mirror of
				https://github.com/Z3Prover/z3
				synced 2025-10-31 11:42:28 +00:00 
			
		
		
		
	fixup proof log annotations of rules
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
		
							parent
							
								
									6485808b49
								
							
						
					
					
						commit
						65f38eac16
					
				
					 7 changed files with 49 additions and 42 deletions
				
			
		|  | @ -38,7 +38,7 @@ void finite_set_axioms::in_empty_axiom(expr *x) { | |||
|     expr_ref empty_set(u.mk_empty(elem_sort), m); | ||||
|     expr_ref x_in_empty(u.mk_in(x, empty_set), m); | ||||
|      | ||||
|     theory_axiom ax(m, "finite-set", "in-empty"); | ||||
|     theory_axiom ax(m, "in-empty"); | ||||
|     ax.clause.push_back(m.mk_not(x_in_empty)); | ||||
|     m_add_clause(ax); | ||||
| } | ||||
|  | @ -50,7 +50,7 @@ void finite_set_axioms::in_union_axiom(expr *x, expr *a) { | |||
|     if (!u.is_union(a, b, c)) | ||||
|         return; | ||||
| 
 | ||||
|     theory_axiom ax(m, "finite-set", "in-union"); | ||||
|     theory_axiom ax(m, "in-union"); | ||||
|     expr_ref x_in_a(u.mk_in(x, a), m); | ||||
|     expr_ref x_in_b(u.mk_in(x, b), m); | ||||
|     expr_ref x_in_c(u.mk_in(x, c), m); | ||||
|  | @ -62,13 +62,13 @@ void finite_set_axioms::in_union_axiom(expr *x, expr *a) { | |||
|     m_add_clause(ax); | ||||
| 
 | ||||
|     // (x in b) => (x in a)
 | ||||
|     theory_axiom ax2(m, "finite-set", "in-union"); | ||||
|     theory_axiom ax2(m, "in-union"); | ||||
|     ax2.clause.push_back(m.mk_not(x_in_b)); | ||||
|     ax2.clause.push_back(x_in_a); | ||||
|     m_add_clause(ax2); | ||||
| 
 | ||||
|     // (x in c) => (x in a)
 | ||||
|     theory_axiom ax3(m, "finite-set", "in-union"); | ||||
|     theory_axiom ax3(m, "in-union"); | ||||
|     ax3.clause.push_back(m.mk_not(x_in_c)); | ||||
|     ax3.clause.push_back(x_in_a); | ||||
|     m_add_clause(ax3); | ||||
|  | @ -86,19 +86,19 @@ void finite_set_axioms::in_intersect_axiom(expr *x, expr *a) { | |||
|     expr_ref x_in_c(u.mk_in(x, c), m); | ||||
|      | ||||
|     // (x in a) => (x in b)
 | ||||
|     theory_axiom ax1(m, "finite-set", "in-intersect"); | ||||
|     theory_axiom ax1(m, "in-intersect"); | ||||
|     ax1.clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax1.clause.push_back(x_in_b); | ||||
|     m_add_clause(ax1); | ||||
| 
 | ||||
|     // (x in a) => (x in c)
 | ||||
|     theory_axiom ax2(m, "finite-set", "in-intersect"); | ||||
|     theory_axiom ax2(m, "in-intersect"); | ||||
|     ax2.clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax2.clause.push_back(x_in_c); | ||||
|     m_add_clause(ax2); | ||||
| 
 | ||||
|     // (x in b) and (x in c) => (x in a)
 | ||||
|     theory_axiom ax3(m, "finite-set", "in-intersect"); | ||||
|     theory_axiom ax3(m, "in-intersect"); | ||||
|     ax3.clause.push_back(m.mk_not(x_in_b)); | ||||
|     ax3.clause.push_back(m.mk_not(x_in_c)); | ||||
|     ax3.clause.push_back(x_in_a); | ||||
|  | @ -117,19 +117,19 @@ void finite_set_axioms::in_difference_axiom(expr *x, expr *a) { | |||
|     expr_ref x_in_c(u.mk_in(x, c), m); | ||||
|      | ||||
|     // (x in a) => (x in b)
 | ||||
|     theory_axiom ax1(m, "finite-set", "in-difference"); | ||||
|     theory_axiom ax1(m, "in-difference"); | ||||
|     ax1.clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax1.clause.push_back(x_in_b); | ||||
|     m_add_clause(ax1); | ||||
|      | ||||
|     // (x in a) => not (x in c)
 | ||||
|     theory_axiom ax2(m, "finite-set", "in-difference"); | ||||
|     theory_axiom ax2(m, "in-difference"); | ||||
|     ax2.clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax2.clause.push_back(m.mk_not(x_in_c)); | ||||
|     m_add_clause(ax2); | ||||
| 
 | ||||
|     // (x in b) and not (x in c) => (x in a)
 | ||||
|     theory_axiom ax3(m, "finite-set", "in-difference"); | ||||
|     theory_axiom ax3(m, "in-difference"); | ||||
|     ax3.clause.push_back(m.mk_not(x_in_b)); | ||||
|     ax3.clause.push_back(x_in_c); | ||||
|     ax3.clause.push_back(x_in_a); | ||||
|  | @ -145,7 +145,7 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) { | |||
|      | ||||
|     expr_ref x_in_a(u.mk_in(x, a), m); | ||||
| 
 | ||||
|     theory_axiom ax(m, "finite-set", "in-singleton"); | ||||
|     theory_axiom ax(m, "in-singleton"); | ||||
|     if (x == b) { | ||||
|         // If x and b are syntactically identical, then (x in a) is always true
 | ||||
