3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-10-30 19:22:28 +00:00

add finite_set to quantifieed theories in smt_setup, fix type signature for map-inverse axioms

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2025-10-27 20:34:13 +01:00
parent c0ca3b5a0a
commit 2f06bcc731
5 changed files with 65 additions and 57 deletions

View file

@ -71,7 +71,7 @@ void finite_set_decl_plugin::init() {
sort* arrABsetA[2] = { arrAB, setA }; sort* arrABsetA[2] = { arrAB, setA };
sort* arrABoolsetA[2] = { arrABool, setA }; sort* arrABoolsetA[2] = { arrABool, setA };
sort* intintT[2] = { intT, intT }; sort* intintT[2] = { intT, intT };
sort *arrABsetBsetA[3] = {arrAB, setB, setA}; sort *arrABBsetA[3] = {arrAB, B, setA};
m_sigs.resize(LAST_FINITE_SET_OP); m_sigs.resize(LAST_FINITE_SET_OP);
m_sigs[OP_FINITE_SET_EMPTY] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_EMPTY], 1, 0, nullptr, setA); m_sigs[OP_FINITE_SET_EMPTY] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_EMPTY], 1, 0, nullptr, setA);
@ -86,7 +86,7 @@ void finite_set_decl_plugin::init() {
m_sigs[OP_FINITE_SET_FILTER] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_FILTER], 1, 2, arrABoolsetA, setA); m_sigs[OP_FINITE_SET_FILTER] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_FILTER], 1, 2, arrABoolsetA, setA);
m_sigs[OP_FINITE_SET_RANGE] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_RANGE], 0, 2, intintT, setInt); m_sigs[OP_FINITE_SET_RANGE] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_RANGE], 0, 2, intintT, setInt);
m_sigs[OP_FINITE_SET_EXT] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_EXT], 1, 2, setAsetA, A); m_sigs[OP_FINITE_SET_EXT] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_EXT], 1, 2, setAsetA, A);
m_sigs[OP_FINITE_SET_MAP_INVERSE] = alloc(polymorphism::psig, m, "set.map_inverse", 2, 3, arrABsetBsetA, A); m_sigs[OP_FINITE_SET_MAP_INVERSE] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_MAP_INVERSE], 2, 3, arrABBsetA, A);
} }
sort * finite_set_decl_plugin::mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters) { sort * finite_set_decl_plugin::mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters) {

View file

@ -201,8 +201,8 @@ public:
return m_manager.mk_app(m_fid, OP_FINITE_SET_MAP, arr, set); return m_manager.mk_app(m_fid, OP_FINITE_SET_MAP, arr, set);
} }
app *mk_map_inverse(expr *arr, expr *a, expr *b) { app *mk_map_inverse(expr *f, expr *x, expr *b) {
return m_manager.mk_app(m_fid, OP_FINITE_SET_MAP_INVERSE, arr, b, a); return m_manager.mk_app(m_fid, OP_FINITE_SET_MAP_INVERSE, f, x, b);
} }
app * mk_filter(expr* arr, expr* set) { app * mk_filter(expr* arr, expr* set) {

View file

@ -206,11 +206,15 @@ void finite_set_axioms::in_range_axiom(expr* r) {
// a := set.map(f, b) // a := set.map(f, b)
// (x in a) <=> set.map_inverse(f, x, b) in b // (x in a) <=> set.map_inverse(f, x, b) in b
void finite_set_axioms::in_map_axiom(expr *x, expr *a) { void finite_set_axioms::in_map_axiom(expr *x, expr *a) {
expr* f = nullptr, *b = nullptr; expr *f = nullptr, *b = nullptr;
sort *elem_sort = nullptr;
VERIFY(u.is_finite_set(a->get_sort(), elem_sort));
if (x->get_sort() != elem_sort)
return;
if (!u.is_map(a, f, b)) if (!u.is_map(a, f, b))
return; return;
expr_ref inv(u.mk_map_inverse(x, f, b), m); expr_ref inv(u.mk_map_inverse(f, x, b), m);
expr_ref f1(u.mk_in(x, a), m); expr_ref f1(u.mk_in(x, a), m);
expr_ref f2(u.mk_in(inv, b), m); expr_ref f2(u.mk_in(inv, b), m);
add_binary("map-inverse", x, a, m.mk_not(f1), f2); add_binary("map-inverse", x, a, m.mk_not(f1), f2);
@ -221,8 +225,12 @@ void finite_set_axioms::in_map_axiom(expr *x, expr *a) {
// (x in b) => f(x) in a // (x in b) => f(x) in a
void finite_set_axioms::in_map_image_axiom(expr *x, expr *a) { void finite_set_axioms::in_map_image_axiom(expr *x, expr *a) {
expr* f = nullptr, *b = nullptr; expr* f = nullptr, *b = nullptr;
sort *elem_sort = nullptr;
if (!u.is_map(a, f, b)) if (!u.is_map(a, f, b))
return; return;
VERIFY(u.is_finite_set(b->get_sort(), elem_sort));
if (x->get_sort() != elem_sort)
return;
expr_ref x_in_b(u.mk_in(x, b), m); expr_ref x_in_b(u.mk_in(x, b), m);
@ -286,56 +294,59 @@ void finite_set_axioms::add_ternary(char const *name, expr *p1, expr *p2, expr *
// Auxiliary algebraic axioms to ease reasoning about set.size // Auxiliary algebraic axioms to ease reasoning about set.size
// The axioms are not required for completenss for the base fragment // The axioms are not required for completenss for the base fragment
// as they are handled by creating semi-linear sets. // as they are handled by creating semi-linear sets.
void finite_set_axioms::size_ub_axiom(expr *e) { void finite_set_axioms::size_ub_axiom(expr *sz) {
expr *b = nullptr, *x = nullptr, *y = nullptr; expr *b = nullptr, *e = nullptr, *x = nullptr, *y = nullptr;
if (!u.is_size(sz, e))
return;
arith_util a(m); arith_util a(m);
expr_ref ineq(m); expr_ref ineq(m);
if (u.is_singleton(e, b)) if (u.is_singleton(e, b))
add_unit("size", e, m.mk_eq(u.mk_size(e), a.mk_int(1))); add_unit("size", e, m.mk_eq(sz, a.mk_int(1)));
else if (u.is_empty(e)) else if (u.is_empty(e))
add_unit("size", e, m.mk_eq(u.mk_size(e), a.mk_int(0))); add_unit("size", e, m.mk_eq(sz, a.mk_int(0)));
else if (u.is_union(e, x, y)) { else if (u.is_union(e, x, y)) {
ineq = a.mk_le(u.mk_size(e), a.mk_add(u.mk_size(x), u.mk_size(y))); ineq = a.mk_le(sz, a.mk_add(u.mk_size(x), u.mk_size(y)));
m_rewriter(ineq); m_rewriter(ineq);
add_unit("size", e, ineq); add_unit("size", e, ineq);
} }
else if (u.is_intersect(e, x, y)) { else if (u.is_intersect(e, x, y)) {
ineq = a.mk_le(u.mk_size(e), u.mk_size(x)); ineq = a.mk_le(sz, u.mk_size(x));
m_rewriter(ineq); m_rewriter(ineq);
add_unit("size", e, ineq); add_unit("size", e, ineq);
ineq = a.mk_le(u.mk_size(e), u.mk_size(y)); ineq = a.mk_le(sz, u.mk_size(y));
m_rewriter(ineq); m_rewriter(ineq);
add_unit("size", e, ineq); add_unit("size", e, ineq);
} }
else if (u.is_difference(e, x, y)) { else if (u.is_difference(e, x, y)) {
ineq = a.mk_le(u.mk_size(e), u.mk_size(x)); ineq = a.mk_le(sz, u.mk_size(x));
m_rewriter(ineq); m_rewriter(ineq);
add_unit("size", e, ineq); add_unit("size", e, ineq);
} }
else if (u.is_filter(e, x, y)) { else if (u.is_filter(e, x, y)) {
ineq = a.mk_le(u.mk_size(e), u.mk_size(y)); ineq = a.mk_le(sz, u.mk_size(y));
m_rewriter(ineq); m_rewriter(ineq);
add_unit("size", e, ineq); add_unit("size", e, ineq);
} }
else if (u.is_map(e, x, y)) { else if (u.is_map(e, x, y)) {
ineq = a.mk_le(u.mk_size(e), u.mk_size(y)); ineq = a.mk_le(sz, u.mk_size(y));
m_rewriter(ineq); m_rewriter(ineq);
add_unit("size", e, ineq); add_unit("size", e, ineq);
} }
else if (u.is_range(e, x, y)) { else if (u.is_range(e, x, y)) {
ineq = a.mk_eq(u.mk_size(e), m.mk_ite(a.mk_le(x, y), a.mk_add(a.mk_sub(y, x), a.mk_int(1)), a.mk_int(0))); ineq = a.mk_eq(sz, m.mk_ite(a.mk_le(x, y), a.mk_add(a.mk_sub(y, x), a.mk_int(1)), a.mk_int(0)));
m_rewriter(ineq); m_rewriter(ineq);
add_unit("size", e, ineq); add_unit("size", e, ineq);
} }
} }
void finite_set_axioms::size_lb_axiom(expr* e) { void finite_set_axioms::size_lb_axiom(expr* e) {
VERIFY(u.is_size(e));
arith_util a(m); arith_util a(m);
expr_ref ineq(m); expr_ref ineq(m);
ineq = a.mk_le(a.mk_int(0), u.mk_size(e)); ineq = a.mk_le(a.mk_int(0), e);
m_rewriter(ineq); m_rewriter(ineq);
add_unit("size-lb", e, ineq); add_unit("size", e, ineq);
} }
void finite_set_axioms::subset_axiom(expr* a) { void finite_set_axioms::subset_axiom(expr* a) {

View file

@ -845,6 +845,7 @@ namespace smt {
setup_bv(); setup_bv();
setup_dl(); setup_dl();
setup_seq_str(st); setup_seq_str(st);
setup_finite_set();
setup_fpa(); setup_fpa();
setup_recfuns(); setup_recfuns();
setup_special_relations(); setup_special_relations();

View file

@ -66,6 +66,7 @@ namespace smt {
* (set.in (f x) (set.map f S)) * (set.in (f x) (set.map f S))
*/ */
theory_var theory_finite_set::mk_var(enode *n) { theory_var theory_finite_set::mk_var(enode *n) {
TRACE(finite_set, tout << "mk_var: " << enode_pp(n, ctx) << "\n");
theory_var r = theory::mk_var(n); theory_var r = theory::mk_var(n);
VERIFY(r == static_cast<theory_var>(m_find.mk_var())); VERIFY(r == static_cast<theory_var>(m_find.mk_var()));
SASSERT(r == static_cast<int>(m_var_data.size())); SASSERT(r == static_cast<int>(m_var_data.size()));
@ -88,7 +89,7 @@ namespace smt {
} }
else if (u.is_union(e) || u.is_intersect(e) || else if (u.is_union(e) || u.is_intersect(e) ||
u.is_difference(e) || u.is_singleton(e) || u.is_difference(e) || u.is_singleton(e) ||
u.is_empty(e) || u.is_range(e)) { u.is_empty(e) || u.is_range(e) || u.is_filter(e) || u.is_map(e)) {
m_var_data[r]->m_setops.push_back(n); m_var_data[r]->m_setops.push_back(n);
ctx.push_trail(push_back_trail(m_var_data[r]->m_setops)); ctx.push_trail(push_back_trail(m_var_data[r]->m_setops));
for (auto arg : enode::args(n)) { for (auto arg : enode::args(n)) {
@ -104,9 +105,6 @@ namespace smt {
ctx.push_trail(push_back_trail(m_var_data[v]->m_parent_setops)); ctx.push_trail(push_back_trail(m_var_data[v]->m_parent_setops));
} }
} }
else if (u.is_map(e) || u.is_filter(e)) {
NOT_IMPLEMENTED_YET();
}
else if (u.is_range(e)) { else if (u.is_range(e)) {
} }
@ -362,9 +360,7 @@ namespace smt {
* - (set.range lo hi) -> lo-1,hi+1 not in range, lo, hi in range if lo <= hi * * - (set.range lo hi) -> lo-1,hi+1 not in range, lo, hi in range if lo <= hi *
* *
* Other axioms: * Other axioms:
* - (set.singleton x) -> (set.size (set.singleton x)) = 1 * - (set.size s) -> 0 <= (set.size s) <= upper-bound(s)
* - (set.empty) -> (set.size (set.empty)) = 0
*/ */
void theory_finite_set::add_immediate_axioms(app* term) { void theory_finite_set::add_immediate_axioms(app* term) {
expr *elem = nullptr, *set = nullptr; expr *elem = nullptr, *set = nullptr;
@ -390,6 +386,10 @@ namespace smt {
range_local.push_back(a.mk_add(lo, a.mk_int(-1))); range_local.push_back(a.mk_add(lo, a.mk_int(-1)));
range_local.push_back(a.mk_add(hi, a.mk_int(1))); range_local.push_back(a.mk_add(hi, a.mk_int(1)));
} }
else if (u.is_size(term)) {
m_axioms.size_lb_axiom(term);
m_axioms.size_ub_axiom(term);
}
// Assert all new lemmas as clauses // Assert all new lemmas as clauses
for (unsigned i = sz; i < m_clauses.axioms.size(); ++i) { for (unsigned i = sz; i < m_clauses.axioms.size(); ++i) {
@ -631,38 +631,34 @@ namespace smt {
void theory_finite_set::add_membership_axioms(expr *elem, expr *set) { void theory_finite_set::add_membership_axioms(expr *elem, expr *set) {
TRACE(finite_set, tout << "add_membership_axioms: " << mk_pp(elem, m) << " in " << mk_pp(set, m) << "\n";); TRACE(finite_set, tout << "add_membership_axioms: " << mk_pp(elem, m) << " in " << mk_pp(set, m) << "\n";);
try {
// Instantiate appropriate axiom based on set structure // Instantiate appropriate axiom based on set structure
if (!is_new_axiom(elem, set)) if (!is_new_axiom(elem, set))
; ;
else if (u.is_empty(set)) { else if (u.is_empty(set)) {
m_axioms.in_empty_axiom(elem); m_axioms.in_empty_axiom(elem);
} }
else if (u.is_singleton(set)) { else if (u.is_singleton(set)) {
m_axioms.in_singleton_axiom(elem, set); m_axioms.in_singleton_axiom(elem, set);
} }
else if (u.is_union(set)) { else if (u.is_union(set)) {
m_axioms.in_union_axiom(elem, set); m_axioms.in_union_axiom(elem, set);
} }
else if (u.is_intersect(set)) { else if (u.is_intersect(set)) {
m_axioms.in_intersect_axiom(elem, set); m_axioms.in_intersect_axiom(elem, set);
} }
else if (u.is_difference(set)) { else if (u.is_difference(set)) {
m_axioms.in_difference_axiom(elem, set); m_axioms.in_difference_axiom(elem, set);
} }
else if (u.is_range(set)) { else if (u.is_range(set)) {
m_axioms.in_range_axiom(elem, set); m_axioms.in_range_axiom(elem, set);
} }
else if (u.is_map(set)) { else if (u.is_map(set)) {
m_axioms.in_map_axiom(elem, set); // TODO type of elem could be from the pre-image
m_axioms.in_map_image_axiom(elem, set); m_axioms.in_map_axiom(elem, set);
} m_axioms.in_map_image_axiom(elem, set);
else if (u.is_filter(set)) { }
m_axioms.in_filter_axiom(elem, set); else if (u.is_filter(set)) {
} m_axioms.in_filter_axiom(elem, set);
} catch (...) {
TRACE(finite_set, tout << "exception\n");
throw;
} }
TRACE(finite_set, tout << "after add_membership_axioms: " << mk_pp(elem, m) << " in " << mk_pp(set, m) << "\n";); TRACE(finite_set, tout << "after add_membership_axioms: " << mk_pp(elem, m) << " in " << mk_pp(set, m) << "\n";);
} }