diff --git a/src/math/lp/nla_basics_lemmas.cpp b/src/math/lp/nla_basics_lemmas.cpp index bcfcdfce9..5859b50fe 100644 --- a/src/math/lp/nla_basics_lemmas.cpp +++ b/src/math/lp/nla_basics_lemmas.cpp @@ -91,7 +91,7 @@ void basics::basic_sign_lemma_model_based_one_mon(const monic& m, int product_si TRACE("nla_solver_bl", tout << "zero product sign: " << pp_mon(_(), m)<< "\n"; ); generate_zero_lemmas(m); } else { - new_lemma lemma(c()); + new_lemma lemma(c(), __FUNCTION__); for(lpvar j: m.vars()) { negate_strict_sign(j); } @@ -157,7 +157,7 @@ bool basics::basic_sign_lemma(bool derived) { // the value of the i-th monic has to be equal to the value of the k-th monic modulo sign // but it is not the case in the model void basics::generate_sign_lemma(const monic& m, const monic& n, const rational& sign) { - new_lemma lemma(c()); + new_lemma lemma(c(), "sign lemma"); TRACE("nla_solver", tout << "m = " << pp_mon_with_vars(_(), m); tout << "n = " << pp_mon_with_vars(_(), n); @@ -184,14 +184,14 @@ lpvar basics::find_best_zero(const monic& m, unsigned_vector & fixed_zeros) cons return zero_j; } void basics::add_trival_zero_lemma(lpvar zero_j, const monic& m) { - new_lemma lemma(c()); + new_lemma lemma(c(), "x = 0 or x != 0"); c().mk_ineq(zero_j, llc::NE); c().mk_ineq(m.var(), llc::EQ); } void basics::generate_strict_case_zero_lemma(const monic& m, unsigned zero_j, int sign_of_zj) { TRACE("nla_solver_bl", tout << "sign_of_zj = " << sign_of_zj << "\n";); // we know all the signs - new_lemma lemma(c()); + new_lemma lemma(c(), "strict case 0"); c().mk_ineq(zero_j, (sign_of_zj == 1? llc::GT : llc::LT)); for (unsigned j : m.vars()){ if (j != zero_j) { @@ -201,7 +201,7 @@ void basics::generate_strict_case_zero_lemma(const monic& m, unsigned zero_j, in negate_strict_sign(m.var()); } void basics::add_fixed_zero_lemma(const monic& m, lpvar j) { - new_lemma lemma(c()); + new_lemma lemma(c(), "fixed zero"); c().explain_fixed_var(j); c().mk_ineq(m.var(), llc::EQ); } @@ -229,7 +229,7 @@ bool basics::basic_lemma_for_mon_zero(const monic& rm, const factorization& f) { return true; #if 0 TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout);); - new_lemma lemma(c()); + new_lemma lemma(c(), "xy = 0 -> x = 0 or y = 0"); c().explain_fixed_var(var(rm)); std::unordered_set processed; for (auto j : f) { @@ -247,7 +247,7 @@ bool basics::basic_lemma(bool derived) { if (derived) return false; const auto& mon_inds_to_ref = c().m_to_refine; - TRACE("nla_solver", tout << "mon_inds_to_ref = "; print_vector(mon_inds_to_ref, tout);); + TRACE("nla_solver", tout << "mon_inds_to_ref = "; print_vector(mon_inds_to_ref, tout) << "\n";); unsigned start = c().random(); unsigned sz = mon_inds_to_ref.size(); for (unsigned j = 0; j < sz; ++j) { @@ -309,7 +309,7 @@ bool basics::basic_lemma_for_mon_non_zero_derived(const monic& rm, const factori if (zero_j == null_lpvar) { return false; } - new_lemma lemma(c()); + new_lemma lemma(c(), "x = 0 or y = 0 -> xy = 0"); c().explain_fixed_var(zero_j); c().explain_var_separated_from_zero(var(rm)); explain(rm); @@ -357,7 +357,7 @@ bool basics::basic_lemma_for_mon_neutral_monic_to_factor_derived(const monic& rm return false; } - new_lemma lemma(c()); + new_lemma lemma(c(), "|xa| = |x| & x != 0 -> |a| = 1"); // mon_var = 0 if (mon_var_is_sep_from_zero) c().explain_var_separated_from_zero(mon_var); @@ -418,7 +418,7 @@ bool basics::proportion_lemma_derived(const monic& rm, const factorization& fact } // if there are no zero factors then |m| >= |m[factor_index]| void basics::generate_pl_on_mon(const monic& m, unsigned factor_index) { - new_lemma lemma(c()); + new_lemma lemma(c(), "generate_pl_on_mon"); unsigned mon_var = m.var(); rational mv = val(mon_var); rational sm = rational(nla::rat_sign(mv)); @@ -448,7 +448,7 @@ void basics::generate_pl(const monic& m, const factorization& fc, int factor_ind generate_pl_on_mon(m, factor_index); return; } - new_lemma lemma(c()); + new_lemma lemma(c(), "generate_pl"); int fi = 0; rational mv = var_val(m); rational sm = rational(nla::rat_sign(mv)); @@ -496,7 +496,7 @@ bool basics::factorization_has_real(const factorization& f) const { void basics::basic_lemma_for_mon_zero_model_based(const monic& rm, const factorization& f) { TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout);); SASSERT(var_val(rm).is_zero()&& ! c().rm_check(rm)); - new_lemma lemma(c()); + new_lemma lemma(c(), "xy = 0 -> x = 0 or y = 0"); if (!is_separated_from_zero(f)) { c().mk_ineq(var(rm), llc::NE); for (auto j : f) { @@ -552,8 +552,10 @@ bool basics::basic_lemma_for_mon_neutral_monic_to_factor_model_based_fm(const mo if (jl == null_lpvar) return false; lpvar not_one_j = null_lpvar; + unsigned num_occs = 0; for (auto j : m.vars() ) { if (j == jl) { + ++num_occs; continue; } if (abs(val(j)) != rational(1)) { @@ -562,11 +564,14 @@ bool basics::basic_lemma_for_mon_neutral_monic_to_factor_model_based_fm(const mo } } + if (num_occs > 1) + return false; + if (not_one_j == null_lpvar) { return false; } - new_lemma lemma(c()); + new_lemma lemma(c(), __FUNCTION__); // mon_var = 0 c().mk_ineq(mon_var, llc::EQ); @@ -614,7 +619,7 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monic_model_based_fm(co } } - new_lemma lemma(c()); + new_lemma lemma(c(), __FUNCTION__); for (auto j : m.vars()){ if (not_one == j) continue; c().mk_ineq(j, llc::NE, val(j)); @@ -666,7 +671,7 @@ bool basics::basic_lemma_for_mon_neutral_monic_to_factor_model_based(const monic return false; } - new_lemma lemma(c()); + new_lemma lemma(c(), __FUNCTION__); // mon_var = 0 c().mk_ineq(mon_var, llc::EQ); @@ -748,7 +753,7 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monic_model_based(const TRACE("nla_solver_bl", tout << "not_one = " << not_one << "\n";); - new_lemma lemma(c()); + new_lemma lemma(c(), __FUNCTION__); for (auto j : f) { lpvar var_j = var(j); @@ -780,7 +785,7 @@ void basics::basic_lemma_for_mon_non_zero_model_based_mf(const factorization& f) } if (zero_j == null_lpvar) { return; } - new_lemma lemma(c()); + new_lemma lemma(c(), __FUNCTION__); c().mk_ineq(zero_j, llc::NE); c().mk_ineq(f.mon().var(), llc::EQ); } diff --git a/src/math/lp/nla_core.cpp b/src/math/lp/nla_core.cpp index 0b663f9be..dcb2dcaa3 100644 --- a/src/math/lp/nla_core.cpp +++ b/src/math/lp/nla_core.cpp @@ -1233,13 +1233,13 @@ rational core::val(const factorization& f) const { return r; } -new_lemma::new_lemma(core& c):c(c) { +new_lemma::new_lemma(core& c, char const* name):name(name), c(c) { c.m_lemma_vec->push_back(lemma()); } new_lemma::~new_lemma() { // code for checking lemma can be added here - TRACE("nla_solver", tout << *this; ); + TRACE("nla_solver", tout << name << "\n" << *this; ); } lemma& new_lemma::operator()() { @@ -1247,7 +1247,29 @@ lemma& new_lemma::operator()() { } std::ostream& new_lemma::display(std::ostream & out) const { - return c.print_specific_lemma(c.current_lemma(), out); + auto const& lemma = c.current_lemma(); + + for (auto &p : lemma.expl()) { + out << "(" << p.second << ") "; + c.m_lar_solver.constraints().display(out, [this](lpvar j) { return c.var_str(j);}, p.second); + } + out << " ==> "; + if (lemma.ineqs().empty()) { + out << "false"; + } + else { + bool first = true; + for (auto & in : lemma.ineqs()) { + if (first) first = false; else out << " or "; + c.print_ineq(in, out); + } + } + out << "\n"; + for (lpvar j : c.collect_vars(lemma)) { + c.print_var(j, out); + } + + return out; } void core::negate_relation(unsigned j, const rational& a) { @@ -1674,7 +1696,7 @@ bool core::check_pdd_eq(const dd::solver::equation* e) { return false; eval.get_interval(e->poly(), i_wd); std::function f = [this](const lp::explanation& e) { - new_lemma lemma(*this); + new_lemma lemma(*this, "pdd"); current_expl().add(e); }; if (di.check_interval_for_conflict_on_zero(i_wd, e->dep(), f)) { diff --git a/src/math/lp/nla_core.h b/src/math/lp/nla_core.h index a7c0ec952..e971a2b78 100644 --- a/src/math/lp/nla_core.h +++ b/src/math/lp/nla_core.h @@ -82,9 +82,10 @@ class core; // correctness of the lemma can be checked at this point. // class new_lemma { + char const* name; core& c; public: - new_lemma(core& c); + new_lemma(core& c, char const* name); ~new_lemma(); lemma& operator()(); std::ostream& display(std::ostream& out) const; diff --git a/src/math/lp/nla_intervals.cpp b/src/math/lp/nla_intervals.cpp index 751f2b342..ae6d64afa 100644 --- a/src/math/lp/nla_intervals.cpp +++ b/src/math/lp/nla_intervals.cpp @@ -84,7 +84,7 @@ bool intervals::check_nex(const nex* n, u_dependency* initial_deps) { m_core->lp_settings().stats().m_cross_nested_forms++; scoped_dep_interval i(get_dep_intervals()); std::function f = [this](const lp::explanation& e) { - new_lemma lemma(*m_core); + new_lemma lemma(*m_core, "check_nex"); m_core->current_expl().add(e); }; if (!interval_of_expr(n, 1, i, f)) { diff --git a/src/math/lp/nla_monotone_lemmas.cpp b/src/math/lp/nla_monotone_lemmas.cpp index 378afb8cb..b88586a19 100644 --- a/src/math/lp/nla_monotone_lemmas.cpp +++ b/src/math/lp/nla_monotone_lemmas.cpp @@ -50,7 +50,7 @@ void monotone::monotonicity_lemma(monic const& m) { void monotone::monotonicity_lemma_gt(const monic& m, const rational& prod_val) { TRACE("nla_solver", tout << "prod_val = " << prod_val << "\n"; tout << "m = "; c().print_monic_with_vars(m, tout);); - new_lemma lemma(c()); + new_lemma lemma(c(), __FUNCTION__); for (lpvar j : m.vars()) { c().add_abs_bound(j, llc::GT); } @@ -66,7 +66,7 @@ void monotone::monotonicity_lemma_gt(const monic& m, const rational& prod_val) { \/_i |m[i]| < |val(m[i])} or |m| >= |product_i val(m[i])| */ void monotone::monotonicity_lemma_lt(const monic& m, const rational& prod_val) { - new_lemma lemma(c()); + new_lemma lemma(c(), __FUNCTION__); for (lpvar j : m.vars()) { c().add_abs_bound(j, llc::LT); } diff --git a/src/math/lp/nla_order_lemmas.cpp b/src/math/lp/nla_order_lemmas.cpp index 38aa8cf5e..0f65f4793 100644 --- a/src/math/lp/nla_order_lemmas.cpp +++ b/src/math/lp/nla_order_lemmas.cpp @@ -92,7 +92,7 @@ void order::order_lemma_on_binomial(const monic& ac) { void order::order_lemma_on_binomial_sign(const monic& xy, lpvar x, lpvar y, int sign) { SASSERT(!_().mon_has_zero(xy.vars())); int sy = rat_sign(val(y)); - new_lemma lemma(c()); + new_lemma lemma(c(), __FUNCTION__); mk_ineq(y, sy == 1 ? llc::LE : llc::GE); // negate sy mk_ineq(x, sy*sign == 1 ? llc::GT : llc::LT , val(x)); mk_ineq(xy.var(), - val(x), y, sign == 1 ? llc::LE : llc::GE); @@ -174,7 +174,7 @@ void order::generate_mon_ol(const monic& ac, SASSERT(ab_cmp != llc::LT || (var_val(ac) >= var_val(bd) && val(a)*c_sign < val(b)*d_sign)); SASSERT(ab_cmp != llc::GT || (var_val(ac) <= var_val(bd) && val(a)*c_sign > val(b)*d_sign)); - new_lemma lemma(_()); + new_lemma lemma(_(), __FUNCTION__); mk_ineq(c_sign, c, llc::LE); explain(c); // this explains c == +- d mk_ineq(c_sign, a, -d_sign * b.rat_sign(), b.var(), negate(ab_cmp)); @@ -223,7 +223,7 @@ void order::order_lemma_on_factorization(const monic& m, const factorization& ab if (mv != fv) { bool gt = mv > fv; for (unsigned j = 0, k = 1; j < 2; j++, k--) { - new_lemma lemma(_()); + new_lemma lemma(_(), __FUNCTION__); order_lemma_on_ab(lemma, m, rsign, var(ab[k]), var(ab[j]), gt); explain(ab); explain(m); @@ -261,7 +261,7 @@ void order::generate_ol_eq(const monic& ac, const monic& bc, const factor& b) { - new_lemma lemma(_()); + new_lemma lemma(_(), __FUNCTION__); #if 0 IF_VERBOSE(0, verbose_stream() << var_val(ac) << "(" << mul_val(ac) << "): " << ac << " " << ab_cmp << " " << var_val(bc) << "(" << mul_val(bc) << "): " << bc << "\n" @@ -287,7 +287,7 @@ void order::generate_ol(const monic& ac, const monic& bc, const factor& b) { - new_lemma lemma(_()); + new_lemma lemma(_(), __FUNCTION__); #if 0 IF_VERBOSE(0, verbose_stream() << var_val(ac) << "(" << mul_val(ac) << "): " << ac << " " << ab_cmp << " " << var_val(bc) << "(" << mul_val(bc) << "): " << bc << "\n" diff --git a/src/math/lp/nla_tangent_lemmas.cpp b/src/math/lp/nla_tangent_lemmas.cpp index 3d515d7af..a32415cf9 100644 --- a/src/math/lp/nla_tangent_lemmas.cpp +++ b/src/math/lp/nla_tangent_lemmas.cpp @@ -74,7 +74,7 @@ struct imp { void generate_tang_plane(const point & pl) { - new_lemma lemma(c()); + new_lemma lemma(c(), "generate tangent plane"); c().negate_relation(m_jx, m_x.rat_sign()*pl.x); c().negate_relation(m_jy, m_y.rat_sign()*pl.y); #if Z3DEBUG @@ -95,13 +95,13 @@ struct imp { void generate_two_tang_lines() { { - new_lemma lemma(c()); + new_lemma lemma(c(), "two tangent planes 1"); // Should be v = val(m_x)*val(m_y), and val(factor) = factor.rat_sign()*var(factor.var()) c().mk_ineq(m_jx, llc::NE, c().val(m_jx)); c().mk_ineq(m_j, - m_y.rat_sign() * m_xy.x, m_jy, llc::EQ); } { - new_lemma lemma(c()); + new_lemma lemma(c(), "two tangent planes 2"); c().mk_ineq(m_jy, llc::NE, c().val(m_jy)); c().mk_ineq(m_j, - m_x.rat_sign() * m_xy.y, m_jx, llc::EQ); }