
params.push_back(parameter(th));
|
||||
params.push_back(parameter(rule));
|
||||
}
|
||||
theory_axiom(ast_manager &m, char const *th, char const *rule) : clause(m) {
|
||||
params.push_back(parameter(symbol(th)));
|
||||
params.push_back(parameter(symbol(rule)));
|
||||
}
|
||||
theory_axiom(ast_manager &m) : clause(m) {
|
||||
}
|
||||
};
|
||||
|
||||
std::ostream &operator<<(std::ostream &out, theory_axiom const &ax);
|
||||
|
||||
|
||||
class finite_set_axioms {
|
||||
ast_manager& m;
|
||||
finite_set_util u;
|
||||
|
||||
std::function<void(expr_ref_vector const &)> m_add_clause;
|
||||
std::function<void(theory_axiom const &)> m_add_clause;
|
||||
|
||||
public:
|
||||
|
||||
finite_set_axioms(ast_manager &m) : m(m), u(m) {}
|
||||
|
||||
void set_add_clause(std::function<void(expr_ref_vector const &)> &ac) {
|
||||
void set_add_clause(std::function<void(theory_axiom const &)> &ac) {
|
||||
m_add_clause = ac;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -158,8 +158,10 @@ namespace smt {
|
|||
for (literal l : ante)
|
||||
m_lits.push_back(ctx.literal2expr(~l));
|
||||
m_lits.push_back(ctx.literal2expr(lit));
|
||||
proof_ref pr(m.mk_app(symbol("smt"), 0, nullptr, m.mk_proof_sort()), m);
|
||||
update(clause_proof::status::th_lemma, m_lits, pr);
|
||||
auto st = clause_proof::status::th_lemma;
|
||||
auto pr = justification2proof(st, &const_cast<justification &>(jst));
|
||||
// proof_ref pr(m.mk_app(symbol("smt"), 0, nullptr, m.mk_proof_sort()), m);
|
||||
update(st, m_lits, pr);
|
||||
}
|
||||
|
||||
void clause_proof::del(clause& c) {
|
||||
|
|
|
|||
|
|
@ -351,8 +351,9 @@ namespace smt {
|
|||
|
||||
proof * ext_theory_propagation_justification::mk_proof(conflict_resolution & cr) {
|
||||
ptr_buffer<proof> prs;
|
||||
if (!antecedent2proof(cr, prs))
|
||||
if (!antecedent2proof(cr, prs)) {
|
||||
return nullptr;
|
||||
}
|
||||
context & ctx = cr.get_context();
|
||||
ast_manager & m = cr.get_manager();
|
||||
expr_ref fact(m);
|
||||
|
|
|
|||
|
|
@ -29,9 +29,9 @@ namespace smt {
|
|||
m_axioms(m), m_find(*this)
|
||||
{
|
||||
// Setup the add_clause callback for axioms
|
||||
std::function<void(expr_ref_vector const &)> add_clause_fn =
|
||||
[this](expr_ref_vector const& clause) {
|
||||
this->add_clause(clause);
|
||||
std::function<void(theory_axiom const &)> add_clause_fn =
|
||||
[this](theory_axiom const &ax) {
|
||||
this->add_clause(ax);
|
||||
};
|
||||
m_axioms.set_add_clause(add_clause_fn);
|
||||
}
|
||||
|
|
@ -101,7 +101,7 @@ namespace smt {
|
|||
ctx.push_trail(push_back_trail(m_var_data[v]->m_parent_setops));
|
||||
}
|
||||
}
|
||||
else if (u.is_map(e) || u.is_select(e)) {
|
||||
else if (u.is_map(e) || u.is_filter(e)) {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
}
|
||||
return r;
|
||||
|
|
@ -322,7 +322,8 @@ namespace smt {
|
|||
for (unsigned i = 0; i < m_clauses.watch[idx].size(); ++i) {
|
||||
TRACE(finite_set, tout << " watch[" << i << "] size: " << m_clauses.watch[i].size() << "\n";);
|
||||
auto clause_idx = m_clauses.watch[idx][i];
|
||||
auto &clause = m_clauses.axioms[clause_idx];
|
||||
auto &ax = m_clauses.axioms[clause_idx];
|
||||
auto &clause = ax.clause;
|
||||
if (any_of(clause, [&](expr *lit) { return ctx.find_assignment(lit) == l_true; })) {
|
||||
TRACE(finite_set, tout << " satisfied\n";);
|
||||
m_clauses.watch[idx][j++] = clause_idx;
|
||||
|
|
@ -398,7 +399,8 @@ namespace smt {
|
|||
|
||||
void theory_finite_set::activate_clause(unsigned clause_idx) {
|
||||
TRACE(finite_set, tout << "activate_clause: " << clause_idx << "\n";);
|
||||
auto &clause = m_clauses.axioms[clause_idx];
|
||||
auto &ax = m_clauses.axioms[clause_idx];
|
||||
auto &clause = ax.clause;
|
||||
if (any_of(clause, [&](expr *e) { return ctx.find_assignment(e) == l_true; }))
|
||||
return;
|
||||
if (clause.size() <= 1) {
|
||||
|
|
@ -444,7 +446,8 @@ namespace smt {
|
|||
unsigned index;
|
||||
unwatch_clause(theory_finite_set &th, unsigned index) : th(th), index(index) {}
|
||||
void undo() override {
|