| 
 | ||||
|  | @ -181,19 +181,19 @@ void finite_set_axioms::in_range_axiom(expr *x, expr *a) { | |||
|     expr_ref x_le_hi(arith.mk_le(x, hi), m); | ||||
|      | ||||
|     // (x in a) => (lo <= x)
 | ||||
|     theory_axiom ax1(m, "finite-set", "in-range"); | ||||
|     theory_axiom ax1(m, "in-range"); | ||||
|     ax1.clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax1.clause.push_back(lo_le_x); | ||||
|     m_add_clause(ax1); | ||||
| 
 | ||||
|     // (x in a) => (x <= hi)
 | ||||
|     theory_axiom ax2(m, "finite-set", "in-range"); | ||||
|     theory_axiom ax2(m, "in-range"); | ||||
|     ax2.clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax2.clause.push_back(x_le_hi); | ||||
|     m_add_clause(ax2); | ||||
| 
 | ||||
|     // (lo <= x) and (x <= hi) => (x in a)
 | ||||
|     theory_axiom ax3(m, "finite-set", "in-range"); | ||||
|     theory_axiom ax3(m, "in-range"); | ||||
|     ax3.clause.push_back(m.mk_not(lo_le_x)); | ||||
|     ax3.clause.push_back(m.mk_not(x_le_hi)); | ||||
|     ax3.clause.push_back(x_in_a); | ||||
|  | @ -228,7 +228,7 @@ void finite_set_axioms::in_map_image_axiom(expr *x, expr *a) { | |||
|     expr_ref fx_in_a(u.mk_in(fx, a), m); | ||||
|      | ||||
|     // (x in b) => f(x) in a
 | ||||
|     theory_axiom ax(m, "finite-set", "in-map-image"); | ||||
|     theory_axiom ax(m, "in-map-image"); | ||||
|     ax.clause.push_back(m.mk_not(x_in_b)); | ||||
|     ax.clause.push_back(fx_in_a); | ||||
|     m_add_clause(ax); | ||||
|  | @ -249,19 +249,19 @@ void finite_set_axioms::in_filter_axiom(expr *x, expr *a) { | |||
|     expr_ref px(autil.mk_select(p, x), m); | ||||
|      | ||||
|     // (x in a) => (x in b)
 | ||||
|     theory_axiom ax1(m, "finite-set", "in-filter"); | ||||
|     theory_axiom ax1(m, "in-filter"); | ||||
|     ax1.clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax1.clause.push_back(x_in_b); | ||||
|     m_add_clause(ax1); | ||||
| 
 | ||||
|     // (x in a) => p(x)
 | ||||
|     theory_axiom ax2(m, "finite-set", "in-filter"); | ||||
|     theory_axiom ax2(m, "in-filter"); | ||||
|     ax2.clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax2.clause.push_back(px); | ||||
|     m_add_clause(ax2); | ||||
| 
 | ||||
|     // (x in b) and p(x) => (x in a)
 | ||||
|     theory_axiom ax3(m, "finite-set", "in-filter"); | ||||
|     theory_axiom ax3(m, "in-filter"); | ||||
|     ax3.clause.push_back(m.mk_not(x_in_b)); | ||||
|     ax3.clause.push_back(m.mk_not(px)); | ||||
|     ax3.clause.push_back(x_in_a); | ||||
|  | @ -280,7 +280,7 @@ void finite_set_axioms::size_singleton_axiom(expr *a) { | |||
|     expr_ref one(arith.mk_int(1), m); | ||||
|     expr_ref eq(m.mk_eq(size_a, one), m); | ||||
| 
 | ||||
|     theory_axiom ax(m, "finite-set", "size-singleton"); | ||||
|     theory_axiom ax(m, "size-singleton"); | ||||
|     ax.clause.push_back(eq); | ||||
|     m_add_clause(ax); | ||||
| } | ||||
|  | @ -293,12 +293,12 @@ void finite_set_axioms::subset_axiom(expr* a) { | |||
|     expr_ref intersect_bc(u.mk_intersect(b, c), m); | ||||
|     expr_ref eq(m.mk_eq(intersect_bc, b), m); | ||||
| 
 | ||||
|     theory_axiom ax1(m, "finite-set", "subset"); | ||||
|     theory_axiom ax1(m,  "subset"); | ||||
|     ax1.clause.push_back(m.mk_not(a)); | ||||
|     ax1.clause.push_back(eq); | ||||
|     m_add_clause(ax1); | ||||
| 
 | ||||
|     theory_axiom ax2(m, "finite-set", "subset"); | ||||
|     theory_axiom ax2(m,  "subset"); | ||||
|     ax2.clause.push_back(a); | ||||
|     ax2.clause.push_back(m.mk_not(eq)); | ||||
|     m_add_clause(ax2); | ||||
|  | @ -313,13 +313,13 @@ void finite_set_axioms::extensionality_axiom(expr *a, expr* b) { | |||
|     expr_ref diff_in_b(u.mk_in(diff_ab, b), m); | ||||
|      | ||||
|     // (a != b) => (x in diff_ab != x in diff_ba)
 | ||||
|     theory_axiom ax(m, "finite-set", "extensionality"); | ||||
|     theory_axiom ax(m, "extensionality"); | ||||
|     ax.clause.push_back(a_eq_b); | ||||
|     ax.clause.push_back(m.mk_not(diff_in_a)); | ||||
|     ax.clause.push_back(m.mk_not(diff_in_b)); | ||||
|     m_add_clause(ax); | ||||
| 
 | ||||
|     theory_axiom ax2(m, "finite-set", "extensionality"); | ||||
|     theory_axiom ax2(m, "extensionality"); | ||||
|     ax2.clause.push_back(m.mk_not(a_eq_b)); | ||||
|     ax2.clause.push_back(diff_in_a); | ||||
|     ax2.clause.push_back(diff_in_b); | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue