mirror of
https://github.com/Z3Prover/z3
synced 2025-04-28 11:25:51 +00:00
parent
f044071f5e
commit
4890c3ce31
7 changed files with 61 additions and 33 deletions
|
@ -91,7 +91,7 @@ void basics::basic_sign_lemma_model_based_one_mon(const monic& m, int product_si
|
|||
TRACE("nla_solver_bl", tout << "zero product sign: " << pp_mon(_(), m)<< "\n"; );
|
||||
generate_zero_lemmas(m);
|
||||
} else {
|
||||
new_lemma lemma(c());
|
||||
new_lemma lemma(c(), __FUNCTION__);
|
||||
for(lpvar j: m.vars()) {
|
||||
negate_strict_sign(j);
|
||||
}
|
||||
|
@ -157,7 +157,7 @@ bool basics::basic_sign_lemma(bool derived) {
|
|||
// the value of the i-th monic has to be equal to the value of the k-th monic modulo sign
|
||||
// but it is not the case in the model
|
||||
void basics::generate_sign_lemma(const monic& m, const monic& n, const rational& sign) {
|
||||
new_lemma lemma(c());
|
||||
new_lemma lemma(c(), "sign lemma");
|
||||
TRACE("nla_solver",
|
||||
tout << "m = " << pp_mon_with_vars(_(), m);
|
||||
tout << "n = " << pp_mon_with_vars(_(), n);
|
||||
|
@ -184,14 +184,14 @@ lpvar basics::find_best_zero(const monic& m, unsigned_vector & fixed_zeros) cons
|
|||
return zero_j;
|
||||
}
|
||||
void basics::add_trival_zero_lemma(lpvar zero_j, const monic& m) {
|
||||
new_lemma lemma(c());
|
||||
new_lemma lemma(c(), "x = 0 or x != 0");
|
||||
c().mk_ineq(zero_j, llc::NE);
|
||||
c().mk_ineq(m.var(), llc::EQ);
|
||||
}
|
||||
void basics::generate_strict_case_zero_lemma(const monic& m, unsigned zero_j, int sign_of_zj) {
|
||||
TRACE("nla_solver_bl", tout << "sign_of_zj = " << sign_of_zj << "\n";);
|
||||
// we know all the signs
|
||||
new_lemma lemma(c());
|
||||
new_lemma lemma(c(), "strict case 0");
|
||||
c().mk_ineq(zero_j, (sign_of_zj == 1? llc::GT : llc::LT));
|
||||
for (unsigned j : m.vars()){
|
||||
if (j != zero_j) {
|
||||
|
@ -201,7 +201,7 @@ void basics::generate_strict_case_zero_lemma(const monic& m, unsigned zero_j, in
|
|||
negate_strict_sign(m.var());
|
||||
}
|
||||
void basics::add_fixed_zero_lemma(const monic& m, lpvar j) {
|
||||
new_lemma lemma(c());
|
||||
new_lemma lemma(c(), "fixed zero");
|
||||
c().explain_fixed_var(j);
|
||||
c().mk_ineq(m.var(), llc::EQ);
|
||||
}
|
||||
|
@ -229,7 +229,7 @@ bool basics::basic_lemma_for_mon_zero(const monic& rm, const factorization& f) {
|
|||
return true;
|
||||
#if 0
|
||||
TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout););
|
||||
new_lemma lemma(c());
|
||||
new_lemma lemma(c(), "xy = 0 -> x = 0 or y = 0");
|
||||
c().explain_fixed_var(var(rm));
|
||||
std::unordered_set<lpvar> processed;
|
||||
for (auto j : f) {
|
||||
|
@ -247,7 +247,7 @@ bool basics::basic_lemma(bool derived) {
|
|||
if (derived)
|
||||
return false;
|
||||
const auto& mon_inds_to_ref = c().m_to_refine;
|
||||
TRACE("nla_solver", tout << "mon_inds_to_ref = "; print_vector(mon_inds_to_ref, tout););
|
||||
TRACE("nla_solver", tout << "mon_inds_to_ref = "; print_vector(mon_inds_to_ref, tout) << "\n";);
|
||||
unsigned start = c().random();
|
||||
unsigned sz = mon_inds_to_ref.size();
|
||||
for (unsigned j = 0; j < sz; ++j) {
|
||||
|
@ -309,7 +309,7 @@ bool basics::basic_lemma_for_mon_non_zero_derived(const monic& rm, const factori
|
|||
if (zero_j == null_lpvar) {
|
||||
return false;
|
||||
}
|
||||
new_lemma lemma(c());
|
||||
new_lemma lemma(c(), "x = 0 or y = 0 -> xy = 0");
|
||||
c().explain_fixed_var(zero_j);
|
||||
c().explain_var_separated_from_zero(var(rm));
|
||||
explain(rm);
|
||||
|
@ -357,7 +357,7 @@ bool basics::basic_lemma_for_mon_neutral_monic_to_factor_derived(const monic& rm
|
|||
return false;
|
||||
}
|
||||
|
||||
new_lemma lemma(c());
|
||||
new_lemma lemma(c(), "|xa| = |x| & x != 0 -> |a| = 1");
|
||||
// mon_var = 0
|
||||
if (mon_var_is_sep_from_zero)
|
||||
c().explain_var_separated_from_zero(mon_var);
|
||||
|
@ -418,7 +418,7 @@ bool basics::proportion_lemma_derived(const monic& rm, const factorization& fact
|
|||
}
|
||||
// if there are no zero factors then |m| >= |m[factor_index]|
|
||||
void basics::generate_pl_on_mon(const monic& m, unsigned factor_index) {
|
||||
new_lemma lemma(c());
|
||||
new_lemma lemma(c(), "generate_pl_on_mon");
|
||||
unsigned mon_var = m.var();
|
||||
rational mv = val(mon_var);
|
||||
rational sm = rational(nla::rat_sign(mv));
|
||||
|
@ -448,7 +448,7 @@ void basics::generate_pl(const monic& m, const factorization& fc, int factor_ind
|
|||
generate_pl_on_mon(m, factor_index);
|
||||
return;
|
||||
}
|
||||
new_lemma lemma(c());
|
||||
new_lemma lemma(c(), "generate_pl");
|
||||
int fi = 0;
|
||||
rational mv = var_val(m);
|
||||
rational sm = rational(nla::rat_sign(mv));
|
||||
|
@ -496,7 +496,7 @@ bool basics::factorization_has_real(const factorization& f) const {
|
|||
void basics::basic_lemma_for_mon_zero_model_based(const monic& rm, const factorization& f) {
|
||||
TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout););
|
||||
SASSERT(var_val(rm).is_zero()&& ! c().rm_check(rm));
|
||||
new_lemma lemma(c());
|
||||
new_lemma lemma(c(), "xy = 0 -> x = 0 or y = 0");
|
||||
if (!is_separated_from_zero(f)) {
|
||||
c().mk_ineq(var(rm), llc::NE);
|
||||
for (auto j : f) {
|
||||
|
@ -552,8 +552,10 @@ bool basics::basic_lemma_for_mon_neutral_monic_to_factor_model_based_fm(const mo
|
|||
if (jl == null_lpvar)
|
||||
return false;
|
||||
lpvar not_one_j = null_lpvar;
|
||||
unsigned num_occs = 0;
|
||||
for (auto j : m.vars() ) {
|
||||
if (j == jl) {
|
||||
++num_occs;
|
||||
continue;
|
||||
}
|
||||
if (abs(val(j)) != rational(1)) {
|
||||
|
@ -562,11 +564,14 @@ bool basics::basic_lemma_for_mon_neutral_monic_to_factor_model_based_fm(const mo
|
|||
}
|
||||
}
|
||||
|
||||
if (num_occs > 1)
|
||||
return false;
|
||||
|
||||
if (not_one_j == null_lpvar) {
|
||||
return false;
|
||||
}
|
||||
|
||||
new_lemma lemma(c());
|
||||
new_lemma lemma(c(), __FUNCTION__);
|
||||
// mon_var = 0
|
||||
c().mk_ineq(mon_var, llc::EQ);
|
||||
|
||||
|
@ -614,7 +619,7 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monic_model_based_fm(co
|
|||
}
|
||||
}
|
||||
|
||||
new_lemma lemma(c());
|
||||
new_lemma lemma(c(), __FUNCTION__);
|
||||
for (auto j : m.vars()){
|
||||
if (not_one == j) continue;
|
||||
c().mk_ineq(j, llc::NE, val(j));
|
||||
|
@ -666,7 +671,7 @@ bool basics::basic_lemma_for_mon_neutral_monic_to_factor_model_based(const monic
|
|||
return false;
|
||||
}
|
||||
|
||||
new_lemma lemma(c());
|
||||
new_lemma lemma(c(), __FUNCTION__);
|
||||
// mon_var = 0
|
||||
c().mk_ineq(mon_var, llc::EQ);
|
||||
|
||||
|
@ -748,7 +753,7 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monic_model_based(const
|
|||
|
||||
TRACE("nla_solver_bl", tout << "not_one = " << not_one << "\n";);
|
||||
|
||||
new_lemma lemma(c());
|
||||
new_lemma lemma(c(), __FUNCTION__);
|
||||
|
||||
for (auto j : f) {
|
||||
lpvar var_j = var(j);
|
||||
|
@ -780,7 +785,7 @@ void basics::basic_lemma_for_mon_non_zero_model_based_mf(const factorization& f)
|
|||
}
|
||||
|
||||
if (zero_j == null_lpvar) { return; }
|
||||
new_lemma lemma(c());
|
||||
new_lemma lemma(c(), __FUNCTION__);
|
||||
c().mk_ineq(zero_j, llc::NE);
|
||||
c().mk_ineq(f.mon().var(), llc::EQ);
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue