mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
add documentation to initial selection of tactics
This commit is contained in:
parent
f1a65d9642
commit
5a5758baaa
47
doc/mk_tactic_doc.py
Normal file
47
doc/mk_tactic_doc.py
Normal file
|
@ -0,0 +1,47 @@
|
|||
# Copyright (c) Microsoft Corporation 2015
|
||||
"""
|
||||
Tactic documentation generator script
|
||||
"""
|
||||
|
||||
import os
|
||||
import re
|
||||
|
||||
SCRIPT_DIR = os.path.abspath(os.path.dirname(__file__))
|
||||
OUTPUT_DIRECTORY = os.path.join(os.getcwd(), 'api')
|
||||
|
||||
def doc_path(path):
|
||||
return os.path.join(SCRIPT_DIR, path)
|
||||
|
||||
is_doc = re.compile("Tactic Documentation")
|
||||
is_doc_end = re.compile("\-\-\*\/")
|
||||
|
||||
def generate_tactic_doc(ous, f, ins):
|
||||
for line in ins:
|
||||
if is_doc_end.search(line):
|
||||
break
|
||||
ous.write(line)
|
||||
|
||||
def extract_tactic_doc(ous, f):
|
||||
with open(f) as ins:
|
||||
for line in ins:
|
||||
if is_doc.search(line):
|
||||
generate_tactic_doc(ous, f, ins)
|
||||
|
||||
def help(ous):
|
||||
ous.write("---\n")
|
||||
ous.write("title: Tactics Summary\n")
|
||||
ous.write("sidebar_position: 5\n")
|
||||
ous.write("---\n")
|
||||
for root, dirs, files in os.walk(doc_path("../src")):
|
||||
for f in files:
|
||||
if f.endswith("tactic.h"):
|
||||
extract_tactic_doc(ous, os.path.join(root, f))
|
||||
|
||||
def mk_dir(d):
|
||||
if not os.path.exists(d):
|
||||
os.makedirs(d)
|
||||
|
||||
mk_dir(os.path.join(OUTPUT_DIRECTORY, 'md'))
|
||||
|
||||
with open(OUTPUT_DIRECTORY + "/md/tactics-summary.md",'w') as ous:
|
||||
help(ous)
|
|
@ -279,7 +279,7 @@ namespace euf {
|
|||
}
|
||||
else if (m.is_not(f, f))
|
||||
todo.push_back({ !s, depth, f });
|
||||
else if (!s && 1 == depth % 2) {
|
||||
else if (!s && 1 <= depth) {
|
||||
for (extract_eq* ex : m_solve_eqs.m_extract_plugins) {
|
||||
ex->set_allow_booleans(false);
|
||||
ex->get_eqs(dependent_expr(m, f, df.dep()), eqs);
|
||||
|
|
|
@ -13,44 +13,47 @@ Author:
|
|||
|
||||
Nikolaj Bjorner (nbjorner) 2022-10-30
|
||||
|
||||
Documentation Notes:
|
||||
Tactic Documentation:
|
||||
|
||||
Name: demodulator
|
||||
## Tactic demodulator
|
||||
|
||||
Short Description:
|
||||
extracts equalities from quantifiers and applies them for simplification
|
||||
### Short Description:
|
||||
|
||||
Long Description:
|
||||
In first-order theorem proving (FOTP), a demodulator is a universally quantified formula of the form:
|
||||
Extracts equalities from quantifiers and applies them for simplification
|
||||
|
||||
Forall X1, ..., Xn. L[X1, ..., Xn] = R[X1, ..., Xn]
|
||||
Where L[X1, ..., Xn] contains all variables in R[X1, ..., Xn], and
|
||||
L[X1, ..., Xn] is "bigger" than R[X1, ...,Xn].
|
||||
### Long Description
|
||||
|
||||
The idea is to replace something big L[X1, ..., Xn] with something smaller R[X1, ..., Xn].
|
||||
In first-order theorem proving (FOTP), a demodulator is a universally quantified formula of the form:
|
||||
|
||||
After selecting the demodulators, we traverse the rest of the formula looking for instances of L[X1, ..., Xn].
|
||||
Whenever we find an instance, we replace it with the associated instance of R[X1, ..., Xn].
|
||||
`Forall X1, ..., Xn. L[X1, ..., Xn] = R[X1, ..., Xn]`
|
||||
Where `L[X1, ..., Xn]` contains all variables in `R[X1, ..., Xn]`, and
|
||||
`L[X1, ..., Xn]` is "bigger" than `R[X1, ...,Xn]`.
|
||||
|
||||
For example, suppose we have
|
||||
The idea is to replace something big `L[X1, ..., Xn]` with something smaller `R[X1, ..., Xn]`.
|
||||
|
||||
```
|
||||
Forall x, y. f(x+y, y) = y
|
||||
and
|
||||
f(g(b) + h(c), h(c)) <= 0
|
||||
```
|
||||
After selecting the demodulators, we traverse the rest of the formula looking for instances of `L[X1, ..., Xn]`.
|
||||
Whenever we find an instance, we replace it with the associated instance of `R[X1, ..., Xn]`.
|
||||
|
||||
The term `f(g(b) + h(c), h(c))` is an instance of `f(x+y, y)` if we replace `x <- g(b)` and `y <- h(c)`.
|
||||
So, we can replace it with `y` which is bound to `h(c)` in this example. So, the result of the transformation is:
|
||||
For example, suppose we have
|
||||
|
||||
```
|
||||
Forall x, y. f(x+y, y) = y
|
||||
and
|
||||
h(c) <= 0
|
||||
```
|
||||
```
|
||||
Forall x, y. f(x+y, y) = y
|
||||
and
|
||||
f(g(b) + h(c), h(c)) <= 0
|
||||
```
|
||||
|
||||
The term `f(g(b) + h(c), h(c))` is an instance of `f(x+y, y)` if we replace `x <- g(b)` and `y <- h(c)`.
|
||||
So, we can replace it with `y` which is bound to `h(c)` in this example. So, the result of the transformation is:
|
||||
|
||||
Usage:
|
||||
```
|
||||
Forall x, y. f(x+y, y) = y
|
||||
and
|
||||
h(c) <= 0
|
||||
```
|
||||
|
||||
### Example
|
||||
|
||||
```
|
||||
(declare-sort S 0)
|
||||
(declare-sort S1 0)
|
||||
(declare-sort S2 0)
|
||||
|
@ -64,17 +67,23 @@ Usage:
|
|||
(assert (forall ((q S) (v S)) (or (= q v) (= f1 (f2 (f3 f5 q) v)) (= (f2 (f3 f5 v) q) f1))))
|
||||
(assert (forall ((q S) (x S)) (not (= (f2 (f3 f5 q) x) f1))))
|
||||
(apply demodulator)
|
||||
|
||||
```
|
||||
|
||||
It generates
|
||||
|
||||
```
|
||||
(goals
|
||||
(goal
|
||||
(forall ((q S) (v S)) (= q v))
|
||||
(forall ((q S) (x S)) (not (= (f2 (f3 f5 q) x) f1)))
|
||||
:precision precise :depth 1)
|
||||
)
|
||||
```
|
||||
|
||||
Supports: unsat cores
|
||||
### Notes
|
||||
|
||||
Does not support: proofs
|
||||
* supports unsat cores
|
||||
* does not support fine-grained proofs
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
|
|
@ -13,6 +13,96 @@ Author:
|
|||
|
||||
Nikolaj Bjorner (nbjorner) 2022-10-30
|
||||
|
||||
Tactic Documentation:
|
||||
|
||||
## Tactic elim-uncnstr
|
||||
|
||||
### Short Description
|
||||
|
||||
Eliminate Unconstrained uninterpreted constants
|
||||
|
||||
### Long Description
|
||||
|
||||
The tactic eliminates uninterpreted constants that occur only once in a goal and such that the immediate context
|
||||
where they occur can be replaced by a fresh constant. We call these occurrences invertible.
|
||||
It relies on a series of theory specific invertibility transformations.
|
||||
In the following assume `x` and `x'` occur in a unique subterm and `y` is a fresh uninterpreted constant.
|
||||
|
||||
#### Boolean Connectives
|
||||
|
||||
| Original Context | New Term | Updated solution |
|
||||
|------------------|----------|------------------------ |
|
||||
`(if c x x')` | `y` | `x = x' = y` |
|
||||
`(if x x' e)` | `y` | `x = true, x' = y` |
|
||||
`(if x t x')` | `y` | `x = false, x' = y` |
|
||||
`(not x)` | `y` | `x = (not y)` |
|
||||
`(and x x')` | `y` | `x = y, x' = true` |
|
||||
`(or x x')` | `y` | `x = y, x' = false` |
|
||||
`(= x t)` | `y` | `x = (if y t (diff t))` |
|
||||
|
||||
where diff is a diagnonalization function available in domains of size `>` 1.
