3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-10-30 11:12:28 +00:00

fixup proof log annotations of rules

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2025-10-19 10:04:18 +02:00
parent 6485808b49
commit 65f38eac16
7 changed files with 49 additions and 42 deletions

View file

@ -3338,15 +3338,25 @@ proof * ast_manager::mk_th_lemma(
if (proofs_disabled())
return nullptr;
proof_ref pr(*this);
ptr_buffer<expr> args;
vector<parameter> parameters;
parameters.push_back(parameter(get_family_name(tid)));
for (unsigned i = 0; i < num_params; ++i) {
parameters.push_back(params[i]);
auto const &p = params[i];
if (p.is_symbol())
args.push_back(mk_app(p.get_symbol(), 0, nullptr, mk_proof_sort()));
else if (p.is_ast() && is_expr(p.get_ast()))
args.push_back(to_expr(p.get_ast()));
else if (p.is_rational()) {
arith_util autil(*this);
args.push_back(autil.mk_real(p.get_rational()));
}
}
pr = mk_app(get_family_name(tid), args.size(), args.data(), mk_proof_sort());
args.reset();
args.push_back(pr.get());
args.append(num_proofs, (expr**) proofs);
args.push_back(fact);
return mk_app(basic_family_id, PR_TH_LEMMA, num_params+1, parameters.data(), args.size(), args.data());
return mk_app(basic_family_id, PR_TH_LEMMA, 0, nullptr, args.size(), args.data());
}
proof* ast_manager::mk_hyper_resolve(unsigned num_premises, proof* const* premises, expr* concl,

View file

@ -38,7 +38,7 @@ void finite_set_axioms::in_empty_axiom(expr *x) {
expr_ref empty_set(u.mk_empty(elem_sort), m);
expr_ref x_in_empty(u.mk_in(x, empty_set), m);
theory_axiom ax(m, "finite-set", "in-empty");
theory_axiom ax(m, "in-empty");
ax.clause.push_back(m.mk_not(x_in_empty));
m_add_clause(ax);
}
@ -50,7 +50,7 @@ void finite_set_axioms::in_union_axiom(expr *x, expr *a) {
if (!u.is_union(a, b, c))
return;
theory_axiom ax(m, "finite-set", "in-union");
theory_axiom ax(m, "in-union");
expr_ref x_in_a(u.mk_in(x, a), m);
expr_ref x_in_b(u.mk_in(x, b), m);
expr_ref x_in_c(u.mk_in(x, c), m);
@ -62,13 +62,13 @@ void finite_set_axioms::in_union_axiom(expr *x, expr *a) {
m_add_clause(ax);
// (x in b) => (x in a)
theory_axiom ax2(m, "finite-set", "in-union");
theory_axiom ax2(m, "in-union");
ax2.clause.push_back(m.mk_not(x_in_b));
ax2.clause.push_back(x_in_a);
m_add_clause(ax2);
// (x in c) => (x in a)
theory_axiom ax3(m, "finite-set", "in-union");
theory_axiom ax3(m, "in-union");
ax3.clause.push_back(m.mk_not(x_in_c));
ax3.clause.push_back(x_in_a);
m_add_clause(ax3);
@ -86,19 +86,19 @@ void finite_set_axioms::in_intersect_axiom(expr *x, expr *a) {
expr_ref x_in_c(u.mk_in(x, c), m);
// (x in a) => (x in b)
theory_axiom ax1(m, "finite-set", "in-intersect");
theory_axiom ax1(m, "in-intersect");
ax1.clause.push_back(m.mk_not(x_in_a));
ax1.clause.push_back(x_in_b);
m_add_clause(ax1);
// (x in a) => (x in c)
theory_axiom ax2(m, "finite-set", "in-intersect");
theory_axiom ax2(m, "in-intersect");
ax2.clause.push_back(m.mk_not(x_in_a));
ax2.clause.push_back(x_in_c);
m_add_clause(ax2);
// (x in b) and (x in c) => (x in a)
theory_axiom ax3(m, "finite-set", "in-intersect");
theory_axiom ax3(m, "in-intersect");
ax3.clause.push_back(m.mk_not(x_in_b));
ax3.clause.push_back(m.mk_not(x_in_c));
ax3.clause.push_back(x_in_a);
@ -117,19 +117,19 @@ void finite_set_axioms::in_difference_axiom(expr *x, expr *a) {
expr_ref x_in_c(u.mk_in(x, c), m);
// (x in a) => (x in b)
theory_axiom ax1(m, "finite-set", "in-difference");
theory_axiom ax1(m, "in-difference");
ax1.clause.push_back(m.mk_not(x_in_a));
ax1.clause.push_back(x_in_b);
m_add_clause(ax1);
// (x in a) => not (x in c)
theory_axiom ax2(m, "finite-set", "in-difference");
theory_axiom ax2(m, "in-difference");
ax2.clause.push_back(m.mk_not(x_in_a));
ax2.clause.push_back(m.mk_not(x_in_c));
m_add_clause(ax2);
// (x in b) and not (x in c) => (x in a)
theory_axiom ax3(m, "finite-set", "in-difference");
theory_axiom ax3(m, "in-difference");
ax3.clause.push_back(m.mk_not(x_in_b));
ax3.clause.push_back(x_in_c);
ax3.clause.push_back(x_in_a);
@ -145,7 +145,7 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) {
expr_ref x_in_a(u.mk_in(x, a), m);
theory_axiom ax(m, "finite-set", "in-singleton");
theory_axiom ax(m, "in-singleton");
if (x == b) {
// If x and b are syntactically identical, then (x in a) is always true
@ -181,19 +181,19 @@ void finite_set_axioms::in_range_axiom(expr *x, expr *a) {
expr_ref x_le_hi(arith.mk_le(x, hi), m);
// (x in a) => (lo <= x)
theory_axiom ax1(m, "finite-set", "in-range");
theory_axiom ax1(m, "in-range");
ax1.clause.push_back(m.mk_not(x_in_a));
ax1.clause.push_back(lo_le_x);
m_add_clause(ax1);
// (x in a) => (x <= hi)
theory_axiom ax2(m, "finite-set", "in-range");
theory_axiom ax2(m, "in-range");
ax2.clause.push_back(m.mk_not(x_in_a));
ax2.clause.push_back(x_le_hi);
m_add_clause(ax2);
// (lo <= x) and (x <= hi) => (x in a)
theory_axiom ax3(m, "finite-set", "in-range");
theory_axiom ax3(m, "in-range");
ax3.clause.push_back(m.mk_not(lo_le_x));
ax3.clause.push_back(m.mk_not(x_le_hi));
ax3.clause.push_back(x_in_a);
@ -228,7 +228,7 @@ void finite_set_axioms::in_map_image_axiom(expr *x, expr *a) {
expr_ref fx_in_a(u.mk_in(fx, a), m);
// (x in b) => f(x) in a
theory_axiom ax(m, "finite-set", "in-map-image");
theory_axiom ax(m, "in-map-image");
ax.clause.push_back(m.mk_not(x_in_b));
ax.clause.push_back(fx_in_a);
m_add_clause(ax);
@ -249,19 +249,19 @@ void finite_set_axioms::in_filter_axiom(expr *x, expr *a) {
expr_ref px(autil.mk_select(p, x), m);
// (x in a) => (x in b)
theory_axiom ax1(m, "finite-set", "in-filter");
theory_axiom ax1(m, "in-filter");
ax1.clause.push_back(m.mk_not(x_in_a));
ax1.clause.push_back(x_in_b);
m_add_clause(ax1);
// (x in a) => p(x)
theory_axiom ax2(m, "finite-set", "in-filter");
theory_axiom ax2(m, "in-filter");
ax2.clause.push_back(m.mk_not(x_in_a));
ax2.clause.push_back(px);
m_add_clause(ax2);
// (x in b) and p(x) => (x in a)
theory_axiom ax3(m, "finite-set", "in-filter");
theory_axiom ax3(m, "in-filter");
ax3.clause.push_back(m.mk_not(x_in_b));
ax3.clause.push_back(m.mk_not(px));
ax3.clause.push_back(x_in_a);
@ -280,7 +280,7 @@ void finite_set_axioms::size_singleton_axiom(expr *a) {
expr_ref one(arith.mk_int(1), m);
expr_ref eq(m.mk_eq(size_a, one), m);
theory_axiom ax(m, "finite-set", "size-singleton");
theory_axiom ax(m, "size-singleton");
ax.clause.push_back(eq);
m_add_clause(ax);
}
@ -293,12 +293,12 @@ void finite_set_axioms::subset_axiom(expr* a) {
expr_ref intersect_bc(u.mk_intersect(b, c), m);
expr_ref eq(m.mk_eq(intersect_bc, b), m);
theory_axiom ax1(m, "finite-set", "subset");
theory_axiom ax1(m, "subset");
ax1.clause.push_back(m.mk_not(a));
ax1.clause.push_back(eq);
m_add_clause(ax1);
theory_axiom ax2(m, "finite-set", "subset");
theory_axiom ax2(m, "subset");
ax2.clause.push_back(a);
ax2.clause.push_back(m.mk_not(eq));
m_add_clause(ax2);
@ -313,13 +313,13 @@ void finite_set_axioms::extensionality_axiom(expr *a, expr* b) {
expr_ref diff_in_b(u.mk_in(diff_ab, b), m);
// (a != b) => (x in diff_ab != x in diff_ba)
theory_axiom ax(m, "finite-set", "extensionality");
theory_axiom ax(m, "extensionality");
ax.clause.push_back(a_eq_b);
ax.clause.push_back(m.mk_not(diff_in_a));
ax.clause.push_back(m.mk_not(diff_in_b));
m_add_clause(ax);
theory_axiom ax2(m, "finite-set", "extensionality");
theory_axiom ax2(m, "extensionality");
ax2.clause.push_back(m.mk_not(a_eq_b));
ax2.clause.push_back(diff_in_a);
ax2.clause.push_back(diff_in_b);

