3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 12:28:44 +00:00

restructure maxsmt solvers, flatten weighted/non-weighted versions, fix bugs and simplify mus/max-res

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2014-07-23 23:53:03 +02:00
parent 5e9bf2ef53
commit 9f1b2ccfc4
10 changed files with 492 additions and 498 deletions

View file

@ -228,7 +228,7 @@ namespace opt {
inc_score(clause_id);
}
TRACE("opt", display(tout, j););
IF_VERBOSE(1, if (!sign) display(verbose_stream(), j););
IF_VERBOSE(2, if (!sign) display(verbose_stream(), j););
if (!sign && m_enable_simplex) {
add_simplex_row(!sign, sz, S);
}

View file

@ -1,7 +1,21 @@
/**
MaxRes (weighted) max-sat algorithm by Nina and Bacchus, AAAI 2014.
/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
maxsres.cpp
Abstract:
*/
MaxRes (weighted) max-sat algorithm by Nina and Bacchus, AAAI 2014.
Author:
Nikolaj Bjorner (nbjorner) 2014-20-7
Notes:
--*/
#include "solver.h"
#include "maxsmt.h"
@ -11,7 +25,8 @@
using namespace opt;
struct maxres::imp {
class maxres : public maxsmt_solver_base {
struct info {
app* m_cls;
rational m_weight;
@ -19,31 +34,25 @@ struct maxres::imp {
m_cls(cls), m_weight(w) {}
info(): m_cls(0) {}
};
ast_manager& m;
solver& s;
expr_ref_vector m_B;
expr_ref_vector m_D;
expr_ref_vector m_asms;
model_ref m_model;
expr_ref_vector m_soft_constraints;
volatile bool m_cancel;
rational m_lower;
rational m_upper;
obj_map<expr, info> m_asm2info;
ptr_vector<expr> m_new_core;
mus m_mus;
expr_ref_vector m_trail;
imp(ast_manager& m, solver& s, expr_ref_vector& soft_constraints, vector<rational> const& weights):
m(m), s(s), m_B(m), m_D(m), m_asms(m), m_soft_constraints(m),
m_cancel(false),
m_mus(s, m),
public:
maxres(ast_manager& m, opt_solver* s, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft):
maxsmt_solver_base(s, m, p, ws, soft),
m_B(m), m_asms(m),
m_mus(m_s, m),
m_trail(m)
{
// TBD: this introduces an assertion to solver.
init_soft(weights, soft_constraints);
}
virtual ~maxres() {}
bool is_literal(expr* l) {
return
is_uninterp_const(l) ||
@ -60,9 +69,9 @@ struct maxres::imp {
asum = e;
}
else {
asum = m.mk_fresh_const("soft", m.mk_bool_sort());
asum = mk_fresh_bool("soft");
fml = m.mk_iff(asum, e);
s.assert_expr(fml);
m_s->assert_expr(fml);
}
new_assumption(asum, cls, w);
m_upper += w;
@ -78,28 +87,35 @@ struct maxres::imp {
lbool operator()() {
expr_ref fml(m);
ptr_vector<expr> core;
solver::scoped_push _sc(s);
solver::scoped_push _sc(*m_s.get());
init();
init_local();
while (true) {
TRACE("opt",
display_vec(tout, m_asms.size(), m_asms.c_ptr());
s.display(tout);
m_s->display(tout);
tout << "\n";
display(tout);
);
lbool is_sat = s.check_sat(m_asms.size(), m_asms.c_ptr());
lbool is_sat = m_s->check_sat(m_asms.size(), m_asms.c_ptr());
if (m_cancel) {
return l_undef;
}
switch (is_sat) {
case l_true:
s.get_model(m_model);
m_s->get_model(m_model);
for (unsigned i = 0; i < m_soft.size(); ++i) {
expr_ref tmp(m);
VERIFY(m_model->eval(m_soft[i].get(), tmp));
m_assignment[i] = m.is_true(tmp);
}
m_upper = m_lower;
return l_true;
case l_undef:
return l_undef;
default:
core.reset();
s.get_unsat_core(core);
m_s->get_unsat_core(core);
TRACE("opt", display_vec(tout << "core: ", core.size(), core.c_ptr()););
SASSERT(!core.empty());
is_sat = minimize_core(core);
@ -115,7 +131,7 @@ struct maxres::imp {
TRACE("opt", display_vec(tout << "minimized core: ", core.size(), core.c_ptr()););
max_resolve(core, w);
fml = m.mk_not(m.mk_and(m_B.size(), m_B.c_ptr()));
s.assert_expr(fml);
m_s->assert_expr(fml);
m_lower += w;
break;
}
@ -192,31 +208,33 @@ struct maxres::imp {
void max_resolve(ptr_vector<expr>& core, rational const& w) {
SASSERT(!core.empty());
expr_ref fml(m), asum(m);
app_ref cls(m);
app_ref cls(m), d(m);
m_B.reset();
m_D.reset();
m_D.resize(core.size());
m_B.append(core.size(), core.c_ptr());
m_D[core.size()-1] = m.mk_false();
d = m.mk_true();
//
// d_{sz-1} := false
// d_i := (!core_{i+1} or d_{i+1}) for i = 0...sz-2
// soft (!d_i or core_i)
//
for (unsigned i = core.size()-1; i > 0; ) {
--i;
expr* d_i1 = m_D[i+1].get();
expr* b_i = m_B[i].get();
expr* b_i1 = m_B[i+1].get();
m_D[i] = m.mk_implies(b_i1, d_i1);
expr* d_i = m_D[i].get();
asum = m.mk_fresh_const("a", m.mk_bool_sort());
cls = m.mk_implies(d_i, b_i);
// d_0 := true
// d_i := b_{i-1} and d_{i-1} for i = 1...sz-1
// soft (b_i or !d_i)
// == (b_i or !(!b_{i-1} or d_{i-1}))
// == (b_i or b_0 & b_1 & ... & b_{i-1})
//
// Soft constraint is satisfied if previous soft constraint
// holds or if it is the first soft constraint to fail.
//
// Soundness of this rule can be established using MaxRes
//
for (unsigned i = 1; i < core.size(); ++i) {
expr* b_i = m_B[i-1].get();
expr* b_i1 = m_B[i].get();
d = m.mk_and(b_i, d);
asum = mk_fresh_bool("a");
cls = m.mk_or(b_i1, d);
fml = m.mk_iff(asum, cls);
cls = mk_cls(cls);
m_trail.push_back(cls);
new_assumption(asum, cls, w);
s.assert_expr(fml);
m_s->assert_expr(fml);
}
}
@ -262,77 +280,25 @@ struct maxres::imp {
}
}
rational get_lower() const {
return m_lower;
}
rational get_upper() const {
return m_upper;
}
bool get_assignment(unsigned index) const {
expr_ref tmp(m);
VERIFY(m_model->eval(m_soft_constraints[index], tmp));
return m.is_true(tmp);
}
void set_cancel(bool f) {
m_cancel = f;
virtual void set_cancel(bool f) {
maxsmt_solver_base::set_cancel(f);
m_mus.set_cancel(f);
}
void collect_statistics(statistics& st) const {
}
void get_model(model_ref& mdl) {
mdl = m_model;
}
void updt_params(params_ref& p) {
;
}
void init_soft(vector<rational> const& weights, expr_ref_vector const& soft) {
m_soft_constraints.reset();
void init_local() {
m_upper.reset();
m_lower.reset();
m_asm2info.reset();
m_trail.reset();
m_soft_constraints.append(soft);
for (unsigned i = 0; i < m_soft_constraints.size(); ++i) {
add_soft(m_soft_constraints[i].get(), weights[i]);
for (unsigned i = 0; i < m_soft.size(); ++i) {
add_soft(m_soft[i].get(), m_weights[i]);
}
}
};
maxres::maxres(ast_manager& m, solver& s, expr_ref_vector& soft_constraints, vector<rational> const& weights) {
m_imp = alloc(imp, m, s, soft_constraints, weights);
opt::maxsmt_solver_base* opt::mk_maxres(ast_manager& m, opt_solver* s, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft) {
return alloc(maxres, m, s, p, ws, soft);
}
maxres::~maxres() {
dealloc(m_imp);
}
lbool maxres::operator()() {
return (*m_imp)();
}
rational maxres::get_lower() const {
return m_imp->get_lower();
}
rational maxres::get_upper() const {
return m_imp->get_upper();
}
bool maxres::get_assignment(unsigned index) const {
return m_imp->get_assignment(index);
}
void maxres::set_cancel(bool f) {
m_imp->set_cancel(f);
}
void maxres::collect_statistics(statistics& st) const {
m_imp->collect_statistics(st);
}
void maxres::get_model(model_ref& mdl) {
m_imp->get_model(mdl);
}
void maxres::updt_params(params_ref& p) {
m_imp->updt_params(p);
}