|
||||
|
||||
#### Arithmetic
|
||||
|
||||
| Original Context | New Term | Updated solution |
|
||||
|------------------|----------|------------------------ |
|
||||
`(+ x t)` | `y` | `x = y - t` |
|
||||
`(* x x')` | `y` | `x = y, x' = 1` |
|
||||
`(* -1 x)` | `y` | `x = -y` |
|
||||
`(<= x t)` | `y` | `x = (if y t (+ t 1))` |
|
||||
`(<= t x)` | `y` | `x = (if y t (- t 1))` |
|
||||
|
||||
#### Bit-vectors
|
||||
|
||||
| Original Context | New Term | Updated solution |
|
||||
|------------------|----------|--------------------------|
|
||||
`(bvadd x t)` | `y` | `x = y - t` |
|
||||
`(bvmul x x')` | `y` | `x = y, x' = 1` |
|
||||
`(bvmul odd x)` | `y` | `x = inv(odd)*y` |
|
||||
`((extract sz-1 0) x)` | `y` | `x = y` |
|
||||
`((extract hi lo) x)` | `y` | `x = (concat y1 y y2)` |
|
||||
`(udiv x x')` | `y` | `x = y, x' = 1` |
|
||||
`(concat x x')` | `y` | `x = (extract hi1 lo1 y)` |
|
||||
`(bvule x t)` | `(or y (= t MAX))` | `x = (if y t (bvadd t 1))` |
|
||||
`(bvule t x)` | `(or y (= t MIN))` | `x = (if y t (bvsub t 1))` |
|
||||
`(bvnot x)` | `y` | `x = (bvnot y)` |
|
||||
`(bvand x x')` | `y` | `x = y, x' = MAX` |
|
||||
|
||||
In addition there are conversions for shift and bit-wise or and signed comparison.
|
||||
|
||||
#### Arrays
|
||||
|
||||
| Original Context | New Term | Updated solution |
|
||||
|------------------|----------|--------------------------|
|
||||
`(select x t)` | `y` | `x = (const y)` |
|
||||
`(store x x1 x2)` | `y` | `x2 = (select x x1), x = y, x1 = arb` |
|
||||
|
||||
#### Algebraic Datatypes
|
||||
|
||||
| Original Context | New Term | Updated solution |
|
||||
|------------------|----------|--------------------------|
|
||||
`(head x)` | `y` | `x = (cons y arb)` |
|
||||
|
||||
|
||||
|
||||
### Example
|
||||
|
||||
```z3
|
||||
(declare-const x Int)
|
||||
(declare-const y Int)
|
||||
(declare-fun p (Int) Bool)
|
||||
(assert (>= (+ y (+ x y)) y))
|
||||
(assert (p y))
|
||||
(apply elim-uncnstr)
|
||||
(assert (p (+ x y)))
|
||||
(apply elim-uncnstr)
|
||||
```
|
||||
|
||||
### Notes
|
||||
|
||||
* supports unsat cores
|
||||
* does not support fine-grained proofs
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
||||
|
|
|
@ -13,9 +13,60 @@ Author:
|
|||
|
||||
Nikolaj Bjorner (nbjorner) 2022-10-30
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
Tactic Documentation:
|
||||
|
||||
## Tactic solve-eqs
|
||||
|
||||
### Short Description
|
||||
|
||||
Solve for variables
|
||||
|
||||
### Long Description
|
||||
|
||||
The tactic eliminates variables that can be brought into solved form.
|
||||
For example, the assertion `x = f(y + z)` can be solved for `x`, replacing `x`
|
||||
everywhere by `f(x + y)`. It depends on a set of theory specific equality solvers
|
||||
|
||||
* Basic equations
|
||||
* equations between uninterpreted constants and terms.
|
||||
* equations written as `(if p (= x t) (= x s))` are solved as `(= x (if p t s))`.
|
||||
* asserting `p` or `(not p)` where `p` is uninterpreted, causes `p` to be replaced by `true` (or `false`).
|
||||
|
||||
* Arithmetic equations
|
||||
* It solves `x mod k = s` to `x = k * m' + s`, where m'` is a fresh constant.
|
||||
* It finds variables with unit coefficients in integer linear equations.
|
||||
* It solves for `x * Y = Z$ under the side-condition `Y != 0` as `x = Z/Y`.
|
||||
|
||||
It also allows solving for uninterpreted constants that only appear in a single disjuction. For example,
|
||||
`(or (= x (+ 5 y)) (= y (+ u z)))` allows solving for `x`.
|
||||
|
||||
### Example
|
||||
|
||||
```z3
|
||||
(declare-const x Int)
|
||||
(declare-const y Int)
|
||||
(declare-const z Int)
|
||||
(declare-const u Int)
|
||||
(assert (or (and (= x (+ 5 y)) (> u z)) (= y (+ u z))))
|
||||
(apply solve-eqs)
|
||||
```
|
||||
|
||||
It produces the goal
|
||||
```
|
||||
(goal
|
||||
(or (not (<= u z)) (= y (+ u z)))
|
||||
:precision precise :depth 1)
|
||||
```
|
||||
where `x` was solved as `(+ 5 y)`.
|
||||
|
||||
### Notes
|
||||
|
||||
* supports unsat cores
|
||||
* does not support fine-grained proofs
|
||||
|
||||
--*/
|
||||
|
||||
#pragma once
|
||||
#include "util/params.h"
|
||||
#include "tactic/tactic.h"
|
||||
#include "tactic/dependent_expr_state_tactic.h"
|
||||
|
|
Loading…
Reference in a new issue