mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
add documentation notes
This commit is contained in:
parent
a2f5a5b50b
commit
f1a65d9642
|
@ -7,12 +7,75 @@ Module Name:
|
|||
|
||||
Abstract:
|
||||
|
||||
Tactic for solving variables
|
||||
Tactic for rewriting goals using quantified equalities
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2022-10-30
|
||||
|
||||
Documentation Notes:
|
||||
|
||||
Name: demodulator
|
||||
|
||||
Short Description:
|
||||
extracts equalities from quantifiers and applies them for simplification
|
||||
|
||||
Long Description:
|
||||
In first-order theorem proving (FOTP), a demodulator is a universally quantified formula of the form:
|
||||
|
||||
Forall X1, ..., Xn. L[X1, ..., Xn] = R[X1, ..., Xn]
|
||||
Where L[X1, ..., Xn] contains all variables in R[X1, ..., Xn], and
|
||||
L[X1, ..., Xn] is "bigger" than R[X1, ...,Xn].
|
||||
|
||||
The idea is to replace something big L[X1, ..., Xn] with something smaller R[X1, ..., Xn].
|
||||
|
||||
After selecting the demodulators, we traverse the rest of the formula looking for instances of L[X1, ..., Xn].
|
||||
Whenever we find an instance, we replace it with the associated instance of R[X1, ..., Xn].
|
||||
|
||||
For example, suppose we have
|
||||
|
||||
```
|
||||
Forall x, y. f(x+y, y) = y
|
||||
and
|
||||
f(g(b) + h(c), h(c)) <= 0
|
||||
```
|
||||
|
||||
The term `f(g(b) + h(c), h(c))` is an instance of `f(x+y, y)` if we replace `x <- g(b)` and `y <- h(c)`.
|
||||
So, we can replace it with `y` which is bound to `h(c)` in this example. So, the result of the transformation is:
|
||||
|
||||
```
|
||||
Forall x, y. f(x+y, y) = y
|
||||
and
|
||||
h(c) <= 0
|
||||
```
|
||||
|
||||
|
||||
Usage:
|
||||
(declare-sort S 0)
|
||||
(declare-sort S1 0)
|
||||
(declare-sort S2 0)
|
||||
(declare-fun f () S)
|
||||
(declare-fun f1 () S)
|
||||
(declare-fun f2 (S1 S) S)
|
||||
(declare-fun f3 (S2 S) S1)
|
||||
(declare-fun f4 () S)
|
||||
(declare-fun f5 () S2)
|
||||
(assert (not (= f1 (f2 (f3 f5 f4) f))))
|
||||
(assert (forall ((q S) (v S)) (or (= q v) (= f1 (f2 (f3 f5 q) v)) (= (f2 (f3 f5 v) q) f1))))
|
||||
(assert (forall ((q S) (x S)) (not (= (f2 (f3 f5 q) x) f1))))
|
||||
(apply demodulator)
|
||||
|
||||
(goals
|
||||
(goal
|
||||
(forall ((q S) (v S)) (= q v))
|
||||
(forall ((q S) (x S)) (not (= (f2 (f3 f5 q) x) f1)))
|
||||
:precision precise :depth 1)
|
||||
)
|
||||
|
||||
Supports: unsat cores
|
||||
|
||||
Does not support: proofs
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
||||
|
@ -27,5 +90,5 @@ inline tactic * mk_demodulator_tactic(ast_manager& m, params_ref const& p = para
|
|||
}
|
||||
|
||||
/*
|
||||
ADD_TACTIC("demodulator", "solve for variables.", "mk_demodulator_tactic(m, p)")
|
||||
ADD_TACTIC("demodulator", "extracts equalities from quantifiers and applies them to simplify.", "mk_demodulator_tactic(m, p)")
|
||||
*/
|
||||
|
|
Loading…
Reference in a new issue