View file

@ -1,18 +1,30 @@
/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
maxsres.h
Abstract:
MaxRes (weighted) max-sat algorithm by Nina and Bacchus, AAAI 2014.
Author:
Nikolaj Bjorner (nbjorner) 2014-20-7
Notes:
--*/
#ifndef _MAXRES_H_
#define _MAXRES_H_
namespace opt {
class maxres : public maxsmt_solver {
struct imp;
imp* m_imp;
public:
maxres(ast_manager& m, solver& s, expr_ref_vector& soft_constraints, vector<rational>const& weights);
~maxres();
virtual lbool operator()();
virtual rational get_lower() const;
virtual rational get_upper() const;
virtual bool get_assignment(unsigned index) const;
virtual void set_cancel(bool f);
virtual void collect_statistics(statistics& st) const;
virtual void get_model(model_ref& mdl);
virtual void updt_params(params_ref& p);
};
maxsmt_solver_base* mk_maxres(ast_manager& m, opt_solver* s, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft);
};
#endif

View file

@ -25,9 +25,140 @@ Notes:
#include "weighted_maxsat.h"
#include "ast_pp.h"
#include "opt_params.hpp"
#include "pb_decl_plugin.h"
#include "pb_sls.h"
#include "tactical.h"
#include "tactic.h"
#include "tactic2solver.h"
#include "qfbv_tactic.h"
#include "card2bv_tactic.h"
#include "uint_set.h"
#include "opt_sls_solver.h"
#include "pb_preprocess_tactic.h"
namespace opt {
void maxsmt_solver_base::updt_params(params_ref& p) {
m_params.copy(p);
s().updt_params(p);
opt_params _p(p);
m_enable_sat = _p.enable_sat();
m_enable_sls = _p.enable_sls();
}
void maxsmt_solver_base::init_soft(vector<rational> const& weights, expr_ref_vector const& soft) {
m_weights.reset();
m_soft.reset();
m_weights.append(weights);
m_soft.append(soft);
}
void maxsmt_solver_base::init() {
m_lower.reset();
m_upper.reset();
m_assignment.reset();
for (unsigned i = 0; i < m_weights.size(); ++i) {
expr_ref val(m);
VERIFY(m_model->eval(m_soft[i].get(), val));
m_assignment.push_back(m.is_true(val));
if (!m_assignment.back()) {
m_upper += m_weights[i];
}
}
TRACE("opt",
tout << m_upper << ": ";
for (unsigned i = 0; i < m_weights.size(); ++i) {
tout << (m_assignment[i]?"1":"0");
}
tout << "\n";);
}
expr* maxsmt_solver_base::mk_not(expr* e) {
if (m.is_not(e, e)) {
return e;
}
else {
return m.mk_not(e);
}
}
struct maxsmt_solver_base::is_bv {
struct found {};
ast_manager& m;
pb_util pb;
bv_util bv;
is_bv(ast_manager& m): m(m), pb(m), bv(m) {}
void operator()(var *) { throw found(); }
void operator()(quantifier *) { throw found(); }
void operator()(app *n) {
family_id fid = n->get_family_id();
if (fid != m.get_basic_family_id() &&
fid != pb.get_family_id() &&
fid != bv.get_family_id() &&
!is_uninterp_const(n)) {
throw found();
}
}
};
bool maxsmt_solver_base::probe_bv() {
expr_fast_mark1 visited;
is_bv proc(m);
try {
unsigned sz = s().get_num_assertions();
for (unsigned i = 0; i < sz; i++) {
quick_for_each_expr(proc, visited, s().get_assertion(i));
}
sz = m_soft.size();
for (unsigned i = 0; i < sz; ++i) {
quick_for_each_expr(proc, visited, m_soft[i].get());
}
}
catch (is_bv::found) {
return false;
}
return true;
}
void maxsmt_solver_base::enable_bvsat() {
if (m_enable_sat && !m_sat_enabled && probe_bv()) {
tactic_ref pb2bv = mk_card2bv_tactic(m, m_params);
tactic_ref bv2sat = mk_qfbv_tactic(m, m_params);
tactic_ref tac = and_then(pb2bv.get(), bv2sat.get());
solver* sat_solver = mk_tactic2solver(m, tac.get(), m_params);
unsigned sz = s().get_num_assertions();
for (unsigned i = 0; i < sz; ++i) {
sat_solver->assert_expr(s().get_assertion(i));
}
unsigned lvl = m_s->get_scope_level();
while (lvl > 0) { sat_solver->push(); --lvl; }
m_s = sat_solver;
m_sat_enabled = true;
}
}
void maxsmt_solver_base::enable_sls() {
if (m_enable_sls && !m_sls_enabled && probe_bv()) {
m_params.set_uint("restarts", 20);
unsigned lvl = m_s->get_scope_level();
sls_solver* sls = alloc(sls_solver, m, m_s.get(), m_soft, m_weights, m_params);
m_s = sls;
while (lvl > 0) { m_s->push(); --lvl; }
m_sls_enabled = true;
sls->opt(m_model);
}
}
app* maxsmt_solver_base::mk_fresh_bool(char const* name) {
app* result = m.mk_fresh_const(name, m.mk_bool_sort());
m_mc->insert(result->get_decl());
return result;
}
lbool maxsmt::operator()(opt_solver* s) {
lbool is_sat;
m_msolver = 0;
@ -39,26 +170,40 @@ namespace opt {
m_msolver = 0;
is_sat = m_s->check_sat(0, 0);
}
else if (m_maxsat_engine == symbol("maxres")) {
m_msolver = alloc(maxres, m, *m_s, m_soft_constraints, m_weights);
else if (m_maxsat_engine == symbol("maxres")) {
m_msolver = mk_maxres(m, s, m_params, m_weights, m_soft_constraints);
}
else if (is_maxsat_problem(m_weights)) {
if (m_maxsat_engine == symbol("core_maxsat")) {
m_msolver = alloc(core_maxsat, m, *m_s, m_soft_constraints);
}
else if (m_maxsat_engine == symbol("weighted_maxsat")) {
m_msolver = alloc(wmaxsmt, m, m_s.get(), m_soft_constraints, m_weights);
}
else {
m_msolver = alloc(fu_malik, m, *m_s, m_soft_constraints);
}
else if (m_maxsat_engine == symbol("pbmax")) {
m_msolver = mk_pbmax(m, s, m_params, m_weights, m_soft_constraints);
}
else if (m_maxsat_engine == symbol("wpm2")) {
m_msolver = mk_wpm2(m, s, m_params, m_weights, m_soft_constraints);
}
else if (m_maxsat_engine == symbol("bcd2")) {
m_msolver = mk_bcd2(m, s, m_params, m_weights, m_soft_constraints);
}
else if (m_maxsat_engine == symbol("hsmax")) {
m_msolver = mk_hsmax(m, s, m_params, m_weights, m_soft_constraints);
}
else if (m_maxsat_engine == symbol("sls")) {
// NB: this is experimental one-round version of SLS
m_msolver = mk_sls(m, s, m_params, m_weights, m_soft_constraints);
}
else if (is_maxsat_problem(m_weights) && m_maxsat_engine == symbol("core_maxsat")) {
m_msolver = alloc(core_maxsat, m, *m_s, m_soft_constraints);
}
else if (is_maxsat_problem(m_weights) && m_maxsat_engine == symbol("fu_malik")) {
m_msolver = alloc(fu_malik, m, *m_s, m_soft_constraints);
}
else {
m_msolver = alloc(wmaxsmt, m, m_s.get(), m_soft_constraints, m_weights);
if (m_maxsat_engine != symbol::null) {
warning_msg("solver %s is not recognized, using default 'wmax'",
m_maxsat_engine.str().c_str());
}
m_msolver = mk_wmax(m, m_s.get(), m_params, m_weights, m_soft_constraints);
}
if (m_msolver) {
m_msolver->updt_params(m_params);
is_sat = (*m_msolver)();
if (is_sat != l_false) {
m_msolver->get_model(m_model);

View file

@ -37,6 +37,68 @@ namespace opt {
virtual void updt_params(params_ref& p) = 0;
};
// ---------------------------------------------
// base class with common utilities used
// by maxsmt solvers
//
class maxsmt_solver_base : public maxsmt_solver {
protected:
ref<solver> m_s;
ast_manager& m;
volatile bool m_cancel;
expr_ref_vector m_soft;
vector<rational> m_weights;
rational m_lower;
rational m_upper;
model_ref m_model;
ref<filter_model_converter> m_mc; // model converter to remove fresh variables
svector<bool> m_assignment; // truth assignment to soft constraints
params_ref m_params; // config
bool m_enable_sls; // config
bool m_enable_sat; // config
bool m_sls_enabled;
bool m_sat_enabled;
struct is_bv;
public:
maxsmt_solver_base(opt_solver* s, ast_manager& m, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft):
m_s(s), m(m), m_cancel(false), m_soft(m),
m_enable_sls(false), m_enable_sat(false),
m_sls_enabled(false), m_sat_enabled(false) {
m_s->get_model(m_model);
SASSERT(m_model);
updt_params(p);
set_converter(s->mc_ref().get());
init_soft(ws, soft);
}
virtual ~maxsmt_solver_base() {}
virtual rational get_lower() const { return m_lower; }
virtual rational get_upper() const { return m_upper; }
virtual bool get_assignment(unsigned index) const { return m_assignment[index]; }
virtual void set_cancel(bool f) { m_cancel = f; m_s->set_cancel(f); }
virtual void collect_statistics(statistics& st) const {
if (m_sls_enabled || m_sat_enabled) {
m_s->collect_statistics(st);
}
}
virtual void get_model(model_ref& mdl) { mdl = m_model.get(); }
void set_model() { s().get_model(m_model); }
virtual void updt_params(params_ref& p);
virtual void init_soft(vector<rational> const& weights, expr_ref_vector const& soft);
void add_hard(expr* e){ s().assert_expr(e); }
solver& s() { return *m_s; }
void set_converter(filter_model_converter* mc) { m_mc = mc; }
void init();
expr* mk_not(expr* e);
bool probe_bv();
void enable_bvsat();
void enable_sls();
app* mk_fresh_bool(char const* name);
};
/**
Takes solver with hard constraints added.
Returns modified soft constraints that are maximal assignments.

View file

@ -1,15 +1,37 @@
/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
mus.cpp
Abstract:
Faster MUS extraction based on Belov et.al. HYB (Algorithm 3, 4)
Author:
Nikolaj Bjorner (nbjorner) 2014-20-7
Notes:
Model rotation needs fixes to ensure that hard constraints are satisfied
under pertubed model. Model rotation also has o be consistent with theories.
--*/
#include "solver.h"
#include "smt_literal.h"
#include "mus.h"
#include "ast_pp.h"
#include "model_smt2_pp.h"
using namespace opt;
// Faster MUS extraction based on Belov et.al. HYB (Algorithm 3, 4)
//
struct mus::imp {
solver& s;
ref<solver>& m_s;
ast_manager& m;
expr_ref_vector m_cls2expr;
obj_map<expr, unsigned> m_expr2cls;
@ -18,7 +40,7 @@ struct mus::imp {
obj_map<expr, unsigned> m_var2idx;
volatile bool m_cancel;
imp(solver& s, ast_manager& m): s(s), m(m), m_cls2expr(m), m_vars(m), m_cancel(false) {}
imp(ref<solver>& s, ast_manager& m): m_s(s), m(m), m_cls2expr(m), m_vars(m), m_cancel(false) {}
void reset() {
m_cls2expr.reset();
@ -26,6 +48,7 @@ struct mus::imp {
m_cls2lits.reset();
m_vars.reset();
m_var2idx.reset();
m_vars.push_back(m.mk_true());
}
void set_cancel(bool f) {
@ -42,7 +65,7 @@ struct mus::imp {
}
unsigned add_soft(expr* cls, unsigned sz, expr* const* args) {
TRACE("opt", tout << sz << ": " << mk_pp(cls, m) << "\n";);
SASSERT(is_uninterp_const(cls) || m.is_not(cls) && is_uninterp_const(to_app(cls)->get_arg(0)));
smt::literal_vector lits;
expr* arg;
for (unsigned i = 0; i < sz; ++i) {
@ -57,6 +80,10 @@ struct mus::imp {
m_expr2cls.insert(cls, idx);
m_cls2expr.push_back(cls);
m_cls2lits.push_back(lits);
TRACE("opt",
tout << idx << ": " << mk_pp(cls, m) << "\n";
display_vec(tout, lits);
);
return idx;
}
@ -68,7 +95,11 @@ struct mus::imp {
}
lbool get_mus(unsigned_vector& mus) {
TRACE("opt", tout << "\n";);
TRACE("opt",
for (unsigned i = 0; i < m_cls2lits.size(); ++i) {
display_vec(tout, m_cls2lits[i]);
}
);
unsigned_vector core;
for (unsigned i = 0; i < m_cls2expr.size(); ++i) {
core.push_back(i);
@ -79,13 +110,13 @@ struct mus::imp {
ptr_vector<expr> core_exprs;
model.resize(m_vars.size());
while (!core.empty()) {
IF_VERBOSE(1, verbose_stream() << "(opt.mus reducing core: " << core.size() << " new core: " << mus.size() << ")\n";);
unsigned cls_id = core.back();
TRACE("opt",
display_vec(tout << "core: ", core);
display_vec(tout << "mus: ", mus);
display_vec(tout << "model: ", model);
);
IF_VERBOSE(1, verbose_stream() << "(opt.mus reducing core: " << core.size() << " new core: " << mus.size() << ")\n";);
unsigned cls_id = core.back();
core.pop_back();
expr* cls = m_cls2expr[cls_id].get();
expr_ref not_cls(m);
@ -93,7 +124,7 @@ struct mus::imp {
unsigned sz = assumptions.size();
assumptions.push_back(not_cls);
add_core(core, assumptions);
lbool is_sat = s.check_sat(assumptions.size(), assumptions.c_ptr());
lbool is_sat = m_s->check_sat(assumptions.size(), assumptions.c_ptr());
assumptions.resize(sz);
switch(is_sat) {
case l_undef:
@ -101,7 +132,7 @@ struct mus::imp {
case l_true:
assumptions.push_back(cls);
mus.push_back(cls_id);
extract_model(s, model);
extract_model(model);
sz = core.size();
core.append(mus);
rmr(core, mus, model);
@ -109,7 +140,7 @@ struct mus::imp {
break;
default:
core_exprs.reset();
s.get_unsat_core(core_exprs);
m_s->get_unsat_core(core_exprs);
if (!core_exprs.contains(not_cls)) {
// core := core_exprs \ mus
core.reset();
@ -141,14 +172,19 @@ struct mus::imp {
out << "\n";
}
void extract_model(solver& s, svector<bool>& model) {
void extract_model(svector<bool>& model) {
model_ref mdl;
s.get_model(mdl);
m_s->get_model(mdl);
for (unsigned i = 0; i < m_vars.size(); ++i) {
expr_ref tmp(m);
mdl->eval(m_vars[i].get(), tmp);
model[i] = m.is_true(tmp);
}
TRACE("opt",
display_vec(tout << "model: ", model);
model_smt2_pp(tout, m, *mdl, 0);
);
}
/**
@ -166,7 +202,9 @@ struct mus::imp {
smt::literal lit = cls[i];
SASSERT(model[lit.var()] == lit.sign()); // literal evaluates to false.
model[lit.var()] = !model[lit.var()]; // swap assignment
if (!mus.contains(cls_id) && has_single_unsat(model, cls_id)) {
if (has_single_unsat(model, cls_id) &&
!mus.contains(cls_id) &&
model_check(model, cls_id)) {
mus.push_back(cls_id);
rmr(M, mus, model);
}
@ -174,6 +212,11 @@ struct mus::imp {
}
}
bool model_check(svector<bool> const& model, unsigned cls_id) {
// model has to work for hard constraints.
return false;
}
bool has_single_unsat(svector<bool> const& model, unsigned& cls_id) const {
cls_id = UINT_MAX;
for (unsigned i = 0; i < m_cls2lits.size(); ++i) {
@ -186,21 +229,24 @@ struct mus::imp {
}
}
}
TRACE("opt", display_vec(tout << "clause: " << cls_id << " model: ", model););
return cls_id != UINT_MAX;
}
bool eval(svector<bool> const& model, smt::literal_vector const& cls) const {
for (unsigned i = 0; i < cls.size(); ++i) {
if (model[cls[i].var()] != cls[i].sign()) {
return true;
}
bool result = false;
for (unsigned i = 0; !result && i < cls.size(); ++i) {
result = (model[cls[i].var()] != cls[i].sign());
}
return false;
TRACE("opt", display_vec(tout << "model: ", model);
display_vec(tout << "clause: ", cls);
tout << "result: " << result << "\n";);
return result;
}
};
mus::mus(solver& s, ast_manager& m) {
mus::mus(ref<solver>& s, ast_manager& m) {
m_imp = alloc(imp, s, m);
}

View file

@ -1,10 +1,30 @@
/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
mus.h
Abstract:
Faster MUS extraction based on Belov et.al. HYB (Algorithm 3, 4)
Author:
Nikolaj Bjorner (nbjorner) 2014-20-7
Notes:
--*/
#ifndef _MUS_H_
#define _MUS_H_
namespace opt {
class mus {
struct imp;
imp * m_imp;
public:
mus(solver& s, ast_manager& m);
mus(ref<solver>& s, ast_manager& m);
~mus();
/**
Add soft constraint.
@ -23,3 +43,5 @@ namespace opt {
};
};
#endif

View file

@ -3,13 +3,12 @@ def_module_params('opt',
export=True,
params=(('timeout', UINT, UINT_MAX, 'set timeout'),
('engine', SYMBOL, 'basic', "select optimization engine: 'basic', 'farkas', 'symba'"),
('maxsat_engine', SYMBOL, 'fu_malik', "select engine for non-weighted maxsat: 'fu_malik', 'core_maxsat'"),
('maxsat_engine', SYMBOL, 'wmax', "select engine for maxsat: 'fu_malik', 'core_maxsat', 'wmax', 'pbmax', 'maxres', 'bcd2', 'wpm2', 'sls', 'hsmax'"),
('priority', SYMBOL, 'lex', "select how to priortize objectives: 'lex' (lexicographic), 'pareto', or 'box'"),
('dump_benchmarks', BOOL, False, 'dump benchmarks for profiling'),
('print_model', BOOL, False, 'display model for satisfiable constraints'),
('print_all_models', BOOL, False, 'display all intermediary models for satisfiable constraints'),
('debug_conflict', BOOL, False, 'debug conflict resolution'),
('wmaxsat_engine', SYMBOL, 'wmax', "weighted maxsat engine: 'wmax', 'pbmax', 'bcd2', 'wpm2', 'bvsls', 'sls'"),
('enable_sls', BOOL, False, 'enable SLS tuning during weighted maxsast'),
('enable_sat', BOOL, False, 'enable the new SAT core for propositional constraints'),
('sls_engine', SYMBOL, 'pb', "SLS engine. Either 'bv' or 'pb'"),

View file

@ -26,19 +26,12 @@ Notes:
#include "opt_params.hpp"
#include "pb_decl_plugin.h"
#include "uint_set.h"
#include "tactical.h"
#include "tactic.h"
#include "model_smt2_pp.h"
#include "pb_sls.h"
#include "tactic2solver.h"
#include "pb_preprocess_tactic.h"
#include "qfbv_tactic.h"
#include "card2bv_tactic.h"
#include "opt_sls_solver.h"
#include "cancel_eh.h"
#include "scoped_timer.h"
#include "optsmt.h"
#include "hitting_sets.h"
#include "stopwatch.h"
namespace opt {
@ -56,162 +49,6 @@ namespace opt {
}
};
// ---------------------------------------------
// base class with common utilities used
// by maxsmt solvers
//
class maxsmt_solver_base : public maxsmt_solver {
protected:
ref<solver> m_s;
ast_manager& m;
volatile bool m_cancel;
expr_ref_vector m_soft;
vector<rational> m_weights;
rational m_lower;
rational m_upper;
model_ref m_model;
ref<filter_model_converter> m_mc; // model converter to remove fresh variables
svector<bool> m_assignment; // truth assignment to soft constraints
params_ref m_params; // config
bool m_enable_sls; // config
bool m_enable_sat; // config
bool m_sls_enabled;
bool m_sat_enabled;
public:
maxsmt_solver_base(solver* s, ast_manager& m):
m_s(s), m(m), m_cancel(false), m_soft(m),
m_enable_sls(false), m_enable_sat(false),
m_sls_enabled(false), m_sat_enabled(false) {
m_s->get_model(m_model);
SASSERT(m_model);
}
virtual ~maxsmt_solver_base() {}
virtual rational get_lower() const { return m_lower; }
virtual rational get_upper() const { return m_upper; }
virtual bool get_assignment(unsigned index) const { return m_assignment[index]; }
virtual void set_cancel(bool f) { m_cancel = f; m_s->set_cancel(f); }
virtual void collect_statistics(statistics& st) const {
if (m_sls_enabled || m_sat_enabled) {
m_s->collect_statistics(st);
}
}
virtual void get_model(model_ref& mdl) { mdl = m_model.get(); }
void set_model() { s().get_model(m_model); }
virtual void updt_params(params_ref& p) {
m_params.copy(p);
s().updt_params(p);
opt_params _p(p);
m_enable_sat = _p.enable_sat();
m_enable_sls = _p.enable_sls();
}
virtual void init_soft(vector<rational> const& weights, expr_ref_vector const& soft) {
m_weights.reset();
m_soft.reset();
m_weights.append(weights);
m_soft.append(soft);
}
void add_hard(expr* e){ s().assert_expr(e); }
solver& s() { return *m_s; }
void set_converter(filter_model_converter* mc) { m_mc = mc; }
void init() {
m_lower.reset();
m_upper.reset();
m_assignment.reset();
for (unsigned i = 0; i < m_weights.size(); ++i) {
expr_ref val(m);
VERIFY(m_model->eval(m_soft[i].get(), val));
m_assignment.push_back(m.is_true(val));
if (!m_assignment.back()) {
m_upper += m_weights[i];
}
}
TRACE("opt",
tout << m_upper << ": ";
for (unsigned i = 0; i < m_weights.size(); ++i) {
tout << (m_assignment[i]?"1":"0");
}
tout << "\n";);
}
expr* mk_not(expr* e) {
if (m.is_not(e, e)) {
return e;
}
else {
return m.mk_not(e);
}
}
struct is_bv {
struct found {};
ast_manager& m;
pb_util pb;
bv_util bv;
is_bv(ast_manager& m): m(m), pb(m), bv(m) {}
void operator()(var *) { throw found(); }
void operator()(quantifier *) { throw found(); }
void operator()(app *n) {
family_id fid = n->get_family_id();
if (fid != m.get_basic_family_id() &&
fid != pb.get_family_id() &&
fid != bv.get_family_id() &&
!is_uninterp_const(n)) {
throw found();
}
}
};
bool probe_bv() {
expr_fast_mark1 visited;
is_bv proc(m);
try {
unsigned sz = s().get_num_assertions();
for (unsigned i = 0; i < sz; i++) {
quick_for_each_expr(proc, visited, s().get_assertion(i));
}
sz = m_soft.size();
for (unsigned i = 0; i < sz; ++i) {
quick_for_each_expr(proc, visited, m_soft[i].get());
}
}
catch (is_bv::found) {
return false;
}
return true;
}
void enable_bvsat() {
if (m_enable_sat && !m_sat_enabled && probe_bv()) {
tactic_ref pb2bv = mk_card2bv_tactic(m, m_params);
tactic_ref bv2sat = mk_qfbv_tactic(m, m_params);
tactic_ref tac = and_then(pb2bv.get(), bv2sat.get());
solver* sat_solver = mk_tactic2solver(m, tac.get(), m_params);
unsigned sz = s().get_num_assertions();
for (unsigned i = 0; i < sz; ++i) {
sat_solver->assert_expr(s().get_assertion(i));
}
unsigned lvl = m_s->get_scope_level();
while (lvl > 0) { sat_solver->push(); --lvl; }
m_s = sat_solver;
m_sat_enabled = true;
}
}
void enable_sls() {
if (m_enable_sls && !m_sls_enabled && probe_bv()) {
m_params.set_uint("restarts", 20);
unsigned lvl = m_s->get_scope_level();
sls_solver* sls = alloc(sls_solver, m, m_s.get(), m_soft, m_weights, m_params);
m_s = sls;
while (lvl > 0) { m_s->push(); --lvl; }
m_sls_enabled = true;
sls->opt(m_model);
}
}
};
// ------------------------------------------------------
// Morgado, Heras, Marques-Silva 2013
@ -247,8 +84,7 @@ namespace opt {
es.push_back(m.mk_not(*it));
}
}
virtual void init_soft(vector<rational> const& weights, expr_ref_vector const& soft) {
maxsmt_solver_base::init_soft(weights, soft);
void bcd2_init_soft(vector<rational> const& weights, expr_ref_vector const& soft) {
// normalize weights to be integral:
m_den = rational::one();
@ -290,13 +126,15 @@ namespace opt {
}
public:
bcd2(solver* s, ast_manager& m):
maxsmt_solver_base(s, m),
bcd2(opt_solver* s, ast_manager& m, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft):
maxsmt_solver_base(s, m, p, ws, soft),
pb(m),
m_soft_aux(m),
m_trail(m),
m_soft_constraints(m),
m_enable_lazy(true) {
bcd2_init_soft(ws, soft);
}
virtual ~bcd2() {}
@ -315,7 +153,7 @@ namespace opt {
}
process_sat();
while (m_lower < m_upper) {
IF_VERBOSE(1, verbose_stream() << "(wmaxsat.bcd2 [" << m_lower << ":" << m_upper << "])\n";);
IF_VERBOSE(1, verbose_stream() << "(bcd2 [" << m_lower << ":" << m_upper << "])\n";);
assert_soft();
solver::scoped_push _scope2(s());
TRACE("opt", display(tout););
@ -412,10 +250,8 @@ namespace opt {
}
expr* mk_fresh() {
app_ref r(m);
r = m.mk_fresh_const("r", m.mk_bool_sort());
expr* r = mk_fresh_bool("r");
m_trail.push_back(r);
m_mc->insert(r->get_decl());
return r;
}
@ -627,8 +463,8 @@ namespace opt {
public:
hsmax(solver* s, ast_manager& m):
maxsmt_solver_base(s, m),
hsmax(opt_solver* s, ast_manager& m, params_ref& p, vector<rational> const& ws, expr_ref_vector const& soft):
maxsmt_solver_base(s, m, p, ws, soft),
m_aux(m),
pb(m),
a(m),
@ -641,10 +477,6 @@ namespace opt {
m_hs.set_cancel(f);
}
virtual void updt_params(params_ref& p) {
maxsmt_solver_base::updt_params(p);
}
virtual void collect_statistics(statistics& st) const {
maxsmt_solver_base::collect_statistics(st);
m_hs.collect_statistics(st);
@ -670,8 +502,8 @@ namespace opt {
while (m_lower < m_upper) {
++m_stats.m_num_iterations;
IF_VERBOSE(1, verbose_stream() <<
"(wmaxsat.hsmax [" << m_lower << ":" << m_upper << "])\n";);
TRACE("opt", tout << "(wmaxsat.hsmax [" << m_lower << ":" << m_upper << "])\n";);
"(hsmax [" << m_lower << ":" << m_upper << "])\n";);
TRACE("opt", tout << "(hsmax [" << m_lower << ":" << m_upper << "])\n";);
if (m_cancel) {
return l_undef;
}
@ -688,7 +520,7 @@ namespace opt {
break;
case l_false:
TRACE("opt", tout << "no more seeds\n";);
IF_VERBOSE(1, verbose_stream() << "(wmaxsat.maxhs.no-more-seeds)\n";);
IF_VERBOSE(1, verbose_stream() << "(maxhs.no-more-seeds)\n";);
m_lower = m_upper;
return l_true;
case l_undef:
@ -697,7 +529,7 @@ namespace opt {
break;
}
case l_false:
IF_VERBOSE(1, verbose_stream() << "(wmaxsat.maxhs.no-more-cores)\n";);
IF_VERBOSE(1, verbose_stream() << "(maxhs.no-more-cores)\n";);
TRACE("opt", tout << "no more cores\n";);
m_lower = m_upper;
return l_true;
@ -1119,8 +951,9 @@ namespace opt {
class pbmax : public maxsmt_solver_base {
public:
pbmax(solver* s, ast_manager& m):
maxsmt_solver_base(s, m) {
pbmax(opt_solver* s, ast_manager& m, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft):
maxsmt_solver_base(s, m, p, ws, soft) {
}
virtual ~pbmax() {}
@ -1154,7 +987,7 @@ namespace opt {
m_upper += m_weights[i];
}
}
IF_VERBOSE(1, verbose_stream() << "(wmaxsat.pb solve with upper bound: " << m_upper << ")\n";);
IF_VERBOSE(1, verbose_stream() << "(pb solve with upper bound: " << m_upper << ")\n";);
TRACE("opt", tout << "new upper: " << m_upper << "\n";);
fml = u.mk_lt(nsoft.size(), m_weights.c_ptr(), nsoft.c_ptr(), m_upper);
@ -1182,15 +1015,16 @@ namespace opt {
class wpm2 : public maxsmt_solver_base {
scoped_ptr<maxsmt_solver_base> maxs;
public:
wpm2(solver* s, ast_manager& m, maxsmt_solver_base* _maxs):
maxsmt_solver_base(s, m), maxs(_maxs) {
wpm2(opt_solver* s, ast_manager& m, maxsmt_solver_base* _maxs, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft):
maxsmt_solver_base(s, m, p, ws, soft), maxs(_maxs) {
}
virtual ~wpm2() {}
lbool operator()() {
enable_sls();
IF_VERBOSE(1, verbose_stream() << "(wmaxsat.wpm2 solve)\n";);
IF_VERBOSE(1, verbose_stream() << "(wpm2 solve)\n";);
solver::scoped_push _s(s());
pb_util u(m);
app_ref fml(m), a(m), b(m), c(m);
@ -1203,20 +1037,17 @@ namespace opt {
for (unsigned i = 0; i < m_soft.size(); ++i) {
rational w = m_weights[i];
b = m.mk_fresh_const("b", m.mk_bool_sort());
m_mc->insert(b->get_decl());
b = mk_fresh_bool("b");
block.push_back(b);
expr* bb = b;
a = m.mk_fresh_const("a", m.mk_bool_sort());
m_mc->insert(a->get_decl());
a = mk_fresh_bool("a");
ans.push_back(a);
ans_index.insert(a, i);
fml = m.mk_or(m_soft[i].get(), b, m.mk_not(a));
s().assert_expr(fml);
c = m.mk_fresh_const("c", m.mk_bool_sort());
m_mc->insert(c->get_decl());
c = mk_fresh_bool("c");
fml = m.mk_implies(c, u.mk_le(1,&w,&bb,rational(0)));
s().assert_expr(fml);
@ -1321,11 +1152,10 @@ namespace opt {
B_ge_k = u.mk_ge(ws.size(), ws.c_ptr(), bs.c_ptr(), k);
s().assert_expr(B_ge_k);
al.push_back(B_ge_k);
IF_VERBOSE(1, verbose_stream() << "(wmaxsat.wpm2 lower bound: " << m_lower << ")\n";);
IF_VERBOSE(1, verbose_stream() << "(wpm2 lower bound: " << m_lower << ")\n";);
IF_VERBOSE(2, verbose_stream() << "New lower bound: " << B_ge_k << "\n";);
c = m.mk_fresh_const("c", m.mk_bool_sort());
m_mc->insert(c->get_decl());
c = mk_fresh_bool("c");
fml = m.mk_implies(c, B_le_k);
s().assert_expr(fml);
sc.push_back(B);
@ -1394,8 +1224,9 @@ namespace opt {
class sls : public maxsmt_solver_base {
public:
sls(solver* s, ast_manager& m):
maxsmt_solver_base(s, m) {
sls(opt_solver* s, ast_manager& m, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft):
maxsmt_solver_base(s, m, p, ws, soft) {
}
virtual ~sls() {}
lbool operator()() {
@ -1425,8 +1256,9 @@ namespace opt {
class maxsmt_solver_wbase : public maxsmt_solver_base {
smt::context& ctx;
public:
maxsmt_solver_wbase(solver* s, ast_manager& m, smt::context& ctx):
maxsmt_solver_base(s, m), ctx(ctx) {}
maxsmt_solver_wbase(opt_solver* s, ast_manager& m, smt::context& ctx, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft):
maxsmt_solver_base(s, m, p, ws, soft), ctx(ctx) {}
~maxsmt_solver_wbase() {}
class scoped_ensure_theory {
@ -1471,7 +1303,9 @@ namespace opt {
class wmax : public maxsmt_solver_wbase {
public:
wmax(solver* s, ast_manager& m, smt::context& ctx): maxsmt_solver_wbase(s, m, ctx) {}
wmax(opt_solver* s, ast_manager& m, smt::context& ctx, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft):
maxsmt_solver_wbase(s, m, ctx, p, ws, soft) {}
virtual ~wmax() {}
lbool operator()() {
@ -1515,129 +1349,36 @@ namespace opt {
}
};
struct wmaxsmt::imp {
ast_manager& m;
ref<opt_solver> s; // solver state that contains hard constraints
expr_ref_vector m_soft; // set of soft constraints
vector<rational> m_weights; // their weights
symbol m_engine; // config
mutable params_ref m_params; // config
mutable scoped_ptr<maxsmt_solver_base> m_maxsmt; // underlying maxsmt solver
imp(ast_manager& m,
opt_solver* s,
expr_ref_vector const& soft_constraints,
vector<rational> const& weights):
m(m),
s(s),
m_soft(soft_constraints),
m_weights(weights)
{
}
maxsmt_solver_base* opt::mk_bcd2(ast_manager& m, opt_solver* s, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft) {
return alloc(bcd2, s, m, p, ws, soft);
}
maxsmt_solver_base* opt::mk_pbmax(ast_manager& m, opt_solver* s, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft) {
return alloc(pbmax, s, m, p, ws, soft);
}
maxsmt_solver_base* opt::mk_hsmax(ast_manager& m, opt_solver* s, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft) {
return alloc(hsmax, s, m, p, ws, soft);
}
maxsmt_solver_base* opt::mk_sls(ast_manager& m, opt_solver* s, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft) {
return alloc(hsmax, s, m, p, ws, soft);
}
maxsmt_solver_base* opt::mk_wmax(ast_manager& m, opt_solver* s, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft) {
return alloc(wmax, s, m, s->get_context(), p, ws, soft);
}
maxsmt_solver_base* opt::mk_wpm2(ast_manager& m, opt_solver* s, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft) {
maxsmt_solver_base& maxsmt() const {
if (m_maxsmt) {
return *m_maxsmt;
}
if (m_engine == symbol("pbmax")) {
m_maxsmt = alloc(pbmax, s.get(), m);
}
else if (m_engine == symbol("wpm2")) {
ref<solver> s0 = alloc(opt_solver, m, m_params, symbol());
// initialize model.
s0->check_sat(0,0);
maxsmt_solver_base* s2 = alloc(pbmax, s0.get(), m);
m_maxsmt = alloc(wpm2, s.get(), m, s2);
}
else if (m_engine == symbol("bcd2")) {
m_maxsmt = alloc(bcd2, s.get(), m);
}
else if (m_engine == symbol("hsmax")) {
m_maxsmt = alloc(hsmax, s.get(), m);
}
// NB: this is experimental one-round version of SLS
else if (m_engine == symbol("sls")) {
m_maxsmt = alloc(sls, s.get(), m);
}
else if (m_engine == symbol::null || m_engine == symbol("wmax")) {
m_maxsmt = alloc(wmax, s.get(), m, s->get_context());
}
else {
IF_VERBOSE(0, verbose_stream() << "(unknown engine " << m_engine << " using default 'wmax')\n";);
m_maxsmt = alloc(wmax, s.get(), m, s->get_context());
}
m_maxsmt->updt_params(m_params);
m_maxsmt->init_soft(m_weights, m_soft);
m_maxsmt->set_converter(s->mc_ref().get());
return *m_maxsmt;
}
ref<opt_solver> s0 = alloc(opt_solver, m, p, symbol());
// initialize model.
s0->check_sat(0,0);
maxsmt_solver_base* s2 = alloc(pbmax, s0.get(), m, p, ws, soft);
return alloc(wpm2, s, m, s2, p, ws, soft);
}
~imp() {}
/**
Takes solver with hard constraints added.
Returns a maximal satisfying subset of weighted soft_constraints
that are still consistent with the solver state.
*/
lbool operator()() {
return maxsmt()();
}
rational get_lower() const {
return maxsmt().get_lower();
}
rational get_upper() const {
return maxsmt().get_upper();
}
void get_model(model_ref& mdl) {
if (m_maxsmt) m_maxsmt->get_model(mdl);
}
void set_cancel(bool f) {
if (m_maxsmt) m_maxsmt->set_cancel(f);
}
bool get_assignment(unsigned index) const {
return maxsmt().get_assignment(index);
}
void collect_statistics(statistics& st) const {
if (m_maxsmt) m_maxsmt->collect_statistics(st);
}
void updt_params(params_ref& p) {
opt_params _p(p);
m_engine = _p.wmaxsat_engine();
m_maxsmt = 0;
}
};
wmaxsmt::wmaxsmt(ast_manager& m,
opt_solver* s,
expr_ref_vector& soft_constraints,
vector<rational> const& weights) {
m_imp = alloc(imp, m, s, soft_constraints, weights);
}
wmaxsmt::~wmaxsmt() {
dealloc(m_imp);
}
lbool wmaxsmt::operator()() {
return (*m_imp)();
}
rational wmaxsmt::get_lower() const {
return m_imp->get_lower();
}
rational wmaxsmt::get_upper() const {
return m_imp->get_upper();
}
bool wmaxsmt::get_assignment(unsigned idx) const {
return m_imp->get_assignment(idx);
}
void wmaxsmt::set_cancel(bool f) {
m_imp->set_cancel(f);
}
void wmaxsmt::collect_statistics(statistics& st) const {
m_imp->collect_statistics(st);
}
void wmaxsmt::get_model(model_ref& mdl) {
m_imp->get_model(mdl);
}
void wmaxsmt::updt_params(params_ref& p) {
m_imp->updt_params(p);
}
};

View file

@ -27,24 +27,25 @@ Notes:
#include "maxsmt.h"
namespace opt {
class wmaxsmt : public maxsmt_solver {
struct imp;
imp* m_imp;
public:
wmaxsmt(ast_manager& m,
opt_solver* s,
expr_ref_vector& soft_constraints,
vector<rational> const& weights);
~wmaxsmt();
virtual lbool operator()();
virtual rational get_lower() const;
virtual rational get_upper() const;
virtual bool get_assignment(unsigned idx) const;
virtual void set_cancel(bool f);
virtual void collect_statistics(statistics& st) const;
virtual void get_model(model_ref& mdl);
virtual void updt_params(params_ref& p);
};
maxsmt_solver_base* mk_bcd2(ast_manager& m, opt_solver* s, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft);
maxsmt_solver_base* mk_hsmax(ast_manager& m, opt_solver* s, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft);
maxsmt_solver_base* mk_pbmax(ast_manager& m, opt_solver* s, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft);
maxsmt_solver_base* mk_wpm2(ast_manager& m, opt_solver* s, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft);
maxsmt_solver_base* mk_sls(ast_manager& m, opt_solver* s, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft);
maxsmt_solver_base* mk_wmax(ast_manager& m, opt_solver* s, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft);
};
#endif