3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-08 10:25:18 +00:00

added mbqi.id option, working on quantifiers in duality

This commit is contained in:
Ken McMillan 2013-12-10 11:41:25 -08:00
parent a3462ba6aa
commit 56b3406ee5
14 changed files with 409 additions and 33 deletions

View file

@ -79,9 +79,12 @@ namespace Duality {
int CumulativeDecisions();
int CountOperators(const Term &t);
private:
void SummarizeRec(hash_set<ast> &memo, std::vector<expr> &lits, int &ops, const Term &t);
int CountOperatorsRec(hash_set<ast> &memo, const Term &t);
};
@ -280,7 +283,7 @@ namespace Duality {
public:
std::list<Edge *> edges;
std::list<Node *> nodes;
std::list<Edge *> constraints;
std::list<std::pair<Edge *,Term> > constraints;
};
@ -556,6 +559,7 @@ namespace Duality {
edge to their values in the current assignment. */
void FixCurrentState(Edge *root);
void FixCurrentStateFull(Edge *edge);
/** Declare a constant in the background theory. */
@ -653,7 +657,11 @@ namespace Duality {
Term ComputeUnderapprox(Node *root, int persist);
/** Try to strengthen the annotation of a node by removing disjuncts. */
void Generalize(Node *node);
void Generalize(Node *root, Node *node);
/** Compute disjunctive interpolant for node by case splitting */
void InterpolateByCases(Node *root, Node *node);
/** Push a scope. Assertions made after Push can be undone by Pop. */
@ -687,6 +695,10 @@ namespace Duality {
void Pop(int num_scopes);
/** Erase the proof by performing a Pop, Push and re-assertion of
all the popped constraints */
void PopPush();
/** Return true if the given edge is used in the proof of unsat.
Can be called only after Solve or Check returns an unsat result. */
@ -861,6 +873,11 @@ namespace Duality {
Term UnderapproxFormula(const Term &f, hash_set<ast> &dont_cares);
void ImplicantFullRed(hash_map<ast,int> &memo, const Term &f, std::vector<Term> &lits,
hash_set<ast> &done, hash_set<ast> &dont_cares);
Term UnderapproxFullFormula(const Term &f, hash_set<ast> &dont_cares);
Term ToRuleRec(Edge *e, hash_map<ast,Term> &memo, const Term &t, std::vector<expr> &quants);
hash_map<ast,Term> resolve_ite_memo;
@ -896,6 +913,11 @@ namespace Duality {
expr SimplifyOr(std::vector<expr> &lits);
void SetAnnotation(Node *root, const expr &t);
void AddEdgeToSolver(Edge *edge);
void AddToProofCore(hash_set<ast> &core);
};
/** RPFP solver base class. */

