3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2026-02-20 07:24:40 +00:00

fixup proof log annotations of rules

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2025-10-19 10:04:18 +02:00
parent 6485808b49
commit 65f38eac16
7 changed files with 49 additions and 42 deletions

View file

@ -3338,15 +3338,25 @@ proof * ast_manager::mk_th_lemma(
if (proofs_disabled())
return nullptr;
proof_ref pr(*this);
ptr_buffer<expr> args;
vector<parameter> parameters;
parameters.push_back(parameter(get_family_name(tid)));
for (unsigned i = 0; i < num_params; ++i) {
parameters.push_back(params[i]);
auto const &p = params[i];
if (p.is_symbol())
args.push_back(mk_app(p.get_symbol(), 0, nullptr, mk_proof_sort()));
else if (p.is_ast() && is_expr(p.get_ast()))
args.push_back(to_expr(p.get_ast()));
else if (p.is_rational()) {
arith_util autil(*this);
args.push_back(autil.mk_real(p.get_rational()));
}
}
pr = mk_app(get_family_name(tid), args.size(), args.data(), mk_proof_sort());
args.reset();
args.push_back(pr.get());
args.append(num_proofs, (expr**) proofs);
args.push_back(fact);
return mk_app(basic_family_id, PR_TH_LEMMA, num_params+1, parameters.data(), args.size(), args.data());
return mk_app(basic_family_id, PR_TH_LEMMA, 0, nullptr, args.size(), args.data());
}
proof* ast_manager::mk_hyper_resolve(unsigned num_premises, proof* const* premises, expr* concl,

View file

@ -38,7 +38,7 @@ void finite_set_axioms::in_empty_axiom(expr *x) {
expr_ref empty_set(u.mk_empty(elem_sort), m);
expr_ref x_in_empty(u.mk_in(x, empty_set), m);
theory_axiom ax(m, "finite-set", "in-empty");
theory_axiom ax(m, "in-empty");
ax.clause.push_back(m.mk_not(x_in_empty));
m_add_clause(ax);
}
@ -50,7 +50,7 @@ void finite_set_axioms::in_union_axiom(expr *x, expr *a) {
if (!u.is_union(a, b, c))
return;
theory_axiom ax(m, "finite-set", "in-union");
theory_axiom ax(m, "in-union");
expr_ref x_in_a(u.mk_in(x, a), m);
expr_ref x_in_b(u.mk_in(x, b), m);
expr_ref x_in_c(u.mk_in(x, c), m);
@ -62,13 +62,13 @@ void finite_set_axioms::in_union_axiom(expr *x, expr *a) {
m_add_clause(ax);
// (x in b) => (x in a)
theory_axiom ax2(m, "finite-set", "in-union");
theory_axiom ax2(m, "in-union");
ax2.clause.push_back(m.mk_not(x_in_b));
ax2.clause.push_back(x_in_a);
m_add_clause(ax2);
// (x in c) => (x in a)
theory_axiom ax3(m, "finite-set", "in-union");
theory_axiom ax3(m, "in-union");
ax3.clause.push_back(m.mk_not(x_in_c));
ax3.clause.push_back(x_in_a);
m_add_clause(ax3);
@ -86,19 +86,19 @@ void finite_set_axioms::in_intersect_axiom(expr *x, expr *a) {
expr_ref x_in_c(u.mk_in(x, c), m);
// (x in a) => (x in b)
theory_axiom ax1(m, "finite-set", "in-intersect");
theory_axiom ax1(m, "in-intersect");
ax1.clause.push_back(m.mk_not(x_in_a));
ax1.clause.push_back(x_in_b);
m_add_clause(ax1);
// (x in a) => (x in c)
theory_axiom ax2(m, "finite-set", "in-intersect");
theory_axiom ax2(m, "in-intersect");
ax2.clause.push_back(m.mk_not(x_in_a));
ax2.clause.push_back(x_in_c);
m_add_clause(ax2);
// (x in b) and (x in c) => (x in a)
theory_axiom ax3(m, "finite-set", "in-intersect");
theory_axiom ax3(m, "in-intersect");
ax3.clause.push_back(m.mk_not(x_in_b));
ax3.clause.push_back(m.mk_not(x_in_c));
ax3.clause.push_back(x_in_a);
@ -117,19 +117,19 @@ void finite_set_axioms::in_difference_axiom(expr *x, expr *a) {
expr_ref x_in_c(u.mk_in(x, c), m);
// (x in a) => (x in b)
theory_axiom ax1(m, "finite-set", "in-difference");
theory_axiom ax1(m, "in-difference");
ax1.clause.push_back(m.mk_not(x_in_a));
ax1.clause.push_back(x_in_b);
m_add_clause(ax1);
// (x in a) => not (x in c)
theory_axiom ax2(m, "finite-set", "in-difference");
theory_axiom ax2(m, "in-difference");
ax2.clause.push_back(m.mk_not(x_in_a));
ax2.clause.push_back(m.mk_not(x_in_c));
m_add_clause(ax2);
// (x in b) and not (x in c) => (x in a)
theory_axiom ax3(m, "finite-set", "in-difference");
theory_axiom ax3(m, "in-difference");
ax3.clause.push_back(m.mk_not(x_in_b));
ax3.clause.push_back(x_in_c);
ax3.clause.push_back(x_in_a);
@ -145,7 +145,7 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) {
expr_ref x_in_a(u.mk_in(x, a), m);
theory_axiom ax(m, "finite-set", "in-singleton");
theory_axiom ax(m, "in-singleton");
if (x == b) {
// If x and b are syntactically identical, then (x in a) is always true
@ -181,19 +181,19 @@ void finite_set_axioms::in_range_axiom(expr *x, expr *a) {
expr_ref x_le_hi(arith.mk_le(x, hi), m);
// (x in a) => (lo <= x)
theory_axiom ax1(m, "finite-set", "in-range");
theory_axiom ax1(m, "in-range");
ax1.clause.push_back(m.mk_not(x_in_a));
ax1.clause.push_back(lo_le_x);
m_add_clause(ax1);
// (x in a) => (x <= hi)
theory_axiom ax2(m, "finite-set", "in-range");
theory_axiom ax2(m, "in-range");
ax2.clause.push_back(m.mk_not(x_in_a));
ax2.clause.push_back(x_le_hi);
m_add_clause(ax2);
// (lo <= x) and (x <= hi) => (x in a)
theory_axiom ax3(m, "finite-set", "in-range");
theory_axiom ax3(m, "in-range");
ax3.clause.push_back(m.mk_not(lo_le_x));
ax3.clause.push_back(m.mk_not(x_le_hi));
ax3.clause.push_back(x_in_a);
@ -228,7 +228,7 @@ void finite_set_axioms::in_map_image_axiom(expr *x, expr *a) {
expr_ref fx_in_a(u.mk_in(fx, a), m);
// (x in b) => f(x) in a
theory_axiom ax(m, "finite-set", "in-map-image");
theory_axiom ax(m, "in-map-image");
ax.clause.push_back(m.mk_not(x_in_b));
ax.clause.push_back(fx_in_a);
m_add_clause(ax);
@ -249,19 +249,19 @@ void finite_set_axioms::in_filter_axiom(expr *x, expr *a) {
expr_ref px(autil.mk_select(p, x), m);
// (x in a) => (x in b)
theory_axiom ax1(m, "finite-set", "in-filter");
theory_axiom ax1(m, "in-filter");
ax1.clause.push_back(m.mk_not(x_in_a));
ax1.clause.push_back(x_in_b);
m_add_clause(ax1);
// (x in a) => p(x)
theory_axiom ax2(m, "finite-set", "in-filter");
theory_axiom ax2(m, "in-filter");
ax2.clause.push_back(m.mk_not(x_in_a));
ax2.clause.push_back(px);
m_add_clause(ax2);
// (x in b) and p(x) => (x in a)
theory_axiom ax3(m, "finite-set", "in-filter");
theory_axiom ax3(m, "in-filter");
ax3.clause.push_back(m.mk_not(x_in_b));
ax3.clause.push_back(m.mk_not(px));
ax3.clause.push_back(x_in_a);
@ -280,7 +280,7 @@ void finite_set_axioms::size_singleton_axiom(expr *a) {
expr_ref one(arith.mk_int(1), m);
expr_ref eq(m.mk_eq(size_a, one), m);
theory_axiom ax(m, "finite-set", "size-singleton");
theory_axiom ax(m, "size-singleton");
ax.clause.push_back(eq);
m_add_clause(ax);
}
@ -293,12 +293,12 @@ void finite_set_axioms::subset_axiom(expr* a) {
expr_ref intersect_bc(u.mk_intersect(b, c), m);
expr_ref eq(m.mk_eq(intersect_bc, b), m);
theory_axiom ax1(m, "finite-set", "subset");
theory_axiom ax1(m, "subset");
ax1.clause.push_back(m.mk_not(a));
ax1.clause.push_back(eq);
m_add_clause(ax1);
theory_axiom ax2(m, "finite-set", "subset");
theory_axiom ax2(m, "subset");
ax2.clause.push_back(a);
ax2.clause.push_back(m.mk_not(eq));
m_add_clause(ax2);
@ -313,13 +313,13 @@ void finite_set_axioms::extensionality_axiom(expr *a, expr* b) {
expr_ref diff_in_b(u.mk_in(diff_ab, b), m);
// (a != b) => (x in diff_ab != x in diff_ba)
theory_axiom ax(m, "finite-set", "extensionality");
theory_axiom ax(m, "extensionality");
ax.clause.push_back(a_eq_b);
ax.clause.push_back(m.mk_not(diff_in_a));
ax.clause.push_back(m.mk_not(diff_in_b));
m_add_clause(ax);
theory_axiom ax2(m, "finite-set", "extensionality");
theory_axiom ax2(m, "extensionality");
ax2.clause.push_back(m.mk_not(a_eq_b));
ax2.clause.push_back(diff_in_a);
ax2.clause.push_back(diff_in_b);

View file

@ -19,12 +19,7 @@ struct theory_axiom {
theory_axiom(ast_manager& m, symbol const& th): clause(m) {
params.push_back(parameter(th));
}
theory_axiom(ast_manager &m, symbol const &th, symbol const& rule) : clause(m) {
params.push_back(parameter(th));
params.push_back(parameter(rule));
}
theory_axiom(ast_manager &m, char const *th, char const *rule) : clause(m) {
params.push_back(parameter(symbol(th)));
theory_axiom(ast_manager &m, char const* rule) : clause(m) {
params.push_back(parameter(symbol(rule)));
}
theory_axiom(ast_manager &m) : clause(m) {