View file

@ -19,12 +19,7 @@ struct theory_axiom {
theory_axiom(ast_manager& m, symbol const& th): clause(m) {
params.push_back(parameter(th));
}
theory_axiom(ast_manager &m, symbol const &th, symbol const& rule) : clause(m) {
params.push_back(parameter(th));
params.push_back(parameter(rule));
}
theory_axiom(ast_manager &m, char const *th, char const *rule) : clause(m) {
params.push_back(parameter(symbol(th)));
theory_axiom(ast_manager &m, char const* rule) : clause(m) {
params.push_back(parameter(symbol(rule)));
}
theory_axiom(ast_manager &m) : clause(m) {

View file

@ -151,7 +151,7 @@ namespace smt {
update(st, m_lits, pr);
}
void clause_proof::propagate(literal lit, justification const& jst, literal_vector const& ante) {
void clause_proof::propagate(literal lit, justification * jst, literal_vector const& ante) {
if (!is_enabled())
return;
m_lits.reset();
@ -159,8 +159,7 @@ namespace smt {
m_lits.push_back(ctx.literal2expr(~l));
m_lits.push_back(ctx.literal2expr(lit));
auto st = clause_proof::status::th_lemma;
auto pr = justification2proof(st, &const_cast<justification &>(jst));
// proof_ref pr(m.mk_app(symbol("smt"), 0, nullptr, m.mk_proof_sort()), m);
auto pr = justification2proof(st, jst);
update(st, m_lits, pr);
}

View file

@ -82,7 +82,7 @@ namespace smt {
void add(literal lit1, literal lit2, clause_kind k, justification* j, literal_buffer const* simp_lits = nullptr);
void add(clause& c, literal_buffer const* simp_lits = nullptr);
void add(unsigned n, literal const* lits, clause_kind k, justification* j);
void propagate(literal lit, justification const& j, literal_vector const& ante);
void propagate(literal lit, justification* j, literal_vector const& ante);
void del(clause& c);
proof_ref get_proof(bool inconsistent);
bool is_enabled() const { return m_enabled; }

View file

@ -347,7 +347,7 @@ namespace smt {
literal_vector & antecedents = m_tmp_literal_vector;
antecedents.reset();
justification2literals_core(js, antecedents);
m_ctx.get_clause_proof().propagate(consequent, *js, antecedents);
m_ctx.get_clause_proof().propagate(consequent, js, antecedents);
for (literal l : antecedents)
process_antecedent(l, num_marks);
(void)consequent;

View file

@ -724,13 +724,16 @@ namespace smt {
auto bjust = ctx.mk_justification(just);
if (ctx.clause_proof_active()) {
// assume all justifications is a non-empty list of symbol parameters
// proof logging is basically broken: it doesn't log propagations, but instead
// only propagations that are processed by conflict resolution.
// this misses conflicts at base level.
proof_ref pr(m);
expr_ref_vector args(m);
for (unsigned i = 1; i < ax.params.size(); ++i)
args.push_back(m.mk_app(ax.params[i].get_symbol(), 0, nullptr, m.mk_proof_sort()));
pr = m.mk_app(ax.params[0].get_symbol(), args.size(), args.data(), m.mk_proof_sort());
for (auto const& p : ax.params)
args.push_back(m.mk_const(p.get_symbol(), m.mk_proof_sort()));
pr = m.mk_app(m.get_family_name(get_family_id()), args.size(), args.data(), m.mk_proof_sort());
justification_proof_wrapper jp(ctx, pr.get(), false);
ctx.get_clause_proof().propagate(lit, jp, antecedent);
ctx.get_clause_proof().propagate(lit, &jp, antecedent);
jp.del_eh(m);
}
ctx.assign(lit, bjust);