View file

@ -125,6 +125,32 @@ namespace Duality {
}
}
int Z3User::CountOperatorsRec(hash_set<ast> &memo, const Term &t){
if(memo.find(t) != memo.end())
return 0;
memo.insert(t);
if(t.is_app()){
decl_kind k = t.decl().get_decl_kind();
if(k == And || k == Or){
int count = 1;
int nargs = t.num_args();
for(int i = 0; i < nargs; i++)
count += CountOperatorsRec(memo,t.arg(i));
return count;
}
return 0;
}
if(t.is_quantifier())
return CountOperatorsRec(memo,t.body())+1;
return 0;
}
int Z3User::CountOperators(const Term &t){
hash_set<ast> memo;
return CountOperatorsRec(memo,t);
}
Z3User::Term Z3User::conjoin(const std::vector<Term> &args){
return ctx.make(And,args);
}
@ -329,7 +355,15 @@ namespace Duality {
res = f(args.size(),&args[0]);
}
else if (t.is_quantifier())
res = CloneQuantifier(t,SubstRec(memo, t.body()));
{
std::vector<expr> pats;
t.get_patterns(pats);
for(unsigned i = 0; i < pats.size(); i++)
pats[i] = SubstRec(memo,pats[i]);
Term body = SubstRec(memo,t.body());
res = clone_quantifier(t, body, pats);
}
// res = CloneQuantifier(t,SubstRec(memo, t.body()));
else res = t;
return res;
}
@ -552,7 +586,7 @@ namespace Duality {
void RPFP::ConstrainEdgeLocalized(Edge *e, const Term &tl)
{
e->constraints.push_back(tl);
stack.back().constraints.push_back(e);
stack.back().constraints.push_back(std::pair<Edge *,Term>(e,tl));
slvr.add(tl);
}
@ -1142,7 +1176,8 @@ namespace Duality {
}
}
/* Unreachable! */
std::cerr << "error in RPFP::ImplicantRed";
// TODO: need to indicate this failure to caller
// std::cerr << "error in RPFP::ImplicantRed";
goto done;
}
else if(k == Not) {
@ -1161,6 +1196,31 @@ namespace Duality {
done[truth].insert(f);
}
void RPFP::ImplicantFullRed(hash_map<ast,int> &memo, const Term &f, std::vector<Term> &lits,
hash_set<ast> &done, hash_set<ast> &dont_cares){
if(done.find(f) != done.end())
return; /* already processed */
if(f.is_app()){
int nargs = f.num_args();
decl_kind k = f.decl().get_decl_kind();
if(k == Implies || k == Iff || k == And || k == Or || k == Not){
for(int i = 0; i < nargs; i++)
ImplicantFullRed(memo,f.arg(i),lits,done,dont_cares);
goto done;
}
}
{
if(dont_cares.find(f) == dont_cares.end()){
int b = SubtermTruth(memo,f);
if(b != 0 && b != 1) goto done;
expr bv = (b==1) ? f : !f;
lits.push_back(bv);
}
}
done:
done.insert(f);
}
RPFP::Term RPFP::ResolveIte(hash_map<ast,int> &memo, const Term &t, std::vector<Term> &lits,
hash_set<ast> *done, hash_set<ast> &dont_cares){
if(resolve_ite_memo.find(t) != resolve_ite_memo.end())
@ -1223,6 +1283,16 @@ namespace Duality {
return conjoin(lits);
}
RPFP::Term RPFP::UnderapproxFullFormula(const Term &f, hash_set<ast> &dont_cares){
/* first compute truth values of subterms */
hash_map<ast,int> memo;
hash_set<ast> done;
std::vector<Term> lits;
ImplicantFullRed(memo,f,lits,done,dont_cares);
/* return conjunction of literals */
return conjoin(lits);
}
struct VariableProjector : Z3User {
struct elim_cand {
@ -1759,6 +1829,17 @@ namespace Duality {
ConstrainEdgeLocalized(edge,eu);
}
void RPFP::FixCurrentStateFull(Edge *edge){
hash_set<ast> dont_cares;
resolve_ite_memo.clear();
timer_start("UnderapproxFormula");
Term dual = edge->dual.null() ? ctx.bool_val(true) : edge->dual;
for(unsigned i = 0; i < edge->constraints.size(); i++)
dual = dual && edge->constraints[i];
Term eu = UnderapproxFullFormula(dual,dont_cares);
timer_stop("UnderapproxFormula");
ConstrainEdgeLocalized(edge,eu);
}
RPFP::Term RPFP::ModelValueAsConstraint(const Term &t){
@ -1803,6 +1884,7 @@ namespace Duality {
res = CreateRelation(p->Annotation.IndParams,funder);
}
#if 0
void RPFP::GreedyReduce(solver &s, std::vector<expr> &conjuncts){
// verify
s.push();
@ -1829,6 +1911,36 @@ namespace Duality {
}
}
}
#endif
void RPFP::GreedyReduce(solver &s, std::vector<expr> &conjuncts){
std::vector<expr> lits(conjuncts.size());
for(unsigned i = 0; i < lits.size(); i++){
func_decl pred = ctx.fresh_func_decl("@alit", ctx.bool_sort());