||||
auto &clause = th.m_clauses.axioms[index];
|
||||
auto &ax = th.m_clauses.axioms[index];
|
||||
auto &clause = ax.clause;
|
||||
expr *w1 = clause.get(0);
|
||||
expr *w2 = clause.get(1);
|
||||
bool w1neg = th.m.is_not(w1, w1);
|
||||
|
|
@ -566,10 +569,10 @@ namespace smt {
|
|||
}
|
||||
}
|
||||
|
||||
void theory_finite_set::add_clause(expr_ref_vector const& clause) {
|
||||
TRACE(finite_set, tout << "add_clause: " << clause << "\n");
|
||||
void theory_finite_set::add_clause(theory_axiom const& ax) {
|
||||
TRACE(finite_set, tout << "add_clause: " << ax << "\n");
|
||||
ctx.push_trail(push_back_vector(m_clauses.axioms));
|
||||
m_clauses.axioms.push_back(clause);
|
||||
m_clauses.axioms.push_back(ax);
|
||||
m_stats.m_num_axioms_created++;
|
||||
}
|
||||
|
||||
|
|
@ -689,7 +692,8 @@ namespace smt {
|
|||
return false;
|
||||
}
|
||||
|
||||
bool theory_finite_set::assert_clause(expr_ref_vector const &clause) {
|
||||
bool theory_finite_set::assert_clause(theory_axiom const &ax) {
|
||||
auto const &clause = ax.clause;
|
||||
expr *unit = nullptr;
|
||||
unsigned undef_count = 0;
|
||||
for (auto e : clause) {
|
||||
|
|
@ -708,14 +712,28 @@ namespace smt {
|
|||
if (undef_count == 1) {
|
||||
TRACE(finite_set, tout << " propagate unit: " << mk_pp(unit, m) << "\n" << clause << "\n";);
|
||||
auto lit = mk_literal(unit);
|
||||
literal_vector core;
|
||||
literal_vector antecedent;
|
||||
for (auto e : clause) {
|
||||
if (e != unit)
|
||||
core.push_back(~mk_literal(e));
|
||||
antecedent.push_back(~mk_literal(e));
|
||||
}
|
||||
m_stats.m_num_axioms_propagated++;
|
||||
ctx.assign(lit, ctx.mk_justification(
|
||||
theory_propagation_justification(get_id(), ctx, core.size(), core.data(), lit)));
|
||||
enode_pair_vector eqs;
|
||||
auto just = ext_theory_propagation_justification(get_id(), ctx, antecedent.size(), antecedent.data(), eqs.size(), eqs.data(), lit, ax.params.size(),
|
||||
ax.params.data());
|
||||
auto bjust = ctx.mk_justification(just);
|
||||
if (ctx.clause_proof_active()) {
|
||||
// assume all justifications is a non-empty list of symbol parameters
|
||||
proof_ref pr(m);
|
||||
expr_ref_vector args(m);
|
||||
for (unsigned i = 1; i < ax.params.size(); ++i)
|
||||
args.push_back(m.mk_app(ax.params[i].get_symbol(), 0, nullptr, m.mk_proof_sort()));
|
||||
pr = m.mk_app(ax.params[0].get_symbol(), args.size(), args.data(), m.mk_proof_sort());
|
||||
justification_proof_wrapper jp(ctx, pr.get(), false);
|
||||
ctx.get_clause_proof().propagate(lit, jp, antecedent);
|
||||
jp.del_eh(m);
|
||||
}
|
||||
ctx.assign(lit, bjust);
|
||||
return true;
|
||||
}
|
||||
bool is_conflict = (undef_count == 0);
|
||||
|
|
@ -727,7 +745,7 @@ namespace smt {
|
|||
literal_vector lclause;
|
||||
for (auto e : clause)
|
||||
lclause.push_back(mk_literal(e));
|
||||
ctx.mk_th_axiom(get_id(), lclause);
|
||||
ctx.mk_th_axiom(get_id(), lclause, ax.params.size(), ax.params.data());
|
||||
return true;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -107,7 +107,7 @@ namespace smt {
|
|||
};
|
||||
|
||||
struct theory_clauses {
|
||||
vector<expr_ref_vector> axioms; // vector of created theory axioms
|
||||
vector<theory_axiom> axioms; // vector of created theory axioms
|
||||
unsigned aqhead = 0; // queue head of created axioms
|
||||
unsigned_vector squeue; // propagation queue of axioms to be added to the solver
|
||||
unsigned sqhead = 0; // head into propagation queue axioms to be added to solver
|
||||
|
|
@ -172,8 +172,8 @@ namespace smt {
|
|||
|
||||
// Helper methods for axiom instantiation
|
||||
void add_membership_axioms(expr* elem, expr* set);
|
||||
void add_clause(expr_ref_vector const& clause);
|
||||
bool assert_clause(expr_ref_vector const &clause);
|
||||
void add_clause(theory_axiom const& ax);
|
||||
bool assert_clause(theory_axiom const &ax);
|
||||
void activate_clause(unsigned index);
|
||||
bool activate_unasserted_clause();
|
||||
void add_immediate_axioms(app *atom);
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue