mirror of
https://github.com/Z3Prover/z3
synced 2025-04-13 12:28:44 +00:00
refactor weighted-maxsat into separate files
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
9f1b2ccfc4
commit
4ab27eff78
408
src/opt/bcd2.cpp
Normal file
408
src/opt/bcd2.cpp
Normal file
|
@ -0,0 +1,408 @@
|
|||
/*++
|
||||
Copyright (c) 2014 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
bcd2.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
bcd2 based MaxSAT.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2014-4-17
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
#include "bcd2.h"
|
||||
#include "pb_decl_plugin.h"
|
||||
#include "uint_set.h"
|
||||
#include "ast_pp.h"
|
||||
|
||||
|
||||
namespace opt {
|
||||
// ------------------------------------------------------
|
||||
// Morgado, Heras, Marques-Silva 2013
|
||||
// (initial version without model-based optimizations)
|
||||
//
|
||||
class bcd2 : public maxsmt_solver_base {
|
||||
struct wcore {
|
||||
expr* m_r;
|
||||
unsigned_vector m_R;
|
||||
rational m_lower;
|
||||
rational m_mid;
|
||||
rational m_upper;
|
||||
};
|
||||
typedef obj_hashtable<expr> expr_set;
|
||||
|
||||
pb_util pb;
|
||||
expr_ref_vector m_soft_aux;
|
||||
obj_map<expr, unsigned> m_relax2index; // expr |-> index
|
||||
obj_map<expr, unsigned> m_soft2index; // expr |-> index
|
||||
expr_ref_vector m_trail;
|
||||
expr_ref_vector m_soft_constraints;
|
||||
expr_set m_asm_set;
|
||||
vector<wcore> m_cores;
|
||||
vector<rational> m_sigmas;
|
||||
rational m_den; // least common multiplier of original denominators
|
||||
bool m_enable_lazy; // enable adding soft constraints lazily (called 'mgbcd2')
|
||||
unsigned_vector m_lazy_soft; // soft constraints to add lazily.
|
||||
|
||||
void set2asms(expr_set const& set, expr_ref_vector & es) const {
|
||||
es.reset();
|
||||
expr_set::iterator it = set.begin(), end = set.end();
|
||||
for (; it != end; ++it) {
|
||||
es.push_back(m.mk_not(*it));
|
||||
}
|
||||
}
|
||||
void bcd2_init_soft(vector<rational> const& weights, expr_ref_vector const& soft) {
|
||||
|
||||
// normalize weights to be integral:
|
||||
m_den = rational::one();
|
||||
for (unsigned i = 0; i < m_weights.size(); ++i) {
|
||||
m_den = lcm(m_den, denominator(m_weights[i]));
|
||||
}
|
||||
if (!m_den.is_one()) {
|
||||
for (unsigned i = 0; i < m_weights.size(); ++i) {
|
||||
m_weights[i] = m_den*m_weights[i];
|
||||
SASSERT(m_weights[i].is_int());
|
||||
}
|
||||
}
|
||||
}
|
||||
void init_bcd() {
|
||||
m_trail.reset();
|
||||
m_asm_set.reset();
|
||||
m_cores.reset();
|
||||
m_sigmas.reset();
|
||||
m_lazy_soft.reset();
|
||||
for (unsigned i = 0; i < m_soft.size(); ++i) {
|
||||
m_sigmas.push_back(m_weights[i]);
|
||||
m_soft_aux.push_back(mk_fresh());
|
||||
if (m_enable_lazy) {
|
||||
m_lazy_soft.push_back(i);
|
||||
}
|
||||
else {
|
||||
enable_soft_constraint(i);
|
||||
}
|
||||
}
|
||||
m_upper += rational(1);
|
||||
}
|
||||
|
||||
void process_sat() {
|
||||
svector<bool> assignment;
|
||||
update_assignment(assignment);
|
||||
if (check_lazy_soft(assignment)) {
|
||||
update_sigmas();
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
bcd2(opt_solver* s, ast_manager& m, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft):
|
||||
maxsmt_solver_base(s, m, p, ws, soft),
|
||||
pb(m),
|
||||
m_soft_aux(m),
|
||||
m_trail(m),
|
||||
m_soft_constraints(m),
|
||||
m_enable_lazy(true) {
|
||||
bcd2_init_soft(ws, soft);
|
||||
}
|
||||
|
||||
virtual ~bcd2() {}
|
||||
|
||||
virtual lbool operator()() {
|
||||
expr_ref fml(m), r(m);
|
||||
lbool is_sat = l_undef;
|
||||
expr_ref_vector asms(m);
|
||||
enable_sls();
|
||||
solver::scoped_push _scope1(s());
|
||||
init();
|
||||
init_bcd();
|
||||
if (m_cancel) {
|
||||
normalize_bounds();
|
||||
return l_undef;
|
||||
}
|
||||
process_sat();
|
||||
while (m_lower < m_upper) {
|
||||
IF_VERBOSE(1, verbose_stream() << "(opt.bcd2 [" << m_lower << ":" << m_upper << "])\n";);
|
||||
assert_soft();
|
||||
solver::scoped_push _scope2(s());
|
||||
TRACE("opt", display(tout););
|
||||
assert_cores();
|
||||
set2asms(m_asm_set, asms);
|
||||
if (m_cancel) {
|
||||
normalize_bounds();
|
||||
return l_undef;
|
||||
}
|
||||
is_sat = s().check_sat(asms.size(), asms.c_ptr());
|
||||
switch(is_sat) {
|
||||
case l_undef:
|
||||
normalize_bounds();
|
||||
return l_undef;
|
||||
case l_true:
|
||||
process_sat();
|
||||
break;
|
||||
case l_false: {
|
||||
ptr_vector<expr> unsat_core;
|
||||
uint_set subC, soft;
|
||||
s().get_unsat_core(unsat_core);
|
||||
core2indices(unsat_core, subC, soft);
|
||||
SASSERT(unsat_core.size() == subC.num_elems() + soft.num_elems());
|
||||
if (soft.num_elems() == 0 && subC.num_elems() == 1) {
|
||||
unsigned s = *subC.begin();
|
||||
wcore& c_s = m_cores[s];
|
||||
c_s.m_lower = refine(c_s.m_R, c_s.m_mid);
|
||||
c_s.m_mid = div(c_s.m_lower + c_s.m_upper, rational(2));
|
||||
}
|
||||
else {
|
||||
wcore c_s;
|
||||
rational delta = min_of_delta(subC);
|
||||
rational lower = sum_of_lower(subC);
|
||||
union_Rs(subC, c_s.m_R);
|
||||
r = mk_fresh();
|
||||
relax(subC, soft, c_s.m_R, delta);
|
||||
c_s.m_lower = refine(c_s.m_R, lower + delta - rational(1));
|
||||
c_s.m_upper = rational::one();
|
||||
c_s.m_upper += sum_of_sigmas(c_s.m_R);
|
||||
c_s.m_mid = div(c_s.m_lower + c_s.m_upper, rational(2));
|
||||
c_s.m_r = r;
|
||||
m_asm_set.insert(r);
|
||||
subtract(m_cores, subC);
|
||||
m_relax2index.insert(r, m_cores.size());
|
||||
m_cores.push_back(c_s);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
m_lower = compute_lower();
|
||||
}
|
||||
normalize_bounds();
|
||||
return l_true;
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
|
||||
void enable_soft_constraint(unsigned i) {
|
||||
expr_ref fml(m);
|
||||
expr* r = m_soft_aux[i].get();
|
||||
m_soft2index.insert(r, i);
|
||||
fml = m.mk_or(r, m_soft[i].get());
|
||||
m_soft_constraints.push_back(fml);
|
||||
m_asm_set.insert(r);
|
||||
SASSERT(m_weights[i].is_int());
|
||||
}
|
||||
|
||||
void assert_soft() {
|
||||
for (unsigned i = 0; i < m_soft_constraints.size(); ++i) {
|
||||
s().assert_expr(m_soft_constraints[i].get());
|
||||
}
|
||||
m_soft_constraints.reset();
|
||||
}
|
||||
|
||||
bool check_lazy_soft(svector<bool> const& assignment) {
|
||||
bool all_satisfied = true;
|
||||
for (unsigned i = 0; i < m_lazy_soft.size(); ++i) {
|
||||
unsigned j = m_lazy_soft[i];
|
||||
if (!assignment[j]) {
|
||||
enable_soft_constraint(j);
|
||||
m_lazy_soft[i] = m_lazy_soft.back();
|
||||
m_lazy_soft.pop_back();
|
||||
--i;
|
||||
all_satisfied = false;
|
||||
}
|
||||
}
|
||||
return all_satisfied;
|
||||
}
|
||||
|
||||
void normalize_bounds() {
|
||||
m_lower /= m_den;
|
||||
m_upper /= m_den;
|
||||
}
|
||||
|
||||
expr* mk_fresh() {
|
||||
expr* r = mk_fresh_bool("r");
|
||||
m_trail.push_back(r);
|
||||
return r;
|
||||
}
|
||||
|
||||
void update_assignment(svector<bool>& new_assignment) {
|
||||
expr_ref val(m);
|
||||
rational new_upper(0);
|
||||
model_ref model;
|
||||
new_assignment.reset();
|
||||
s().get_model(model);
|
||||
for (unsigned i = 0; i < m_soft.size(); ++i) {
|
||||
VERIFY(model->eval(m_soft[i].get(), val));
|
||||
new_assignment.push_back(m.is_true(val));
|
||||
if (!new_assignment[i]) {
|
||||
new_upper += m_weights[i];
|
||||
}
|
||||
}
|
||||
if (new_upper < m_upper) {
|
||||
m_upper = new_upper;
|
||||
m_model = model;
|
||||
m_assignment.reset();
|
||||
m_assignment.append(new_assignment);
|
||||
}
|
||||
}
|
||||
|
||||
void update_sigmas() {
|
||||
for (unsigned i = 0; i < m_cores.size(); ++i) {
|
||||
wcore& c_i = m_cores[i];
|
||||
unsigned_vector const& R = c_i.m_R;
|
||||
c_i.m_upper.reset();
|
||||
for (unsigned j = 0; j < R.size(); ++j) {
|
||||
unsigned r_j = R[j];
|
||||
if (!m_assignment[r_j]) {
|
||||
c_i.m_upper += m_weights[r_j];
|
||||
m_sigmas[r_j] = m_weights[r_j];
|
||||
}
|
||||
else {
|
||||
m_sigmas[r_j].reset();
|
||||
}
|
||||
}
|
||||
c_i.m_mid = div(c_i.m_lower + c_i.m_upper, rational(2));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Minimum of two (positive) numbers. Zero is treated as +infinity.
|
||||
*/
|
||||
rational min_z(rational const& a, rational const& b) {
|
||||
if (a.is_zero()) return b;
|
||||
if (b.is_zero()) return a;
|
||||
if (a < b) return a;
|
||||
return b;
|
||||
}
|
||||
|
||||
rational min_of_delta(uint_set const& subC) {
|
||||
rational delta(0);
|
||||
for (uint_set::iterator it = subC.begin(); it != subC.end(); ++it) {
|
||||
unsigned j = *it;
|
||||
wcore const& core = m_cores[j];
|
||||
rational new_delta = rational(1) + core.m_upper - core.m_mid;
|
||||
SASSERT(new_delta.is_pos());
|
||||
delta = min_z(delta, new_delta);
|
||||
}
|
||||
return delta;
|
||||
}
|
||||
|
||||
rational sum_of_lower(uint_set const& subC) {
|
||||
rational lower(0);
|
||||
for (uint_set::iterator it = subC.begin(); it != subC.end(); ++it) {
|
||||
lower += m_cores[*it].m_lower;
|
||||
}
|
||||
return lower;
|
||||
}
|
||||
|
||||
rational sum_of_sigmas(unsigned_vector const& R) {
|
||||
rational sum(0);
|
||||
for (unsigned i = 0; i < R.size(); ++i) {
|
||||
sum += m_sigmas[R[i]];
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
void union_Rs(uint_set const& subC, unsigned_vector& R) {
|
||||
for (uint_set::iterator it = subC.begin(); it != subC.end(); ++it) {
|
||||
R.append(m_cores[*it].m_R);
|
||||
}
|
||||
}
|
||||
rational compute_lower() {
|
||||
rational result(0);
|
||||
for (unsigned i = 0; i < m_cores.size(); ++i) {
|
||||
result += m_cores[i].m_lower;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
void subtract(vector<wcore>& cores, uint_set const& subC) {
|
||||
unsigned j = 0;
|
||||
for (unsigned i = 0; i < cores.size(); ++i) {
|
||||
if (subC.contains(i)) {
|
||||
m_asm_set.remove(cores[i].m_r);
|
||||
}
|
||||
else {
|
||||
if (j != i) {
|
||||
cores[j] = cores[i];
|
||||
}
|
||||
++j;
|
||||
}
|
||||
}
|
||||
cores.resize(j);
|
||||
for (unsigned i = 0; i < cores.size(); ++i) {
|
||||
m_relax2index.insert(cores[i].m_r, i);
|
||||
}
|
||||
}
|
||||
void core2indices(ptr_vector<expr> const& core, uint_set& subC, uint_set& soft) {
|
||||
for (unsigned i = 0; i < core.size(); ++i) {
|
||||
unsigned j;
|
||||
expr* a;
|
||||
VERIFY(m.is_not(core[i], a));
|
||||
if (m_relax2index.find(a, j)) {
|
||||
subC.insert(j);
|
||||
}
|
||||
else {
|
||||
VERIFY(m_soft2index.find(a, j));
|
||||
soft.insert(j);
|
||||
}
|
||||
}
|
||||
}
|
||||
rational refine(unsigned_vector const& idx, rational v) {
|
||||
return v + rational(1);
|
||||
}
|
||||
void relax(uint_set& subC, uint_set& soft, unsigned_vector& R, rational& delta) {
|
||||
for (uint_set::iterator it = soft.begin(); it != soft.end(); ++it) {
|
||||
R.push_back(*it);
|
||||
delta = min_z(delta, m_weights[*it]);
|
||||
m_asm_set.remove(m_soft_aux[*it].get());
|
||||
}
|
||||
}
|
||||
void assert_cores() {
|
||||
for (unsigned i = 0; i < m_cores.size(); ++i) {
|
||||
assert_core(m_cores[i]);
|
||||
}
|
||||
}
|
||||
void assert_core(wcore const& core) {
|
||||
expr_ref fml(m);
|
||||
vector<rational> ws;
|
||||
ptr_vector<expr> rs;
|
||||
rational w(0);
|
||||
for (unsigned j = 0; j < core.m_R.size(); ++j) {
|
||||
unsigned idx = core.m_R[j];
|
||||
ws.push_back(m_weights[idx]);
|
||||
w += ws.back();
|
||||
rs.push_back(m_soft_aux[idx].get());
|
||||
}
|
||||
w.neg();
|
||||
w += core.m_mid;
|
||||
ws.push_back(w);
|
||||
rs.push_back(core.m_r);
|
||||
fml = pb.mk_le(ws.size(), ws.c_ptr(), rs.c_ptr(), core.m_mid);
|
||||
s().assert_expr(fml);
|
||||
}
|
||||
void display(std::ostream& out) {
|
||||
out << "[" << m_lower << ":" << m_upper << "]\n";
|
||||
s().display(out);
|
||||
out << "\n";
|
||||
for (unsigned i = 0; i < m_cores.size(); ++i) {
|
||||
wcore const& c = m_cores[i];
|
||||
out << mk_pp(c.m_r, m) << ": ";
|
||||
for (unsigned j = 0; j < c.m_R.size(); ++j) {
|
||||
out << c.m_R[j] << " (" << m_sigmas[c.m_R[j]] << ") ";
|
||||
}
|
||||
out << "[" << c.m_lower << ":" << c.m_mid << ":" << c.m_upper << "]\n";
|
||||
}
|
||||
for (unsigned i = 0; i < m_soft.size(); ++i) {
|
||||
out << mk_pp(m_soft[i].get(), m) << " " << m_weights[i] << "\n";
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
maxsmt_solver_base* opt::mk_bcd2(ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft) {
|
||||
return alloc(bcd2, s, m, p, ws, soft);
|
||||
}
|
||||
|
||||
}
|
29
src/opt/bcd2.h
Normal file
29
src/opt/bcd2.h
Normal file
|
@ -0,0 +1,29 @@
|
|||
/*++
|
||||
Copyright (c) 2014 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
bcd2.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Bcd2 based MaxSAT.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2014-4-17
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
|
||||
#ifndef _BCD2_H_
|
||||
#define _BCD2_H_
|
||||
|
||||
#include "maxsmt.h"
|
||||
|
||||
namespace opt {
|
||||
maxsmt_solver_base* mk_bcd2(ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft);
|
||||
}
|
||||
#endif
|
429
src/opt/dual_maxres.cpp
Normal file
429
src/opt/dual_maxres.cpp
Normal file
|
@ -0,0 +1,429 @@
|
|||
/*++
|
||||
Copyright (c) 2014 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
dual_maxsres.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
MaxRes (weighted) max-sat algorithm
|
||||
based on dual refinement of bounds.
|
||||
|
||||
MaxRes is a core-guided approach to maxsat.
|
||||
DualMaxRes extends the core-guided approach by
|
||||
leveraging both cores and satisfying assignments
|
||||
to make progress towards a maximal satisfying assignment.
|
||||
|
||||
Given a (minimal) unsatisfiable core for the soft
|
||||
constraints the approach works like max-res.
|
||||
Given a (maximal) satisfying subset of the soft constraints
|
||||
the approach updates the upper bound if the current assignment
|
||||
improves the current best assignmet.
|
||||
Furthermore, take the soft constraints that are complements
|
||||
to the current satisfying subset.
|
||||
E.g, if F are the hard constraints and
|
||||
s1,...,sn, t1,..., tm are the soft clauses and
|
||||
F & s1 & ... & sn is satisfiable, then the complement
|
||||
of of the current satisfying subset is t1, .., tm.
|
||||
Update the hard constraint:
|
||||
F := F & (t1 or ... or tm)
|
||||
Replace t1, .., tm by m-1 new soft clauses:
|
||||
t1 & t2, t3 & (t1 or t2), t4 & (t1 or t2 or t3), ..., tn & (t1 or ... t_{n-1})
|
||||
Claim:
|
||||
If k of these soft clauses are satisfied, then k+1 of
|
||||
the previous soft clauses are satisfied.
|
||||
If k of these soft clauses are false in the satisfying assignment
|
||||
for the updated F, then k of the original soft clauses are also false
|
||||
under the assignment.
|
||||
In summary: any assignment to the new clauses that satsfies F has the
|
||||
same cost.
|
||||
Claim:
|
||||
If there are no satisfying assignments to F, then the current best assignment
|
||||
is the optimum.
|
||||
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2014-27-7
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
|
||||
#include "solver.h"
|
||||
#include "maxsmt.h"
|
||||
#include "dual_maxres.h"
|
||||
#include "ast_pp.h"
|
||||
#include "mus.h"
|
||||
|
||||
using namespace opt;
|
||||
|
||||
|
||||
class dual_maxres : public maxsmt_solver_base {
|
||||
expr_ref_vector m_B;
|
||||
expr_ref_vector m_asms;
|
||||
obj_map<expr, rational> m_asm2weight;
|
||||
ptr_vector<expr> m_new_core;
|
||||
mus m_mus;
|
||||
expr_ref_vector m_trail;
|
||||
|
||||
public:
|
||||
dual_maxres(ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft):
|
||||
maxsmt_solver_base(s, m, p, ws, soft),
|
||||
m_B(m), m_asms(m),
|
||||
m_mus(m_s, m),
|
||||
m_trail(m)
|
||||
{
|
||||
}
|
||||
|
||||
virtual ~dual_maxres() {}
|
||||
|
||||
bool is_literal(expr* l) {
|
||||
return
|
||||
is_uninterp_const(l) ||
|
||||
(m.is_not(l, l) && is_uninterp_const(l));
|
||||
}
|
||||
|
||||
void add_soft(expr* e, rational const& w) {
|
||||
TRACE("opt", tout << mk_pp(e, m) << "\n";);
|
||||
expr_ref asum(m), fml(m);
|
||||
if (is_literal(e)) {
|
||||
asum = e;
|
||||
}
|
||||
else {
|
||||
asum = mk_fresh_bool("soft");
|
||||
fml = m.mk_iff(asum, e);
|
||||
m_s->assert_expr(fml);
|
||||
}
|
||||
new_assumption(asum, w);
|
||||
m_upper += w;
|
||||
}
|
||||
|
||||
void new_assumption(expr* e, rational const& w) {
|
||||
m_asm2weight.insert(e, w);
|
||||
m_asms.push_back(e);
|
||||
m_trail.push_back(e);
|
||||
}
|
||||
|
||||
lbool operator()() {
|
||||
solver::scoped_push _sc(*m_s.get());
|
||||
init();
|
||||
init_local();
|
||||
lbool was_sat = l_false;
|
||||
ptr_vector<expr> soft_compl;
|
||||
while (m_lower < m_upper) {
|
||||
TRACE("opt",
|
||||
display_vec(tout, m_asms.size(), m_asms.c_ptr());
|
||||
m_s->display(tout);
|
||||
tout << "\n";
|
||||
display(tout);
|
||||
);
|
||||
lbool is_sat = m_s->check_sat(0, 0);
|
||||
if (m_cancel) {
|
||||
return l_undef;
|
||||
}
|
||||
if (is_sat == l_true) {
|
||||
was_sat = l_true;
|
||||
is_sat = extend_model(soft_compl);
|
||||
switch (is_sat) {
|
||||
case l_undef:
|
||||
break;
|
||||
case l_false:
|
||||
is_sat = process_unsat(soft_compl);
|
||||
break;
|
||||
case l_true:
|
||||
is_sat = process_sat(soft_compl);
|
||||
break;
|
||||
}
|
||||
}
|
||||
switch (is_sat) {
|
||||
case l_undef:
|
||||
return l_undef;
|
||||
case l_false:
|
||||
m_lower = m_upper;
|
||||
return was_sat;
|
||||
case l_true:
|
||||
break;
|
||||
}
|
||||
}
|
||||
return was_sat;
|
||||
}
|
||||
|
||||
lbool process_sat(ptr_vector<expr>& softc) {
|
||||
expr_ref fml(m), tmp(m);
|
||||
TRACE("opt", display_vec(tout << "softc: ", softc.size(), softc.c_ptr()););
|
||||
SASSERT(!softc.empty()); // we should somehow stop if all soft are satisfied.
|
||||
if (softc.empty()) {
|
||||
return l_false;
|
||||
}
|
||||
|
||||
remove_soft(softc);
|
||||
rational w = split_soft(softc);
|
||||
TRACE("opt", display_vec(tout << " softc: ", softc.size(), softc.c_ptr()););
|
||||
dual_max_resolve(softc, w);
|
||||
return l_true;
|
||||
}
|
||||
|
||||
lbool process_unsat(ptr_vector<expr>& core) {
|
||||
expr_ref fml(m);
|
||||
TRACE("opt", display_vec(tout << "core: ", core.size(), core.c_ptr()););
|
||||
SASSERT(!core.empty());
|
||||
lbool is_sat = minimize_core(core);
|
||||
SASSERT(!core.empty());
|
||||
if (core.empty()) {
|
||||
return l_false;
|
||||
}
|
||||
if (is_sat != l_true) {
|
||||
return is_sat;
|
||||
}
|
||||
remove_soft(core);
|
||||
rational w = split_soft(core);
|
||||
TRACE("opt", display_vec(tout << "minimized core: ", core.size(), core.c_ptr()););
|
||||
max_resolve(core, w);
|
||||
m_lower += w;
|
||||
IF_VERBOSE(1, verbose_stream() <<
|
||||
"(opt.dual_max_res [" << m_lower << ":" << m_upper << "])\n";);
|
||||
|
||||
return is_sat;
|
||||
}
|
||||
|
||||
//
|
||||
// The hard constraints are satisfiable.
|
||||
// Extend the current model to satisfy as many
|
||||
// soft constraints as possible until either
|
||||
// hitting an unsatisfiable subset of size < 1/2*#assumptions,
|
||||
// or producing a maximal satisfying assignment exceeding
|
||||
// number of soft constraints >= 1/2*#assumptions.
|
||||
// In both cases, soft constraints that are not satisfied
|
||||
// is <= 1/2*#assumptions. In this way, the new modified assumptions
|
||||
// account for at most 1/2 of the current assumptions.
|
||||
// The core reduction algorithms also need to take into account
|
||||
// at most 1/2 of the assumptions for minimization.
|
||||
//
|
||||
|
||||
lbool extend_model(ptr_vector<expr>& soft_compl) {
|
||||
ptr_vector<expr> asms;
|
||||
model_ref mdl;
|
||||
expr_ref tmp(m);
|
||||
m_s->get_model(mdl);
|
||||
unsigned num_true = update_model(mdl, asms, soft_compl);
|
||||
for (unsigned j = 0; j < m_asms.size(); ++j) {
|
||||
expr* fml = m_asms[j].get();
|
||||
VERIFY(mdl->eval(fml, tmp));
|
||||
if (m.is_false(tmp)) {
|
||||
asms.push_back(fml);
|
||||
lbool is_sat = m_s->check_sat(asms.size(), asms.c_ptr());
|
||||
asms.pop_back();
|
||||
switch (is_sat) {
|
||||
case l_false:
|
||||
if (num_true*2 < m_asms.size()) {
|
||||
soft_compl.reset();
|
||||
m_s->get_unsat_core(soft_compl);
|
||||
return l_false;
|
||||
}
|
||||
break;
|
||||
case l_true:
|
||||
m_s->get_model(mdl);
|
||||
num_true = update_model(mdl, asms, soft_compl);
|
||||
break;
|
||||
case l_undef:
|
||||
return l_undef;
|
||||
}
|
||||
}
|
||||
}
|
||||
return l_true;
|
||||
}
|
||||
|
||||
unsigned update_model(model_ref& mdl, ptr_vector<expr>& asms, ptr_vector<expr>& soft_compl) {
|
||||
expr_ref tmp(m);
|
||||
asms.reset();
|
||||
soft_compl.reset();
|
||||
rational weight = m_lower;
|
||||
unsigned num_true = 0;
|
||||
for (unsigned i = 0; i < m_asms.size(); ++i) {
|
||||
expr* fml = m_asms[i].get();
|
||||
VERIFY(mdl->eval(fml, tmp));
|
||||
SASSERT(m.is_false(tmp) || m.is_true(tmp));
|
||||
if (m.is_false(tmp)) {
|
||||
weight += get_weight(fml);
|
||||
soft_compl.push_back(fml);
|
||||
}
|
||||
else {
|
||||
++num_true;
|
||||
asms.push_back(fml);
|
||||
}
|
||||
}
|
||||
if (weight < m_upper) {
|
||||
m_upper = weight;
|
||||
m_model = mdl;
|
||||
for (unsigned i = 0; i < m_soft.size(); ++i) {
|
||||
expr_ref tmp(m);
|
||||
VERIFY(m_model->eval(m_soft[i].get(), tmp));
|
||||
m_assignment[i] = m.is_true(tmp);
|
||||
}
|
||||
IF_VERBOSE(1, verbose_stream() <<
|
||||
"(opt.dual_max_res [" << m_lower << ":" << m_upper << "])\n";);
|
||||
}
|
||||
return num_true;
|
||||
}
|
||||
|
||||
lbool minimize_core(ptr_vector<expr>& core) {
|
||||
m_mus.reset();
|
||||
for (unsigned i = 0; i < core.size(); ++i) {
|
||||
m_mus.add_soft(core[i], 1, core.c_ptr() + i);
|
||||
}
|
||||
unsigned_vector mus_idx;
|
||||
lbool is_sat = m_mus.get_mus(mus_idx);
|
||||
if (is_sat != l_true) {
|
||||
return is_sat;
|
||||
}
|
||||
m_new_core.reset();
|
||||
for (unsigned i = 0; i < mus_idx.size(); ++i) {
|
||||
m_new_core.push_back(core[mus_idx[i]]);
|
||||
}
|
||||
core.reset();
|
||||
core.append(m_new_core);
|
||||
return l_true;
|
||||
}
|
||||
|
||||
rational get_weight(expr* e) {
|
||||
return m_asm2weight.find(e);
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// find the minimal weight.
|
||||
// soft clauses with weight larger than the minimal weight
|
||||
// are (re)added as soft clauses where the weight is updated
|
||||
// to subtract the minimal weight.
|
||||
//
|
||||
rational split_soft(ptr_vector<expr> const& soft) {
|
||||
|
||||
SASSERT(!soft.empty());
|
||||
rational w = get_weight(soft[0]);
|
||||
for (unsigned i = 1; i < soft.size(); ++i) {
|
||||
rational w2 = get_weight(soft[i]);
|
||||
if (w2 < w) {
|
||||
w = w2;
|
||||
}
|
||||
}
|
||||
// add fresh soft clauses for weights that are above w.
|
||||
for (unsigned i = 0; i < soft.size(); ++i) {
|
||||
rational w2 = get_weight(soft[i]);
|
||||
if (w2 > w) {
|
||||
new_assumption(soft[i], w2 - w);
|
||||
}
|
||||
}
|
||||
return w;
|
||||
}
|
||||
|
||||
void display_vec(std::ostream& out, unsigned sz, expr* const* args) {
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
out << mk_pp(args[i], m) << " ";
|
||||
}
|
||||
out << "\n";
|
||||
}
|
||||
|
||||
void display(std::ostream& out) {
|
||||
for (unsigned i = 0; i < m_asms.size(); ++i) {
|
||||
expr* a = m_asms[i].get();
|
||||
out << mk_pp(a, m) << " : " << get_weight(a) << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
void max_resolve(ptr_vector<expr>& core, rational const& w) {
|
||||
SASSERT(!core.empty());
|
||||
expr_ref fml(m), asum(m);
|
||||
app_ref cls(m), d(m);
|
||||
m_B.reset();
|
||||
m_B.append(core.size(), core.c_ptr());
|
||||
d = m.mk_true();
|
||||
//
|
||||
// d_0 := true
|
||||
// d_i := b_{i-1} and d_{i-1} for i = 1...sz-1
|
||||
// soft (b_i or !d_i)
|
||||
// == (b_i or !(!b_{i-1} or d_{i-1}))
|
||||
// == (b_i or b_0 & b_1 & ... & b_{i-1})
|
||||
//
|
||||
// Soft constraint is satisfied if previous soft constraint
|
||||
// holds or if it is the first soft constraint to fail.
|
||||
//
|
||||
// Soundness of this rule can be established using MaxRes
|
||||
//
|
||||
for (unsigned i = 1; i < core.size(); ++i) {
|
||||
expr* b_i = m_B[i-1].get();
|
||||
expr* b_i1 = m_B[i].get();
|
||||
d = m.mk_and(b_i, d);
|
||||
asum = mk_fresh_bool("a");
|
||||
cls = m.mk_or(b_i1, d);
|
||||
fml = m.mk_iff(asum, cls);
|
||||
new_assumption(asum, w);
|
||||
m_s->assert_expr(fml);
|
||||
}
|
||||
fml = m.mk_not(m.mk_and(m_B.size(), m_B.c_ptr()));
|
||||
m_s->assert_expr(fml);
|
||||
}
|
||||
|
||||
// satc are the complements of a (maximal) satisfying assignment.
|
||||
void dual_max_resolve(ptr_vector<expr>& satc, rational const& w) {
|
||||
SASSERT(!satc.empty());
|
||||
expr_ref fml(m), asum(m);
|
||||
app_ref cls(m), d(m);
|
||||
m_B.reset();
|
||||
m_B.append(satc.size(), satc.c_ptr());
|
||||
d = m.mk_false();
|
||||
//
|
||||
// d_0 := false
|
||||
// d_i := b_{i-1} or d_{i-1} for i = 1...sz-1
|
||||
// soft (b_i and d_i)
|
||||
// == (b_i and (b_0 or b_1 or ... or b_{i-1}))
|
||||
//
|
||||
for (unsigned i = 1; i < satc.size(); ++i) {
|
||||
expr* b_i = m_B[i-1].get();
|
||||
expr* b_i1 = m_B[i].get();
|
||||
d = m.mk_or(b_i, d);
|
||||
asum = mk_fresh_bool("a");
|
||||
cls = m.mk_and(b_i1, d);
|
||||
fml = m.mk_iff(asum, cls);
|
||||
new_assumption(asum, w);
|
||||
m_s->assert_expr(fml);
|
||||
}
|
||||
fml = m.mk_or(m_B.size(), m_B.c_ptr());
|
||||
m_s->assert_expr(fml);
|
||||
}
|
||||
|
||||
void remove_soft(ptr_vector<expr> const& soft) {
|
||||
for (unsigned i = 0; i < m_asms.size(); ++i) {
|
||||
if (soft.contains(m_asms[i].get())) {
|
||||
m_asms[i] = m_asms.back();
|
||||
m_asms.pop_back();
|
||||
--i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
virtual void set_cancel(bool f) {
|
||||
maxsmt_solver_base::set_cancel(f);
|
||||
m_mus.set_cancel(f);
|
||||
}
|
||||
|
||||
void init_local() {
|
||||
m_upper.reset();
|
||||
m_lower.reset();
|
||||
m_asm2weight.reset();
|
||||
m_trail.reset();
|
||||
for (unsigned i = 0; i < m_soft.size(); ++i) {
|
||||
add_soft(m_soft[i].get(), m_weights[i]);
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
opt::maxsmt_solver_base* opt::mk_dual_maxres(
|
||||
ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft) {
|
||||
return alloc(dual_maxres, m, s, p, ws, soft);
|
||||
}
|
||||
|
32
src/opt/dual_maxres.h
Normal file
32
src/opt/dual_maxres.h
Normal file
|
@ -0,0 +1,32 @@
|
|||
/*++
|
||||
Copyright (c) 2014 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
dual_maxsres.h
|
||||
|
||||
Abstract:
|
||||
|
||||
MaxRes (weighted) max-sat algorithm
|
||||
based on dual refinement of bounds.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2014-27-7
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
|
||||
#ifndef _DUAL_MAXRES_H_
|
||||
#define _DUAL_MAXRES_H_
|
||||
|
||||
namespace opt {
|
||||
maxsmt_solver_base* mk_dual_maxres(
|
||||
ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft);
|
||||
|
||||
|
||||
};
|
||||
|
||||
#endif
|
561
src/opt/maxhs.cpp
Normal file
561
src/opt/maxhs.cpp
Normal file
|
@ -0,0 +1,561 @@
|
|||
/*++
|
||||
Copyright (c) 2014 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
maxhs.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
maxhs based MaxSAT.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2014-4-17
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
#include "optsmt.h"
|
||||
#include "hitting_sets.h"
|
||||
#include "stopwatch.h"
|
||||
#include "ast_pp.h"
|
||||
#include "model_smt2_pp.h"
|
||||
#include "uint_set.h"
|
||||
#include "maxhs.h"
|
||||
|
||||
namespace opt {
|
||||
|
||||
class scoped_stopwatch {
|
||||
double& m_time;
|
||||
stopwatch m_watch;
|
||||
public:
|
||||
scoped_stopwatch(double& time): m_time(time) {
|
||||
m_watch.start();
|
||||
}
|
||||
~scoped_stopwatch() {
|
||||
m_watch.stop();
|
||||
m_time += m_watch.get_seconds();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// ----------------------------------
|
||||
// MaxSatHS+MSS
|
||||
// variant of MaxSAT-HS (Algorithm 9)
|
||||
// that also refines upper bound during progressive calls
|
||||
// to the underlying optimization solver for the soft constraints.
|
||||
//
|
||||
|
||||
class maxhs : public maxsmt_solver_base {
|
||||
struct stats {
|
||||
stats() { reset(); }
|
||||
void reset() { memset(this, 0, sizeof(*this)); }
|
||||
unsigned m_num_iterations;
|
||||
unsigned m_num_core_reductions_success;
|
||||
unsigned m_num_core_reductions_failure;
|
||||
unsigned m_num_model_expansions_success;
|
||||
unsigned m_num_model_expansions_failure;
|
||||
double m_core_reduction_time;
|
||||
double m_model_expansion_time;
|
||||
double m_aux_sat_time;
|
||||
double m_disjoint_cores_time;
|
||||
};
|
||||
|
||||
hitting_sets m_hs;
|
||||
expr_ref_vector m_aux; // auxiliary (indicator) variables.
|
||||
obj_map<expr, unsigned> m_aux2index; // expr |-> index
|
||||
unsigned_vector m_core_activity; // number of times soft constraint is used in a core.
|
||||
svector<bool> m_seed; // clause selected in current model.
|
||||
svector<bool> m_aux_active; // active soft clauses.
|
||||
ptr_vector<expr> m_asms; // assumptions (over aux)
|
||||
stats m_stats;
|
||||
bool m_at_lower_bound;
|
||||
|
||||
|
||||
public:
|
||||
maxhs(opt_solver* s, ast_manager& m, params_ref& p, vector<rational> const& ws, expr_ref_vector const& soft):
|
||||
maxsmt_solver_base(s, m, p, ws, soft),
|
||||
m_aux(m),
|
||||
m_at_lower_bound(false) {
|
||||
}
|
||||
virtual ~maxhs() {}
|
||||
|
||||
virtual void set_cancel(bool f) {
|
||||
maxsmt_solver_base::set_cancel(f);
|
||||
m_hs.set_cancel(f);
|
||||
}
|
||||
|
||||
virtual void collect_statistics(statistics& st) const {
|
||||
maxsmt_solver_base::collect_statistics(st);
|
||||
m_hs.collect_statistics(st);
|
||||
st.update("maxhs-num-iterations", m_stats.m_num_iterations);
|
||||
st.update("maxhs-num-core-reductions-n", m_stats.m_num_core_reductions_failure);
|
||||
st.update("maxhs-num-core-reductions-y", m_stats.m_num_core_reductions_success);
|
||||
st.update("maxhs-num-model-expansions-n", m_stats.m_num_model_expansions_failure);
|
||||
st.update("maxhs-num-model-expansions-y", m_stats.m_num_model_expansions_success);
|
||||
st.update("maxhs-core-reduction-time", m_stats.m_core_reduction_time);
|
||||
st.update("maxhs-model-expansion-time", m_stats.m_model_expansion_time);
|
||||
st.update("maxhs-aux-sat-time", m_stats.m_aux_sat_time);
|
||||
st.update("maxhs-disj-core-time", m_stats.m_disjoint_cores_time);
|
||||
}
|
||||
|
||||
lbool operator()() {
|
||||
ptr_vector<expr> hs;
|
||||
init();
|
||||
init_local();
|
||||
if (!disjoint_cores(hs)) {
|
||||
return l_undef;
|
||||
}
|
||||
seed2assumptions();
|
||||
while (m_lower < m_upper) {
|
||||
++m_stats.m_num_iterations;
|
||||
IF_VERBOSE(1, verbose_stream() <<
|
||||
"(opt.maxhs [" << m_lower << ":" << m_upper << "])\n";);
|
||||
TRACE("opt", tout << "(maxhs [" << m_lower << ":" << m_upper << "])\n";);
|
||||
if (m_cancel) {
|
||||
return l_undef;
|
||||
}
|
||||
|
||||
lbool core_found = generate_cores(hs);
|
||||
switch(core_found) {
|
||||
case l_undef:
|
||||
return l_undef;
|
||||
case l_true: {
|
||||
lbool is_sat = next_seed();
|
||||
switch(is_sat) {
|
||||
case l_true:
|
||||
seed2hs(false, hs);
|
||||
break;
|
||||
case l_false:
|
||||
TRACE("opt", tout << "no more seeds\n";);
|
||||
IF_VERBOSE(1, verbose_stream() << "(opt.maxhs.no-more-seeds)\n";);
|
||||
m_lower = m_upper;
|
||||
return l_true;
|
||||
case l_undef:
|
||||
return l_undef;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case l_false:
|
||||
IF_VERBOSE(1, verbose_stream() << "(opt.maxhs.no-more-cores)\n";);
|
||||
TRACE("opt", tout << "no more cores\n";);
|
||||
m_lower = m_upper;
|
||||
return l_true;
|
||||
}
|
||||
}
|
||||
return l_true;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
unsigned num_soft() const { return m_soft.size(); }
|
||||
|
||||
void init_local() {
|
||||
unsigned sz = num_soft();
|
||||
app_ref fml(m), obj(m);
|
||||
expr_ref_vector sum(m);
|
||||
m_asms.reset();
|
||||
m_seed.reset();
|
||||
m_aux.reset();
|
||||
m_aux_active.reset();
|
||||
m_aux2index.reset();
|
||||
m_core_activity.reset();
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
bool tt = is_true(m_model, m_soft[i].get());
|
||||
m_seed.push_back(tt);
|
||||
m_aux. push_back(mk_fresh(m.mk_bool_sort()));
|
||||
m_aux_active.push_back(false);
|
||||
m_core_activity.push_back(0);
|
||||
m_aux2index.insert(m_aux.back(), i);
|
||||
if (tt) {
|
||||
m_asms.push_back(m_aux.back());
|
||||
ensure_active(i);
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned i = 0; i < m_weights.size(); ++i) {
|
||||
m_hs.add_weight(m_weights[i]);
|
||||
}
|
||||
TRACE("opt", print_seed(tout););
|
||||
}
|
||||
|
||||
|
||||
void hs2seed(ptr_vector<expr> const& hs) {
|
||||
for (unsigned i = 0; i < num_soft(); ++i) {
|
||||
m_seed[i] = true;
|
||||
}
|
||||
for (unsigned i = 0; i < hs.size(); ++i) {
|
||||
m_seed[m_aux2index.find(hs[i])] = false;
|
||||
}
|
||||
TRACE("opt",
|
||||
print_asms(tout << "hitting set: ", hs);
|
||||
print_seed(tout););
|
||||
}
|
||||
|
||||
void seed2hs(bool pos, ptr_vector<expr>& hs) {
|
||||
hs.reset();
|
||||
for (unsigned i = 0; i < num_soft(); ++i) {
|
||||
if (pos == m_seed[i]) {
|
||||
hs.push_back(m_aux[i].get());
|
||||
}
|
||||
}
|
||||
TRACE("opt",
|
||||
print_asms(tout << "hitting set: ", hs);
|
||||
print_seed(tout););
|
||||
|
||||
}
|
||||
|
||||
void seed2assumptions() {
|
||||
seed2hs(true, m_asms);
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// Find disjoint cores for soft constraints.
|
||||
//
|
||||
bool disjoint_cores(ptr_vector<expr>& hs) {
|
||||
scoped_stopwatch _sw(m_stats.m_disjoint_cores_time);
|
||||
m_asms.reset();
|
||||
svector<bool> active(num_soft(), true);
|
||||
rational lower(0);
|
||||
update_assumptions(active, lower, hs);
|
||||
SASSERT(lower.is_zero());
|
||||
while (true) {
|
||||
lbool is_sat = s().check_sat(m_asms.size(), m_asms.c_ptr());
|
||||
switch (is_sat) {
|
||||
case l_true:
|
||||
if (lower > m_lower) {
|
||||
m_lower = lower;
|
||||
}
|
||||
return true;
|
||||
case l_false:
|
||||
if (!shrink()) return false;
|
||||
block_up();
|
||||
update_assumptions(active, lower, hs);
|
||||
break;
|
||||
case l_undef:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void update_assumptions(svector<bool>& active, rational& lower, ptr_vector<expr>& hs) {
|
||||
rational arg_min(0);
|
||||
expr* e = 0;
|
||||
for (unsigned i = 0; i < m_asms.size(); ++i) {
|
||||
unsigned index = m_aux2index.find(m_asms[i]);
|
||||
active[index] = false;
|
||||
if (arg_min.is_zero() || arg_min > m_weights[index]) {
|
||||
arg_min = m_weights[index];
|
||||
e = m_asms[i];
|
||||
}
|
||||
}
|
||||
if (e) {
|
||||
hs.push_back(e);
|
||||
lower += arg_min;
|
||||
}
|
||||
m_asms.reset();
|
||||
for (unsigned i = 0; i < num_soft(); ++i) {
|
||||
if (active[i]) {
|
||||
m_asms.push_back(m_aux[i].get());
|
||||
ensure_active(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Auxiliary Algorithm 10 for producing cores.
|
||||
//
|
||||
lbool generate_cores(ptr_vector<expr>& hs) {
|
||||
bool core = !m_at_lower_bound;
|
||||
while (true) {
|
||||
hs2seed(hs);
|
||||
lbool is_sat = check_subset();
|
||||
switch(is_sat) {
|
||||
case l_undef:
|
||||
return l_undef;
|
||||
case l_true:
|
||||
if (!grow()) return l_undef;
|
||||
block_down();
|
||||
return core?l_true:l_false;
|
||||
case l_false:
|
||||
core = true;
|
||||
if (!shrink()) return l_undef;
|
||||
block_up();
|
||||
find_non_optimal_hitting_set(hs);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct lt_activity {
|
||||
maxhs& hs;
|
||||
lt_activity(maxhs& hs):hs(hs) {}
|
||||
bool operator()(expr* a, expr* b) const {
|
||||
unsigned w1 = hs.m_core_activity[hs.m_aux2index.find(a)];
|
||||
unsigned w2 = hs.m_core_activity[hs.m_aux2index.find(b)];
|
||||
return w1 < w2;
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
// produce the non-optimal hitting set by using the 10% heuristic.
|
||||
// of most active cores constraints.
|
||||
// m_asms contains the current core.
|
||||
//
|
||||
void find_non_optimal_hitting_set(ptr_vector<expr>& hs) {
|
||||
std::sort(m_asms.begin(), m_asms.end(), lt_activity(*this));
|
||||
for (unsigned i = m_asms.size(); i > 9*m_asms.size()/10;) {
|
||||
--i;
|
||||
hs.push_back(m_asms[i]);
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// retrieve the next seed that satisfies state of hs.
|
||||
// state of hs must be satisfiable before optimization is called.
|
||||
//
|
||||
lbool next_seed() {
|
||||
scoped_stopwatch _sw(m_stats.m_aux_sat_time);
|
||||
TRACE("opt", tout << "\n";);
|
||||
|
||||
// min c_i*(not x_i) for x_i are soft clauses.
|
||||
// max c_i*x_i for x_i are soft clauses
|
||||
|
||||
m_at_lower_bound = false;
|
||||
|
||||
lbool is_sat = m_hs.compute_upper();
|
||||
|
||||
if (is_sat == l_true) {
|
||||
is_sat = m_hs.compute_lower();
|
||||
}
|
||||
if (is_sat == l_true) {
|
||||
m_at_lower_bound = m_hs.get_upper() == m_hs.get_lower();
|
||||
if (m_hs.get_lower() > m_lower) {
|
||||
m_lower = m_hs.get_lower();
|
||||
}
|
||||
for (unsigned i = 0; i < num_soft(); ++i) {
|
||||
m_seed[i] = is_active(i) && !m_hs.get_value(i);
|
||||
}
|
||||
TRACE("opt", print_seed(tout););
|
||||
}
|
||||
return is_sat;
|
||||
}
|
||||
|
||||
//
|
||||
// check assignment returned by HS with the original
|
||||
// hard constraints.
|
||||
//
|
||||
lbool check_subset() {
|
||||
TRACE("opt", tout << "\n";);
|
||||
m_asms.reset();
|
||||
for (unsigned i = 0; i < num_soft(); ++i) {
|
||||
if (m_seed[i]) {
|
||||
m_asms.push_back(m_aux[i].get());
|
||||
ensure_active(i);
|
||||
}
|
||||
}
|
||||
return s().check_sat(m_asms.size(), m_asms.c_ptr());
|
||||
}
|
||||
|
||||
//
|
||||
// extend the current assignment to one that
|
||||
// satisfies as many soft constraints as possible.
|
||||
// update the upper bound based on this assignment
|
||||
//
|
||||
bool grow() {
|
||||
scoped_stopwatch _sw(m_stats.m_model_expansion_time);
|
||||
model_ref mdl;
|
||||
s().get_model(mdl);
|
||||
for (unsigned i = 0; i < num_soft(); ++i) {
|
||||
ensure_active(i);
|
||||
m_seed[i] = false;
|
||||
}
|
||||
for (unsigned i = 0; i < m_asms.size(); ++i) {
|
||||
m_seed[m_aux2index.find(m_asms[i])] = true;
|
||||
}
|
||||
|
||||
for (unsigned i = 0; i < num_soft(); ++i) {
|
||||
if (m_seed[i]) {
|
||||
// already an assumption
|
||||
}
|
||||
else if (is_true(mdl, m_soft[i].get())) {
|
||||
m_seed[i] = true;
|
||||
m_asms.push_back(m_aux[i].get());
|
||||
}
|
||||
else {
|
||||
m_asms.push_back(m_aux[i].get());
|
||||
lbool is_sat = s().check_sat(m_asms.size(), m_asms.c_ptr());
|
||||
switch(is_sat) {
|
||||
case l_undef:
|
||||
return false;
|
||||
case l_false:
|
||||
++m_stats.m_num_model_expansions_failure;
|
||||
m_asms.pop_back();
|
||||
break;
|
||||
case l_true:
|
||||
++m_stats.m_num_model_expansions_success;
|
||||
s().get_model(mdl);
|
||||
m_seed[i] = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
rational upper(0);
|
||||
for (unsigned i = 0; i < num_soft(); ++i) {
|
||||
if (!m_seed[i]) {
|
||||
upper += m_weights[i];
|
||||
}
|
||||
}
|
||||
if (upper < m_upper) {
|
||||
m_upper = upper;
|
||||
m_hs.set_upper(upper);
|
||||
m_model = mdl;
|
||||
m_assignment.reset();
|
||||
m_assignment.append(m_seed);
|
||||
TRACE("opt",
|
||||
tout << "new upper: " << m_upper << "\n";
|
||||
model_smt2_pp(tout, m, *(mdl.get()), 0););
|
||||
}
|
||||
DEBUG_CODE(
|
||||
for (unsigned i = 0; i < num_soft(); ++i) {
|
||||
SASSERT(is_true(mdl, m_soft[i].get()) == m_seed[i]);
|
||||
});
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
//
|
||||
// remove soft constraints from the current core.
|
||||
//
|
||||
bool shrink() {
|
||||
scoped_stopwatch _sw(m_stats.m_core_reduction_time);
|
||||
m_asms.reset();
|
||||
s().get_unsat_core(m_asms);
|
||||
TRACE("opt", print_asms(tout, m_asms););
|
||||
obj_map<expr, unsigned> asm2index;
|
||||
for (unsigned i = 0; i < m_asms.size(); ++i) {
|
||||
asm2index.insert(m_asms[i], i);
|
||||
}
|
||||
obj_map<expr, unsigned>::iterator it = asm2index.begin(), end = asm2index.end();
|
||||
for (; it != end; ++it) {
|
||||
unsigned i = it->m_value;
|
||||
if (i < m_asms.size()) {
|
||||
expr* tmp = m_asms[i];
|
||||
expr* back = m_asms.back();
|
||||
m_asms[i] = back;
|
||||
m_asms.pop_back();
|
||||
lbool is_sat = s().check_sat(m_asms.size(), m_asms.c_ptr());
|
||||
TRACE("opt", tout << "checking: " << mk_pp(tmp, m) << ": " << is_sat << "\n";);
|
||||
switch(is_sat) {
|
||||
case l_true:
|
||||
++m_stats.m_num_core_reductions_failure;
|
||||
// put back literal into core
|
||||
m_asms.push_back(back);
|
||||
m_asms[i] = tmp;
|
||||
break;
|
||||
case l_false:
|
||||
// update the core
|
||||
m_asms.reset();
|
||||
++m_stats.m_num_core_reductions_success;
|
||||
s().get_unsat_core(m_asms);
|
||||
TRACE("opt", print_asms(tout, m_asms););
|
||||
update_index(asm2index);
|
||||
break;
|
||||
case l_undef:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void print_asms(std::ostream& out, ptr_vector<expr> const& asms) {
|
||||
for (unsigned j = 0; j < asms.size(); ++j) {
|
||||
out << mk_pp(asms[j], m) << " ";
|
||||
}
|
||||
out << "\n";
|
||||
}
|
||||
|
||||
void print_seed(std::ostream& out) {
|
||||
out << "seed: ";
|
||||
for (unsigned i = 0; i < num_soft(); ++i) {
|
||||
out << (m_seed[i]?"1":"0");
|
||||
}
|
||||
out << "\n";
|
||||
}
|
||||
|
||||
//
|
||||
// must include some literal not from asms.
|
||||
// (furthermore, update upper bound constraint in HS)
|
||||
//
|
||||
void block_down() {
|
||||
uint_set indices;
|
||||
unsigned_vector c_indices;
|
||||
for (unsigned i = 0; i < m_asms.size(); ++i) {
|
||||
indices.insert(m_aux2index.find(m_asms[i]));
|
||||
}
|
||||
for (unsigned i = 0; i < num_soft(); ++i) {
|
||||
if (!indices.contains(i)) {
|
||||
c_indices.push_back(i);
|
||||
}
|
||||
}
|
||||
m_hs.add_exists_false(c_indices.size(), c_indices.c_ptr());
|
||||
}
|
||||
|
||||
// should exclude some literal from core.
|
||||
void block_up() {
|
||||
unsigned_vector indices;
|
||||
for (unsigned i = 0; i < m_asms.size(); ++i) {
|
||||
unsigned index = m_aux2index.find(m_asms[i]);
|
||||
m_core_activity[index]++;
|
||||
indices.push_back(index);
|
||||
}
|
||||
m_hs.add_exists_true(indices.size(), indices.c_ptr());
|
||||
}
|
||||
|
||||
void update_index(obj_map<expr, unsigned>& asm2index) {
|
||||
obj_map<expr, unsigned>::iterator it = asm2index.begin(), end = asm2index.end();
|
||||
for (; it != end; ++it) {
|
||||
it->m_value = UINT_MAX;
|
||||
}
|
||||
for (unsigned i = 0; i < m_asms.size(); ++i) {
|
||||
asm2index.find(m_asms[i]) = i;
|
||||
}
|
||||
}
|
||||
|
||||
app_ref mk_fresh(sort* s) {
|
||||
app_ref r(m);
|
||||
r = m.mk_fresh_const("r", s);
|
||||
m_mc->insert(r->get_decl());
|
||||
return r;
|
||||
}
|
||||
|
||||
bool is_true(model_ref& mdl, expr* e) {
|
||||
expr_ref val(m);
|
||||
VERIFY(mdl->eval(e, val));
|
||||
return m.is_true(val);
|
||||
}
|
||||
|
||||
bool is_active(unsigned i) const {
|
||||
return m_aux_active[i];
|
||||
}
|
||||
|
||||
void ensure_active(unsigned i) {
|
||||
if (!is_active(i)) {
|
||||
expr_ref fml(m);
|
||||
fml = m.mk_implies(m_aux[i].get(), m_soft[i].get());
|
||||
s().assert_expr(fml);
|
||||
m_aux_active[i] = true;
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
maxsmt_solver_base* opt::mk_maxhs(ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft) {
|
||||
return alloc(maxhs, s, m, p, ws, soft);
|
||||
}
|
||||
|
||||
}
|
29
src/opt/maxhs.h
Normal file
29
src/opt/maxhs.h
Normal file
|
@ -0,0 +1,29 @@
|
|||
/*++
|
||||
Copyright (c) 2014 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
maxhs.h
|
||||
|
||||
Abstract:
|
||||
|
||||
HS-max based MaxSAT.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2014-4-17
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
|
||||
#ifndef _HS_MAX_H_
|
||||
#define _HS_MAX_H_
|
||||
|
||||
#include "maxsmt.h"
|
||||
|
||||
namespace opt {
|
||||
maxsmt_solver_base* mk_maxhs(ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft);
|
||||
}
|
||||
#endif
|
|
@ -135,7 +135,7 @@ public:
|
|||
m_lower += w;
|
||||
break;
|
||||
}
|
||||
IF_VERBOSE(1, verbose_stream() << "(opt.max_res lower: " << m_lower << ")\n";);
|
||||
IF_VERBOSE(1, verbose_stream() << "(opt.max_res [" << m_lower << ":" << m_upper << "])\n";);
|
||||
}
|
||||
return l_true;
|
||||
}
|
||||
|
|
63
src/opt/maxsls.cpp
Normal file
63
src/opt/maxsls.cpp
Normal file
|
@ -0,0 +1,63 @@
|
|||
/*++
|
||||
Copyright (c) 2013 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
maxsls.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
Weighted SLS MAXSAT module
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2014-4-17
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
|
||||
#include "maxsls.h"
|
||||
#include "ast_pp.h"
|
||||
#include "model_smt2_pp.h"
|
||||
|
||||
|
||||
namespace opt {
|
||||
|
||||
class sls : public maxsmt_solver_base {
|
||||
public:
|
||||
sls(opt_solver* s, ast_manager& m, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft):
|
||||
maxsmt_solver_base(s, m, p, ws, soft) {
|
||||
}
|
||||
virtual ~sls() {}
|
||||
lbool operator()() {
|
||||
IF_VERBOSE(1, verbose_stream() << "(opt.sls)\n";);
|
||||
enable_bvsat();
|
||||
enable_sls();
|
||||
init();
|
||||
lbool is_sat = s().check_sat(0, 0);
|
||||
if (is_sat == l_true) {
|
||||
s().get_model(m_model);
|
||||
m_upper.reset();
|
||||
for (unsigned i = 0; i < m_soft.size(); ++i) {
|
||||
expr_ref tmp(m);
|
||||
m_model->eval(m_soft[i].get(), tmp, true);
|
||||
m_assignment[i] = m.is_true(tmp);
|
||||
if (!m_assignment[i]) {
|
||||
m_upper += m_weights[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
return is_sat;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
maxsmt_solver_base* opt::mk_sls(ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft) {
|
||||
return alloc(sls, s, m, p, ws, soft);
|
||||
}
|
||||
|
||||
|
||||
};
|
36
src/opt/maxsls.h
Normal file
36
src/opt/maxsls.h
Normal file
|
@ -0,0 +1,36 @@
|
|||
/*++
|
||||
Copyright (c) 2013 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
maxsls.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Weighted SLS MAXSAT module
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2014-4-17
|
||||
|
||||
Notes:
|
||||
|
||||
Partial, one-round SLS optimizer. Finds the first
|
||||
local maximum given a resource bound and returns.
|
||||
|
||||
--*/
|
||||
#ifndef _OPT_SLS_MAX_SAT_H_
|
||||
#define _OPT_SLS_MAX_SAT_H_
|
||||
|
||||
#include "maxsmt.h"
|
||||
|
||||
namespace opt {
|
||||
|
||||
|
||||
maxsmt_solver_base* mk_sls(ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft);
|
||||
|
||||
|
||||
};
|
||||
|
||||
#endif
|
|
@ -22,7 +22,13 @@ Notes:
|
|||
#include "fu_malik.h"
|
||||
#include "core_maxsat.h"
|
||||
#include "maxres.h"
|
||||
#include "weighted_maxsat.h"
|
||||
#include "dual_maxres.h"
|
||||
#include "maxhs.h"
|
||||
#include "bcd2.h"
|
||||
#include "wpm2.h"
|
||||
#include "pbmax.h"
|
||||
#include "wmax.h"
|
||||
#include "maxsls.h"
|
||||
#include "ast_pp.h"
|
||||
#include "opt_params.hpp"
|
||||
#include "pb_decl_plugin.h"
|
||||
|
@ -173,6 +179,9 @@ namespace opt {
|
|||
else if (m_maxsat_engine == symbol("maxres")) {
|
||||
m_msolver = mk_maxres(m, s, m_params, m_weights, m_soft_constraints);
|
||||
}
|
||||
else if (m_maxsat_engine == symbol("dual-maxres")) {
|
||||
m_msolver = mk_dual_maxres(m, s, m_params, m_weights, m_soft_constraints);
|
||||
}
|
||||
else if (m_maxsat_engine == symbol("pbmax")) {
|
||||
m_msolver = mk_pbmax(m, s, m_params, m_weights, m_soft_constraints);
|
||||
}
|
||||
|
@ -182,8 +191,8 @@ namespace opt {
|
|||
else if (m_maxsat_engine == symbol("bcd2")) {
|
||||
m_msolver = mk_bcd2(m, s, m_params, m_weights, m_soft_constraints);
|
||||
}
|
||||
else if (m_maxsat_engine == symbol("hsmax")) {
|
||||
m_msolver = mk_hsmax(m, s, m_params, m_weights, m_soft_constraints);
|
||||
else if (m_maxsat_engine == symbol("maxhs")) {
|
||||
m_msolver = mk_maxhs(m, s, m_params, m_weights, m_soft_constraints);
|
||||
}
|
||||
else if (m_maxsat_engine == symbol("sls")) {
|
||||
// NB: this is experimental one-round version of SLS
|
||||
|
@ -196,7 +205,7 @@ namespace opt {
|
|||
m_msolver = alloc(fu_malik, m, *m_s, m_soft_constraints);
|
||||
}
|
||||
else {
|
||||
if (m_maxsat_engine != symbol::null) {
|
||||
if (m_maxsat_engine != symbol::null && m_maxsat_engine != symbol("wmax")) {
|
||||
warning_msg("solver %s is not recognized, using default 'wmax'",
|
||||
m_maxsat_engine.str().c_str());
|
||||
}
|
||||
|
|
|
@ -39,8 +39,11 @@ struct mus::imp {
|
|||
expr_ref_vector m_vars;
|
||||
obj_map<expr, unsigned> m_var2idx;
|
||||
volatile bool m_cancel;
|
||||
bool m_rmr_enabled;
|
||||
|
||||
imp(ref<solver>& s, ast_manager& m): m_s(s), m(m), m_cls2expr(m), m_vars(m), m_cancel(false) {}
|
||||
imp(ref<solver>& s, ast_manager& m):
|
||||
m_s(s), m(m), m_cls2expr(m), m_vars(m), m_cancel(false),
|
||||
m_rmr_enabled(false) {}
|
||||
|
||||
void reset() {
|
||||
m_cls2expr.reset();
|
||||
|
@ -133,10 +136,12 @@ struct mus::imp {
|
|||
assumptions.push_back(cls);
|
||||
mus.push_back(cls_id);
|
||||
extract_model(model);
|
||||
sz = core.size();
|
||||
core.append(mus);
|
||||
rmr(core, mus, model);
|
||||
core.resize(sz);
|
||||
if (m_rmr_enabled) {
|
||||
sz = core.size();
|
||||
core.append(mus);
|
||||
rmr(core, mus, model);
|
||||
core.resize(sz);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
core_exprs.reset();
|
||||
|
|
98
src/opt/pbmax.cpp
Normal file
98
src/opt/pbmax.cpp
Normal file
|
@ -0,0 +1,98 @@
|
|||
/*++
|
||||
Copyright (c) 2014 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
pbmax.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
pb based MaxSAT.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2014-4-17
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
#include "pbmax.h"
|
||||
#include "pb_decl_plugin.h"
|
||||
#include "uint_set.h"
|
||||
#include "ast_pp.h"
|
||||
#include "model_smt2_pp.h"
|
||||
|
||||
|
||||
namespace opt {
|
||||
|
||||
// ----------------------------------
|
||||
// incrementally add pseudo-boolean
|
||||
// lower bounds.
|
||||
|
||||
class pbmax : public maxsmt_solver_base {
|
||||
public:
|
||||
pbmax(opt_solver* s, ast_manager& m, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft):
|
||||
maxsmt_solver_base(s, m, p, ws, soft) {
|
||||
}
|
||||
|
||||
virtual ~pbmax() {}
|
||||
|
||||
lbool operator()() {
|
||||
enable_bvsat();
|
||||
enable_sls();
|
||||
|
||||
TRACE("opt", s().display(tout); tout << "\n";
|
||||
for (unsigned i = 0; i < m_soft.size(); ++i) {
|
||||
tout << mk_pp(m_soft[i].get(), m) << " " << m_weights[i] << "\n";
|
||||
}
|
||||
);
|
||||
pb_util u(m);
|
||||
expr_ref fml(m), val(m);
|
||||
app_ref b(m);
|
||||
expr_ref_vector nsoft(m);
|
||||
init();
|
||||
for (unsigned i = 0; i < m_soft.size(); ++i) {
|
||||
nsoft.push_back(mk_not(m_soft[i].get()));
|
||||
}
|
||||
lbool is_sat = l_true;
|
||||
while (l_true == is_sat) {
|
||||
TRACE("opt", s().display(tout<<"looping\n");
|
||||
model_smt2_pp(tout << "\n", m, *(m_model.get()), 0););
|
||||
m_upper.reset();
|
||||
for (unsigned i = 0; i < m_soft.size(); ++i) {
|
||||
VERIFY(m_model->eval(nsoft[i].get(), val));
|
||||
m_assignment[i] = !m.is_true(val);
|
||||
if (!m_assignment[i]) {
|
||||
m_upper += m_weights[i];
|
||||
}
|
||||
}
|
||||
IF_VERBOSE(1, verbose_stream() << "(opt.pb [" << m_lower << ":" << m_upper << "])\n";);
|
||||
TRACE("opt", tout << "new upper: " << m_upper << "\n";);
|
||||
|
||||
fml = u.mk_lt(nsoft.size(), m_weights.c_ptr(), nsoft.c_ptr(), m_upper);
|
||||
solver::scoped_push _scope2(s());
|
||||
s().assert_expr(fml);
|
||||
is_sat = s().check_sat(0,0);
|
||||
if (m_cancel) {
|
||||
is_sat = l_undef;
|
||||
}
|
||||
if (is_sat == l_true) {
|
||||
s().get_model(m_model);
|
||||
}
|
||||
}
|
||||
if (is_sat == l_false) {
|
||||
is_sat = l_true;
|
||||
m_lower = m_upper;
|
||||
}
|
||||
TRACE("opt", tout << "lower: " << m_lower << "\n";);
|
||||
return is_sat;
|
||||
}
|
||||
};
|
||||
|
||||
maxsmt_solver_base* opt::mk_pbmax(ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft) {
|
||||
return alloc(pbmax, s, m, p, ws, soft);
|
||||
}
|
||||
|
||||
}
|
30
src/opt/pbmax.h
Normal file
30
src/opt/pbmax.h
Normal file
|
@ -0,0 +1,30 @@
|
|||
/*++
|
||||
Copyright (c) 2014 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
pbmax.h
|
||||
|
||||
Abstract:
|
||||
|
||||
MaxSAT based on pb theory.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2014-4-17
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
|
||||
#ifndef _PBMAX_H_
|
||||
#define _PBMAX_H_
|
||||
|
||||
#include "maxsmt.h"
|
||||
|
||||
namespace opt {
|
||||
maxsmt_solver_base* mk_pbmax(ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft);
|
||||
|
||||
}
|
||||
#endif
|
File diff suppressed because it is too large
Load diff
|
@ -1,51 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2013 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
weighted_maxsat.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Weighted MAXSAT module
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2014-4-17
|
||||
|
||||
Notes:
|
||||
|
||||
Takes solver with hard constraints added.
|
||||
Returns a maximal satisfying subset of weighted soft_constraints
|
||||
that are still consistent with the solver state.
|
||||
|
||||
--*/
|
||||
#ifndef _OPT_WEIGHTED_MAX_SAT_H_
|
||||
#define _OPT_WEIGHTED_MAX_SAT_H_
|
||||
|
||||
#include "opt_solver.h"
|
||||
#include "maxsmt.h"
|
||||
|
||||
namespace opt {
|
||||
|
||||
maxsmt_solver_base* mk_bcd2(ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft);
|
||||
|
||||
maxsmt_solver_base* mk_hsmax(ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft);
|
||||
|
||||
maxsmt_solver_base* mk_pbmax(ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft);
|
||||
|
||||
maxsmt_solver_base* mk_wpm2(ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft);
|
||||
|
||||
maxsmt_solver_base* mk_sls(ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft);
|
||||
|
||||
maxsmt_solver_base* mk_wmax(ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft);
|
||||
|
||||
};
|
||||
|
||||
#endif
|
130
src/opt/wmax.cpp
Normal file
130
src/opt/wmax.cpp
Normal file
|
@ -0,0 +1,130 @@
|
|||
/*++
|
||||
Copyright (c) 2014 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
wmax.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
Theory based MaxSAT.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2014-4-17
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
#include "wmax.h"
|
||||
#include "uint_set.h"
|
||||
#include "ast_pp.h"
|
||||
#include "model_smt2_pp.h"
|
||||
#include "smt_theory.h"
|
||||
#include "smt_context.h"
|
||||
#include "theory_wmaxsat.h"
|
||||
|
||||
|
||||
namespace opt {
|
||||
class maxsmt_solver_wbase : public maxsmt_solver_base {
|
||||
smt::context& ctx;
|
||||
public:
|
||||
maxsmt_solver_wbase(opt_solver* s, ast_manager& m, smt::context& ctx, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft):
|
||||
maxsmt_solver_base(s, m, p, ws, soft), ctx(ctx) {}
|
||||
~maxsmt_solver_wbase() {}
|
||||
|
||||
class scoped_ensure_theory {
|
||||
smt::theory_wmaxsat* m_wth;
|
||||
public:
|
||||
scoped_ensure_theory(maxsmt_solver_wbase& s) {
|
||||
m_wth = s.ensure_theory();
|
||||
}
|
||||
~scoped_ensure_theory() {
|
||||
m_wth->reset();
|
||||
}
|
||||
smt::theory_wmaxsat& operator()() { return *m_wth; }
|
||||
};
|
||||
|
||||
smt::theory_wmaxsat* ensure_theory() {
|
||||
smt::theory_wmaxsat* wth = get_theory();
|
||||
if (wth) {
|
||||
wth->reset();
|
||||
}
|
||||
else {
|
||||
wth = alloc(smt::theory_wmaxsat, m, m_mc);
|
||||
ctx.register_plugin(wth);
|
||||
}
|
||||
return wth;
|
||||
}
|
||||
smt::theory_wmaxsat* get_theory() const {
|
||||
smt::theory_id th_id = m.get_family_id("weighted_maxsat");
|
||||
smt::theory* th = ctx.get_theory(th_id);
|
||||
if (th) {
|
||||
return dynamic_cast<smt::theory_wmaxsat*>(th);
|
||||
}
|
||||
else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// ----------------------------------------------------------
|
||||
// weighted max-sat using a custom theory solver for max-sat.
|
||||
// NB. it is quite similar to pseudo-Boolean propagation.
|
||||
|
||||
|
||||
class wmax : public maxsmt_solver_wbase {
|
||||
public:
|
||||
wmax(opt_solver* s, ast_manager& m, smt::context& ctx, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft):
|
||||
maxsmt_solver_wbase(s, m, ctx, p, ws, soft) {}
|
||||
virtual ~wmax() {}
|
||||
|
||||
lbool operator()() {
|
||||
TRACE("opt", tout << "weighted maxsat\n";);
|
||||
scoped_ensure_theory wth(*this);
|
||||
solver::scoped_push _s(s());
|
||||
lbool is_sat = l_true;
|
||||
bool was_sat = false;
|
||||
for (unsigned i = 0; i < m_soft.size(); ++i) {
|
||||
wth().assert_weighted(m_soft[i].get(), m_weights[i]);
|
||||
}
|
||||
solver::scoped_push __s(s());
|
||||
while (l_true == is_sat) {
|
||||
IF_VERBOSE(1, verbose_stream() << "(opt.wmax [" << m_lower << ":" << m_upper << "])\n";);
|
||||
is_sat = s().check_sat(0,0);
|
||||
if (m_cancel) {
|
||||
is_sat = l_undef;
|
||||
}
|
||||
if (is_sat == l_true) {
|
||||
if (wth().is_optimal()) {
|
||||
m_upper = wth().get_min_cost();
|
||||
s().get_model(m_model);
|
||||
}
|
||||
expr_ref fml = wth().mk_block();
|
||||
s().assert_expr(fml);
|
||||
was_sat = true;
|
||||
}
|
||||
}
|
||||
if (was_sat) {
|
||||
wth().get_assignment(m_assignment);
|
||||
}
|
||||
if (is_sat == l_false && was_sat) {
|
||||
is_sat = l_true;
|
||||
}
|
||||
m_upper = wth().get_min_cost();
|
||||
if (is_sat == l_true) {
|
||||
m_lower = m_upper;
|
||||
}
|
||||
TRACE("opt", tout << "min cost: " << m_upper << "\n";);
|
||||
return is_sat;
|
||||
}
|
||||
};
|
||||
|
||||
maxsmt_solver_base* opt::mk_wmax(ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft) {
|
||||
return alloc(wmax, s, m, s->get_context(), p, ws, soft);
|
||||
}
|
||||
|
||||
}
|
30
src/opt/wmax.h
Normal file
30
src/opt/wmax.h
Normal file
|
@ -0,0 +1,30 @@
|
|||
/*++
|
||||
Copyright (c) 2014 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
wmax.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Theory Solver based MaxSAT.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2014-4-17
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
|
||||
#ifndef _WMAX_H_
|
||||
#define _WMAX_H_
|
||||
|
||||
#include "maxsmt.h"
|
||||
|
||||
namespace opt {
|
||||
maxsmt_solver_base* mk_wmax(ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft);
|
||||
|
||||
}
|
||||
#endif
|
251
src/opt/wpm2.cpp
Normal file
251
src/opt/wpm2.cpp
Normal file
|
@ -0,0 +1,251 @@
|
|||
/*++
|
||||
Copyright (c) 2014 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
wpm2.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
wpn2 based MaxSAT.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2014-4-17
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
#include "wpm2.h"
|
||||
#include "pbmax.h"
|
||||
#include "pb_decl_plugin.h"
|
||||
#include "uint_set.h"
|
||||
#include "ast_pp.h"
|
||||
#include "model_smt2_pp.h"
|
||||
|
||||
|
||||
namespace opt {
|
||||
|
||||
// ------------------------------------------------------
|
||||
// AAAI 2010
|
||||
class wpm2 : public maxsmt_solver_base {
|
||||
scoped_ptr<maxsmt_solver_base> maxs;
|
||||
public:
|
||||
wpm2(opt_solver* s, ast_manager& m, maxsmt_solver_base* _maxs, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft):
|
||||
maxsmt_solver_base(s, m, p, ws, soft), maxs(_maxs) {
|
||||
}
|
||||
|
||||
virtual ~wpm2() {}
|
||||
|
||||
lbool operator()() {
|
||||
enable_sls();
|
||||
IF_VERBOSE(1, verbose_stream() << "(opt.wpm2)\n";);
|
||||
solver::scoped_push _s(s());
|
||||
pb_util u(m);
|
||||
app_ref fml(m), a(m), b(m), c(m);
|
||||
expr_ref val(m);
|
||||
expr_ref_vector block(m), ans(m), al(m), am(m);
|
||||
obj_map<expr, unsigned> ans_index;
|
||||
vector<rational> amk;
|
||||
vector<uint_set> sc;
|
||||
init();
|
||||
for (unsigned i = 0; i < m_soft.size(); ++i) {
|
||||
rational w = m_weights[i];
|
||||
|
||||
b = mk_fresh_bool("b");
|
||||
block.push_back(b);
|
||||
expr* bb = b;
|
||||
|
||||
a = mk_fresh_bool("a");
|
||||
ans.push_back(a);
|
||||
ans_index.insert(a, i);
|
||||
fml = m.mk_or(m_soft[i].get(), b, m.mk_not(a));
|
||||
s().assert_expr(fml);
|
||||
|
||||
c = mk_fresh_bool("c");
|
||||
fml = m.mk_implies(c, u.mk_le(1,&w,&bb,rational(0)));
|
||||
s().assert_expr(fml);
|
||||
|
||||
sc.push_back(uint_set());
|
||||
sc.back().insert(i);
|
||||
am.push_back(c);
|
||||
amk.push_back(rational(0));
|
||||
}
|
||||
|
||||
while (true) {
|
||||
expr_ref_vector asms(m);
|
||||
ptr_vector<expr> core;
|
||||
asms.append(ans);
|
||||
asms.append(am);
|
||||
lbool is_sat = s().check_sat(asms.size(), asms.c_ptr());
|
||||
TRACE("opt",
|
||||
tout << "\nassumptions: ";
|
||||
for (unsigned i = 0; i < asms.size(); ++i) {
|
||||
tout << mk_pp(asms[i].get(), m) << " ";
|
||||
}
|
||||
tout << "\n" << is_sat << "\n";
|
||||
tout << "upper: " << m_upper << "\n";
|
||||
tout << "lower: " << m_lower << "\n";
|
||||
if (is_sat == l_true) {
|
||||
model_ref mdl;
|
||||
s().get_model(mdl);
|
||||
model_smt2_pp(tout, m, *(mdl.get()), 0);
|
||||
});
|
||||
|
||||
if (m_cancel && is_sat != l_false) {
|
||||
is_sat = l_undef;
|
||||
}
|
||||
if (is_sat == l_true) {
|
||||
m_upper = m_lower;
|
||||
s().get_model(m_model);
|
||||
for (unsigned i = 0; i < block.size(); ++i) {
|
||||
VERIFY(m_model->eval(m_soft[i].get(), val));
|
||||
TRACE("opt", tout << mk_pp(block[i].get(), m) << " " << val << "\n";);
|
||||
m_assignment[i] = m.is_true(val);
|
||||
}
|
||||
}
|
||||
if (is_sat != l_false) {
|
||||
return is_sat;
|
||||
}
|
||||
s().get_unsat_core(core);
|
||||
if (core.empty()) {
|
||||
return l_false;
|
||||
}
|
||||
TRACE("opt",
|
||||
tout << "core: ";
|
||||
for (unsigned i = 0; i < core.size(); ++i) {
|
||||
tout << mk_pp(core[i],m) << " ";
|
||||
}
|
||||
tout << "\n";);
|
||||
uint_set A;
|
||||
for (unsigned i = 0; i < core.size(); ++i) {
|
||||
unsigned j;
|
||||
if (ans_index.find(core[i], j)) {
|
||||
A.insert(j);
|
||||
}
|
||||
}
|
||||
if (A.empty()) {
|
||||
return l_false;
|
||||
}
|
||||
uint_set B;
|
||||
rational k(0);
|
||||
rational old_lower(m_lower);
|
||||
for (unsigned i = 0; i < sc.size(); ++i) {
|
||||
uint_set t(sc[i]);
|
||||
t &= A;
|
||||
if (!t.empty()) {
|
||||
B |= sc[i];
|
||||
k += amk[i];
|
||||
m_lower -= amk[i];
|
||||
sc[i] = sc.back();
|
||||
sc.pop_back();
|
||||
am[i] = am.back();
|
||||
am.pop_back();
|
||||
amk[i] = amk.back();
|
||||
amk.pop_back();
|
||||
--i;
|
||||
}
|
||||
}
|
||||
vector<rational> ws;
|
||||
expr_ref_vector bs(m);
|
||||
for (unsigned i = 0; i < m_soft.size(); ++i) {
|
||||
if (B.contains(i)) {
|
||||
ws.push_back(m_weights[i]);
|
||||
bs.push_back(block[i].get());
|
||||
}
|
||||
}
|
||||
TRACE("opt", tout << "at most bound: " << k << "\n";);
|
||||
is_sat = new_bound(al, ws, bs, k);
|
||||
if (is_sat != l_true) {
|
||||
return is_sat;
|
||||
}
|
||||
m_lower += k;
|
||||
SASSERT(m_lower > old_lower);
|
||||
TRACE("opt", tout << "new bound: " << m_lower << "\n";);
|
||||
expr_ref B_le_k(m), B_ge_k(m);
|
||||
B_le_k = u.mk_le(ws.size(), ws.c_ptr(), bs.c_ptr(), k);
|
||||
B_ge_k = u.mk_ge(ws.size(), ws.c_ptr(), bs.c_ptr(), k);
|
||||
s().assert_expr(B_ge_k);
|
||||
al.push_back(B_ge_k);
|
||||
IF_VERBOSE(1, verbose_stream() << "(opt.wpm2 [" << m_lower << ":" << m_upper << "])\n";);
|
||||
IF_VERBOSE(2, verbose_stream() << "New lower bound: " << B_ge_k << "\n";);
|
||||
|
||||
c = mk_fresh_bool("c");
|
||||
fml = m.mk_implies(c, B_le_k);
|
||||
s().assert_expr(fml);
|
||||
sc.push_back(B);
|
||||
am.push_back(c);
|
||||
amk.push_back(k);
|
||||
}
|
||||
}
|
||||
|
||||
virtual void set_cancel(bool f) {
|
||||
maxsmt_solver_base::set_cancel(f);
|
||||
maxs->set_cancel(f);
|
||||
}
|
||||
|
||||
virtual void collect_statistics(statistics& st) const {
|
||||
maxsmt_solver_base::collect_statistics(st);
|
||||
maxs->collect_statistics(st);
|
||||
}
|
||||
|
||||
private:
|
||||
lbool new_bound(expr_ref_vector const& al,
|
||||
vector<rational> const& ws,
|
||||
expr_ref_vector const& bs,
|
||||
rational& k) {
|
||||
pb_util u(m);
|
||||
expr_ref_vector al2(m);
|
||||
al2.append(al);
|
||||
// w_j*b_j > k
|
||||
al2.push_back(m.mk_not(u.mk_le(ws.size(), ws.c_ptr(), bs.c_ptr(), k)));
|
||||
return bound(al2, ws, bs, k);
|
||||
}
|
||||
|
||||
//
|
||||
// minimal k, such that al & w_j*b_j >= k is sat
|
||||
// minimal k, such that al & 3*x + 4*y >= k is sat
|
||||
// minimal k, such that al & (or (not x) w3) & (or (not y) w4)
|
||||
//
|
||||
lbool bound(expr_ref_vector const& al,
|
||||
vector<rational> const& ws,
|
||||
expr_ref_vector const& bs,
|
||||
rational& k) {
|
||||
expr_ref_vector nbs(m);
|
||||
opt_solver::scoped_push _sc(maxs->s());
|
||||
for (unsigned i = 0; i < al.size(); ++i) {
|
||||
maxs->add_hard(al[i]);
|
||||
}
|
||||
for (unsigned i = 0; i < bs.size(); ++i) {
|
||||
nbs.push_back(mk_not(bs[i]));
|
||||
}
|
||||
TRACE("opt",
|
||||
maxs->s().display(tout);
|
||||
tout << "\n";
|
||||
for (unsigned i = 0; i < bs.size(); ++i) {
|
||||
tout << mk_pp(bs[i], m) << " " << ws[i] << "\n";
|
||||
});
|
||||
maxs->init_soft(ws, nbs);
|
||||
lbool is_sat = maxs->s().check_sat(0,0);
|
||||
if (is_sat == l_true) {
|
||||
maxs->set_model();
|
||||
is_sat = (*maxs)();
|
||||
}
|
||||
SASSERT(maxs->get_lower() > k);
|
||||
k = maxs->get_lower();
|
||||
return is_sat;
|
||||
}
|
||||
};
|
||||
|
||||
maxsmt_solver_base* opt::mk_wpm2(ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft) {
|
||||
|
||||
ref<opt_solver> s0 = alloc(opt_solver, m, p, symbol());
|
||||
// initialize model.
|
||||
s0->check_sat(0,0);
|
||||
maxsmt_solver_base* s2 = mk_pbmax(m, s0.get(), p, ws, soft);
|
||||
return alloc(wpm2, s, m, s2, p, ws, soft);
|
||||
}
|
||||
|
||||
}
|
29
src/opt/wpm2.h
Normal file
29
src/opt/wpm2.h
Normal file
|
@ -0,0 +1,29 @@
|
|||
/*++
|
||||
Copyright (c) 2014 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
wpm2.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Wpm2 based MaxSAT.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2014-4-17
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
|
||||
#ifndef _WPM2_H_
|
||||
#define _WPM2_H_
|
||||
|
||||
#include "maxsmt.h"
|
||||
|
||||
namespace opt {
|
||||
maxsmt_solver_base* mk_wpm2(ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft);
|
||||
}
|
||||
#endif
|
|
@ -216,7 +216,6 @@ expr_ref theory_wmaxsat::mk_block() {
|
|||
scoped_mpq q(mgr);
|
||||
mgr.set(q, m_zmin_cost, m_den.to_mpq().numerator());
|
||||
rational rw = rational(q);
|
||||
IF_VERBOSE(1, verbose_stream() << "(wmaxsat with upper bound: " << rw << ")\n";);
|
||||
m_zmin_cost = weight;
|
||||
m_found_optimal = true;
|
||||
m_cost_save.reset();
|
||||
|
|
Loading…
Reference in a new issue