lits[i] = pred();
s.add(ctx.make(Implies,lits[i],conjuncts[i]));
}
// verify
check_result res = s.check(lits.size(),&lits[0]);
if(res != unsat)
throw "should be unsat";
for(unsigned i = 0; i < conjuncts.size(); ){
std::swap(conjuncts[i],conjuncts.back());
std::swap(lits[i],lits.back());
check_result res = s.check(lits.size()-1,&lits[0]);
if(res != unsat){
std::swap(conjuncts[i],conjuncts.back());
std::swap(lits[i],lits.back());
i++;
}
else {
conjuncts.pop_back();
lits.pop_back();
}
}
}
void RPFP::NegateLits(std::vector<expr> &lits){
for(unsigned i = 0; i < lits.size(); i++){
@ -1848,20 +1960,56 @@ namespace Duality {
return ctx.make(Or,lits);
}
void RPFP::Generalize(Node *node){
std::vector<expr> conjuncts;
expr fmla = GetAnnotation(node);
CollectConjuncts(fmla,conjuncts,false);
// try to remove conjuncts one at a tme
aux_solver.push();
Edge *edge = node->Outgoing;
// set up edge constraint in aux solver
void RPFP::AddEdgeToSolver(Edge *edge){
if(!edge->dual.null())
aux_solver.add(edge->dual);
for(unsigned i = 0; i < edge->constraints.size(); i++){
expr tl = edge->constraints[i];
aux_solver.add(tl);
}
GreedyReduce(aux_solver,conjuncts);
}
void RPFP::InterpolateByCases(Node *root, Node *node){
aux_solver.push();
AddEdgeToSolver(node->Outgoing);
node->Annotation.SetEmpty();
hash_set<ast> *core = new hash_set<ast>;
core->insert(node->Outgoing->dual);
while(1){
aux_solver.push();
aux_solver.add(!GetAnnotation(node));
if(aux_solver.check() == unsat){
aux_solver.pop(1);
break;
}
dualModel = aux_solver.get_model();
aux_solver.pop(1);
Push();
FixCurrentStateFull(node->Outgoing);
ConstrainEdgeLocalized(node->Outgoing,!GetAnnotation(node));
check_result foo = Check(root);
if(foo != unsat)
throw "should be unsat";
AddToProofCore(*core);
Transformer old_annot = node->Annotation;
SolveSingleNode(root,node);
Pop(1);
node->Annotation.UnionWith(old_annot);
}
if(proof_core)
delete proof_core; // shouldn't happen
proof_core = core;
aux_solver.pop(1);
}
void RPFP::Generalize(Node *root, Node *node){
aux_solver.push();
AddEdgeToSolver(node->Outgoing);
expr fmla = GetAnnotation(node);
std::vector<expr> conjuncts;
CollectConjuncts(fmla,conjuncts,false);
GreedyReduce(aux_solver,conjuncts); // try to remove conjuncts one at a tme
aux_solver.pop(1);
NegateLits(conjuncts);
SetAnnotation(node,SimplifyOr(conjuncts));
@ -1887,12 +2035,26 @@ namespace Duality {
(*it)->dual = expr(ctx,NULL);
for(std::list<Node *>::iterator it = back.nodes.begin(), en = back.nodes.end(); it != en; ++it)
(*it)->dual = expr(ctx,NULL);
for(std::list<Edge *>::iterator it = back.constraints.begin(), en = back.constraints.end(); it != en; ++it)
(*it)->constraints.pop_back();
for(std::list<std::pair<Edge *,Term> >::iterator it = back.constraints.begin(), en = back.constraints.end(); it != en; ++it)
(*it).first->constraints.pop_back();
stack.pop_back();
}
}
/** Erase the proof by performing a Pop, Push and re-assertion of
all the popped constraints */
void RPFP::PopPush(){
slvr.pop(1);
slvr.push();
stack_entry &back = stack.back();
for(std::list<Edge *>::iterator it = back.edges.begin(), en = back.edges.end(); it != en; ++it)
slvr.add((*it)->dual);
for(std::list<Node *>::iterator it = back.nodes.begin(), en = back.nodes.end(); it != en; ++it)
slvr.add((*it)->dual);
for(std::list<std::pair<Edge *,Term> >::iterator it = back.constraints.begin(), en = back.constraints.end(); it != en; ++it)
slvr.add((*it).second);
}
@ -2325,13 +2487,17 @@ namespace Duality {
}
void RPFP::AddToProofCore(hash_set<ast> &core){
std::vector<expr> assumps;
slvr.get_proof().get_assumptions(assumps);
for(unsigned i = 0; i < assumps.size(); i++)
core.insert(assumps[i]);
}
void RPFP::ComputeProofCore(){
if(!proof_core){
std::vector<expr> assumps;
slvr.get_proof().get_assumptions(assumps);
proof_core = new hash_set<ast>;
for(unsigned i = 0; i < assumps.size(); i++)
proof_core->insert(assumps[i]);
AddToProofCore(*proof_core);
}
}

View file

@ -1754,12 +1754,14 @@ namespace Duality {
for(unsigned i = 0; i < expansions.size(); i++){
Node *node = expansions[i];
tree->SolveSingleNode(top,node);
tree->Generalize(node);
if(expansions.size() == 1 && NodeTooComplicated(node))
SimplifyNode(node);
tree->Generalize(top,node);
if(RecordUpdate(node))
update_count++;
}
if(update_count == 0)
std::cout << "backtracked without learning\n";
reporter->Message("backtracked without learning");
}
tree->ComputeProofCore(); // need to compute the proof core before popping solver
while(1) {
@ -1816,6 +1818,16 @@ namespace Duality {
}
}
bool NodeTooComplicated(Node *node){
return tree->CountOperators(node->Annotation.Formula) > 5;
}
void SimplifyNode(Node *node){
// have to destroy the old proof to get a new interpolant
tree->PopPush();
tree->InterpolateByCases(top,node);
}
bool LevelUsedInProof(unsigned level){
std::vector<Node *> &expansions = stack[level].expansions;
for(unsigned i = 0; i < expansions.size(); i++)

View file

@ -34,8 +34,12 @@ namespace Duality {
p.set_bool("proof", true); // this is currently useless
p.set_bool("model", true);
p.set_bool("unsat_core", true);
p.set_bool("mbqi",true);
p.set_str("mbqi.id","itp"); // use mbqi for quantifiers in interpolants
p.set_uint("mbqi.max_iterations",1); // use mbqi for quantifiers in interpolants
scoped_ptr<solver_factory> sf = mk_smt_solver_factory();
m_solver = (*sf)(m(), p, true, true, true, ::symbol::null);
m_solver->updt_params(p); // why do we have to do this?
canceled = false;
}

View file

@ -413,6 +413,7 @@ namespace Duality {
expr operator()(unsigned n, expr const * args) const;
expr operator()(const std::vector<expr> &args) const;
expr operator()() const;
expr operator()(expr const & a) const;
expr operator()(int a) const;
expr operator()(expr const & a1, expr const & a2) const;
@ -1184,6 +1185,9 @@ namespace Duality {
inline expr func_decl::operator()(const std::vector<expr> &args) const {
return operator()(args.size(),&args[0]);
}
inline expr func_decl::operator()() const {
return operator()(0,0);
}
inline expr func_decl::operator()(expr const & a) const {
return operator()(1,&a);
}

View file

@ -190,7 +190,7 @@ iz3mgr::ast iz3mgr::make_quant(opr op, const std::vector<ast> &bvs, ast &body){
op == Forall,
names.size(), &types[0], &names[0], abs_body.get(),
0,
symbol(),
symbol("itp"),
symbol(),
0, 0,
0, 0
@ -761,6 +761,19 @@ int iz3mgr::occurs_in(ast var, ast e){
}
bool iz3mgr::solve_arith(const ast &v, const ast &x, const ast &y, ast &res){
if(op(x) == Plus){
int n = num_args(x);
for(int i = 0; i < n; i++){
if(arg(x,i) == v){
res = z3_simplify(make(Sub, y, make(Sub, x, v)));
return true;
}
}
}
return false;
}
// find a controlling equality for a given variable v in a term
// a controlling equality is of the form v = t, which, being
// false would force the formula to have the specifid truth value
@ -774,6 +787,9 @@ iz3mgr::ast iz3mgr::cont_eq(stl_ext::hash_set<ast> &cont_eq_memo, bool truth, as
if(!truth && op(e) == Equal){
if(arg(e,0) == v) return(arg(e,1));
if(arg(e,1) == v) return(arg(e,0));
ast res;
if(solve_arith(v,arg(e,0),arg(e,1),res)) return res;
if(solve_arith(v,arg(e,1),arg(e,0),res)) return res;
}
if((!truth && op(e) == And) || (truth && op(e) == Or)){
int nargs = num_args(e);
@ -836,6 +852,14 @@ iz3mgr::ast iz3mgr::subst(stl_ext::hash_map<ast,ast> &subst_memo,ast e){
// 2) bound variable must be equal to some term -> substitute
iz3mgr::ast iz3mgr::apply_quant(opr quantifier, ast var, ast e){
if((quantifier == Forall && op(e) == And)
|| (quantifier == Exists && op(e) == Or)){
int n = num_args(e);
std::vector<ast> args(n);
for(int i = 0; i < n; i++)
args[i] = apply_quant(quantifier,var,arg(e,i));
return make(op(e),args);
}
if(!occurs_in(var,e))return e;
hash_set<ast> cont_eq_memo;
ast cterm = cont_eq(cont_eq_memo, quantifier == Forall, var, e);

View file

@ -692,13 +692,14 @@ class iz3mgr {
protected:
ast_manager &m_manager;
int occurs_in(ast var, ast e);
private:
ast mki(family_id fid, decl_kind sk, int n, raw_ast **args);
ast make(opr op, int n, raw_ast **args);
ast make(symb sym, int n, raw_ast **args);
int occurs_in1(stl_ext::hash_map<ast,bool> &occurs_in_memo, ast var, ast e);
int occurs_in(ast var, ast e);
bool solve_arith(const ast &v, const ast &x, const ast &y, ast &res);
ast cont_eq(stl_ext::hash_set<ast> &cont_eq_memo, bool truth, ast v, ast e);
ast subst(stl_ext::hash_map<ast,ast> &subst_memo, ast var, ast t, ast e);

View file

@ -135,10 +135,12 @@ class iz3proof_itp_impl : public iz3proof_itp {
/* If p is a proof of Q and c is a normalization chain, then normal(p,c)
is a proof of Q(c) (that is, Q with all substitutions in c performed). */
symb normal;
/** Stand-ins for quantifiers */
symb sforall, sexists;
ast get_placeholder(ast t){
@ -231,6 +233,10 @@ class iz3proof_itp_impl : public iz3proof_itp {
ast neg_pivot_lit = mk_not(atom);
if(op(pivot) != Not)
std::swap(premise1,premise2);
if(op(pivot) == Equal && op(arg(pivot,0)) == Select && op(arg(pivot,1)) == Select){
neg_pivot_lit = mk_not(neg_pivot_lit);
std::swap(premise1,premise2);
}
return resolve_arith_rec1(memo, neg_pivot_lit, premise1, premise2);
}
@ -355,7 +361,13 @@ class iz3proof_itp_impl : public iz3proof_itp {
break;
}
default:
res = itp2;
{
symb s = sym(itp2);
if(s == sforall || s == sexists)
res = make(s,arg(itp2,0),resolve_arith_rec2(memo, pivot1, conj1, arg(itp2,1)));
else
res = itp2;
}
}
}
return res;
@ -385,7 +397,13 @@ class iz3proof_itp_impl : public iz3proof_itp {
break;
}
default:
res = itp1;
{
symb s = sym(itp1);
if(s == sforall || s == sexists)
res = make(s,arg(itp1,0),resolve_arith_rec1(memo, neg_pivot_lit, arg(itp1,1), itp2));
else
res = itp1;
}
}
}
return res;
@ -1897,6 +1915,20 @@ class iz3proof_itp_impl : public iz3proof_itp {
return itp;
}
ast capture_localization(ast e){
// #define CAPTURE_LOCALIZATION
#ifdef CAPTURE_LOCALIZATION
for(int i = localization_vars.size() - 1; i >= 0; i--){
LocVar &lv = localization_vars[i];
if(occurs_in(lv.var,e)){
symb q = (pv->in_range(lv.frame,rng)) ? sexists : sforall;
e = make(q,make(Equal,lv.var,lv.term),e); // use Equal because it is polymorphic
}
}
#endif
return e;
}
/** Make an axiom node. The conclusion must be an instance of an axiom. */
virtual node make_axiom(const std::vector<ast> &conclusion, prover::range frng){
int nargs = conclusion.size();
@ -1920,7 +1952,7 @@ class iz3proof_itp_impl : public iz3proof_itp {
for(unsigned i = 0; i < eqs.size(); i++)
itp = make_mp(eqs[i],itp,pfs[i]);
return itp;
return capture_localization(itp);
}
virtual node make_axiom(const std::vector<ast> &conclusion){
@ -2405,12 +2437,89 @@ class iz3proof_itp_impl : public iz3proof_itp {
return new_var;
}
ast delete_quant(hash_map<ast,ast> &memo, const ast &v, const ast &e){
std::pair<ast,ast> foo(e,ast());
std::pair<hash_map<ast,ast>::iterator,bool> bar = memo.insert(foo);
ast &res = bar.first->second;
if(bar.second){
opr o = op(e);
switch(o){
case Or:
case And:
case Implies: {
unsigned nargs = num_args(e);
std::vector<ast> args; args.resize(nargs);
for(unsigned i = 0; i < nargs; i++)
args[i] = delete_quant(memo, v, arg(e,i));
res = make(o,args);
break;
}
case Uninterpreted: {
symb s = sym(e);
ast w = arg(arg(e,0),0);
if(s == sforall || s == sexists){
res = delete_quant(memo,v,arg(e,1));
if(w != v)
res = make(s,w,res);
break;
}
}
default:
res = e;
}
}
return res;
}
ast insert_quants(hash_map<ast,ast> &memo, const ast &e){
std::pair<ast,ast> foo(e,ast());
std::pair<hash_map<ast,ast>::iterator,bool> bar = memo.insert(foo);
ast &res = bar.first->second;
if(bar.second){
opr o = op(e);
switch(o){
case Or:
case And:
case Implies: {
unsigned nargs = num_args(e);
std::vector<ast> args; args.resize(nargs);
for(unsigned i = 0; i < nargs; i++)
args[i] = insert_quants(memo, arg(e,i));
res = make(o,args);
break;
}
case Uninterpreted: {
symb s = sym(e);
if(s == sforall || s == sexists){
opr q = (s == sforall) ? Forall : Exists;
ast v = arg(arg(e,0),0);
hash_map<ast,ast> dmemo;
ast body = delete_quant(dmemo,v,arg(e,1));
body = insert_quants(memo,body);
res = apply_quant(q,v,body);
break;
}
}
default:
res = e;
}
}
return res;
}
ast add_quants(ast e){
#ifdef CAPTURE_LOCALIZATION
if(!localization_vars.empty()){
hash_map<ast,ast> memo;
e = insert_quants(memo,e);
}
#else
for(int i = localization_vars.size() - 1; i >= 0; i--){
LocVar &lv = localization_vars[i];
opr quantifier = (pv->in_range(lv.frame,rng)) ? Exists : Forall;
e = apply_quant(quantifier,lv.var,e);
}
#endif
return e;
}
@ -2446,7 +2555,7 @@ class iz3proof_itp_impl : public iz3proof_itp {
ast npP = make_mp(make(Iff,nPloc,nP),npPloc,neqpf);
ast nrP = make_resolution(nP,conj2,npP);
ast res = make_resolution(Ploc,rP,nrP);
return res;
return capture_localization(res);
}
ast get_contra_coeff(const ast &f){
@ -2538,6 +2647,10 @@ public:
m().inc_ref(normal_chain);
normal = function("@normal",2,boolbooldom,bool_type());
m().inc_ref(normal);
sforall = function("@sforall",2,boolbooldom,bool_type());
m().inc_ref(sforall);
sexists = function("@sexists",2,boolbooldom,bool_type());
m().inc_ref(sexists);
}
~iz3proof_itp_impl(){

View file

@ -27,6 +27,7 @@ void qi_params::updt_params(params_ref const & _p) {
m_mbqi_max_iterations = p.mbqi_max_iterations();
m_mbqi_trace = p.mbqi_trace();
m_mbqi_force_template = p.mbqi_force_template();
m_mbqi_id = p.mbqi_id();
m_qi_profile = p.qi_profile();
m_qi_profile_freq = p.qi_profile_freq();
m_qi_max_instances = p.qi_max_instances();

View file

@ -51,6 +51,7 @@ struct qi_params {
unsigned m_mbqi_max_iterations;
bool m_mbqi_trace;
unsigned m_mbqi_force_template;
const char * m_mbqi_id;
qi_params(params_ref const & p = params_ref()):
/*
@ -97,7 +98,9 @@ struct qi_params {
m_mbqi_max_cexs_incr(1),
m_mbqi_max_iterations(1000),
m_mbqi_trace(false),
m_mbqi_force_template(10) {
m_mbqi_force_template(10),
m_mbqi_id(0)
{
updt_params(p);
}

View file

@ -21,6 +21,7 @@ def_module_params(module_name='smt',
('mbqi.max_iterations', UINT, 1000, 'maximum number of rounds of MBQI'),
('mbqi.trace', BOOL, False, 'generate tracing messages for Model Based Quantifier Instantiation (MBQI). It will display a message before every round of MBQI, and the quantifiers that were not satisfied'),
('mbqi.force_template', UINT, 10, 'some quantifiers can be used as templates for building interpretations for functions. Z3 uses heuristics to decide whether a quantifier will be used as a template or not. Quantifiers with weight >= mbqi.force_template are forced to be used as a template'),
('mbqi.id', STRING, '', 'Only use model-based instantiation for quantifiers with id\'s beginning with string'),
('qi.profile', BOOL, False, 'profile quantifier instantiation'),
('qi.profile_freq', UINT, UINT_MAX, 'how frequent results are reported by qi.profile'),
('qi.max_instances', UINT, UINT_MAX, 'maximum number of quantifier instantiations'),

View file

@ -322,6 +322,7 @@ namespace smt {
for (; it != end; ++it) {
quantifier * q = *it;
if(!m_qm->mbqi_enabled(q)) continue;
if (m_context->is_relevant(q) && m_context->get_assignment(q) == l_true) {
if (m_params.m_mbqi_trace && q->get_qid() != symbol::null) {
verbose_stream() << "(smt.mbqi :checking " << q->get_qid() << ")\n";

View file

@ -335,6 +335,10 @@ namespace smt {
return m_imp->m_plugin->model_based();
}
bool quantifier_manager::mbqi_enabled(quantifier *q) const {
return m_imp->m_plugin->mbqi_enabled(q);
}
void quantifier_manager::adjust_model(proto_model * m) {
m_imp->m_plugin->adjust_model(m);
}
@ -434,10 +438,24 @@ namespace smt {
virtual bool model_based() const { return m_fparams->m_mbqi; }
virtual bool mbqi_enabled(quantifier *q) const {
if(!m_fparams->m_mbqi_id) return true;
const symbol &s = q->get_qid();
unsigned len = strlen(m_fparams->m_mbqi_id);
if(s == symbol::null || s.is_numerical())
return len == 0;
return strncmp(s.bare_str(),m_fparams->m_mbqi_id,len) == 0;
}
/* Quantifier id's must begin with the prefix specified by
parameter mbqi.id to be instantiated with MBQI. The default
value is the empty string, so all quantifiers are
instantiated.
*/
virtual void add(quantifier * q) {
if (m_fparams->m_mbqi) {
m_model_finder->register_quantifier(q);
}
if (m_fparams->m_mbqi && mbqi_enabled(q)) {
m_model_finder->register_quantifier(q);
}
}
virtual void del(quantifier * q) {

View file

@ -75,6 +75,7 @@ namespace smt {
};
bool model_based() const;
bool mbqi_enabled(quantifier *q) const; // can mbqi instantiate this quantifier?
void adjust_model(proto_model * m);
check_model_result check_model(proto_model * m, obj_map<enode, app *> const & root2value);
@ -144,6 +145,11 @@ namespace smt {
*/
virtual bool model_based() const = 0;
/**
\brief Is "model based" instantiate allowed to instantiate this quantifier?
*/
virtual bool mbqi_enabled(quantifier *q) const {return true;}
/**
\brief Give a change to the plugin to adjust the interpretation of unintepreted functions.
It can basically change the "else" of each uninterpreted function.